PHYS/ASTR 4060 - Observational Astronomy for Scientists (3) Syllabus Instructor: Prof

Total Page:16

File Type:pdf, Size:1020Kb

PHYS/ASTR 4060 - Observational Astronomy for Scientists (3) Syllabus Instructor: Prof PHYS/ASTR 4060 - Observational Astronomy for Scientists (3) Syllabus Instructor: Prof. Wayne Springer ([email protected]) Office: 226 INSCC (Office Hours: T 3PM-5PM or by appt.) Phone: 801-585-1390 TA: Jinqi Wang ([email protected]) Lecture/ PHYS 205 Tuesday,Thursday 7:15PM-9:00PM ComputerLab: (additional observing time as necessary) Observatory: Located on roof of South Physics Building (801-585-7223) Textbook: None required. Class web site: http://www.physics.utah.edu/~springer/phys4060/ Prerequisites: Familiarity with computers, PHYS 1060 or PHYS 1070, and PHYS 2220. Brief Description: This course will serve as an introduction to the tools and techniques used in optical and radio astronomy. Using the facilities at the University of Utah Observatory, we will explore the cosmos and study the Sun, planets, asteroids, stars and galaxies. Measurements of basic properties of astronomical objects will be performed. Quantitative analysis of these measurements will enable us to determine such things as the mass of Jupiter as well as the ages of stars. Course Objectives: . Develop ability to find and identify celestial objects. Develop proficiency in the use of telescopes. Develop proficiency in the use of CCD cameras and image processing. Develop familiarity with some basic techniques in the analysis of astronomical data. Develop familiarity with the fundamental types of astrophysical objects. Develop familiarity with some of the fundamental physical laws that govern the Universe... To have fun.... Detailed Description: This course will serve as an introduction to the tools and techniques used in optical astronomy. This course will provide you with "hands-on" experience using astronomical tools. There will be several lab sessions intended to familiarize you with the operation of optical and radio telescope hardware, software and their accessories. The TA and/or the instructor will evaluate your proficiency in the use of the equipment by having you perform demonstrations of the usage of the various pieces of equipment. Measurements of basic properties of astronomical objects will be performed. Quantitative analysis of these measurements will enable us to determine quantities such as the mass of Jupiter as well as the ages of stars. The course will cover the following topics: · Basic Observational Techniques • Finding astronomical objects. • Imaging astronomical objects with a CCD camera. • Filters and Photometry. • Design and use of spectrographs. • Atmospheric effects and limitations. • Basic Concepts of Radio Astronomy (Time and equipment permitting) · Analysis of Astrophysical Measurements • Image Processing • Acquisition and analysis of spectra from astrophysical sources • Analysis of photometric observations • Measurements of astrophysical quantities using simulated observations Observing projects will be an integral component of the course. The facilities available include one 14" Optical telescope, one 12" , one 11” and four 10" optical telescopes. Each of the optical telescopes will be equipped with a CCD camera. An SBIG self-guiding spectrograph capable of identifying objects such as quasars is also available. Computer equipment is available to store and analyze the images obtained from each telescope. The observing projects may include, Cepheid variable stars, gaseous nebulae, galactic rotation, color-magnitude diagrams for star clusters. Prerequisites: Algebra, Familiarity with computers, PHYS 1060 or PHYS 1070, and PHYS 2220. Reading Material: All of the required reading material for this course will be provided in PDF files on our class web site. Lectures: A review of basic astronomy and astrophysics as well as some optics will be presented. A catalog of astrophysical objects will be presented and described. Since a large component of this course in observational astronomy will be devoted to analyzing starlight, material relevant to the relevant physics will be presented. An in-depth discussion of the theory of stars and stellar evolution will also be presented. Particular emphasis will be placed on the basic physics involved in interpreting observational data to develop an understanding of astrophysical objects. It is highly recommended for those students who have not attended a basic astronomy course to acquire and study a textbook in basic astronomy. Observing Projects: The following projects will involve actual observations performed by you using the department's observatory equipment. Some of these exercises will also require written reports (4060) to be submitted for grades. • Basic Setup and Usage of a Computer Controlled Telescope. • Basic Setup and usage of CCD Cameras. • Flat-Field and other Techniques to improve CCD Imaging. • Color Imaging. • Solar Observations (Carefully). • Lunar Observations. • Planetary Observations. • Observations of Planetary Satellites. • Deep Sky Imaging: Galaxies • Deep Sky Imaging: Nebulae • Deep Sky Imaging: Globular Clusters • Basic Usage of Spectrographs. • Measurement of Stellar Color Index with UVBRI filter sets. • *Observing the Sun at Radio Wavelengths. • *Observing the Milky Way at Radio Wavelengths. • *Use of 32” telescope located at Frisco Peak. *Denotes possible additional observing activities depending on availability of additional resources. Computer Laboratory Exercises: There will be several laboratory sessions intended to familiarize you with the use of the hardware associated with the course. These sessions will be in the form of demonstrations and "hands-on" workshops to enable you to learn how to use the equipment. Examples of such sessions would be a "workshop" on how to set up and align a telescope or how to acquire an image using a CCD camera. Additionally this course uses several different software packages for navigating the night sky, controlling telescopes and the acquisition and processing of CCD images. A list of software used in this course has been provided above. Several laboratory sessions will be devoted to learning how to use some of these software packages. Additionally we will be using software to perform laboratory exercises where data will be analyzed and measurements performed. Typically in these exercises we will use software to simulate astronomical data. This data will then be analyzed to determine some properties of astrophysical objects. You will be expected to write a brief report describing the "observations" that you made using the simulation software as well as describe the analysis that you performed using this simulated data. The following is a list of laboratory exercises that we may/will be performing during the semester • Familiarization with the Sky. (Starry Night Pro) • The Revolution of the Moons of Jupiter. (CLEA) • Radar Measurements of the Rotation Rate of Mercury. (CLEA) • The Flow of Energy out of the Sun. (CLEA) • Photoelectric Photometry of the Pleiades. (CLEA) • Classification of Stellar Spectra. (CLEA) • The Hubble Redshift Distance Relation. (CLEA) • The Large Scale Structure of the Universe. (CLEA) • Radio Astronomy of Pulsars(CLEA) • Others… Schedule: On cloudy nights, we will work on computer based exercises or image processing. There will be additional observing sessions scheduled later in the semester. It should also be noted that class start times will start following sunset later in the semester. Class times may extend beyond 9PM for observing sessions. Solar observing sessions that will occur later in the semester will start earlier in the day at least one hour prior to sunset. Tentative Course Requirements and Grades: There will be in-class laboratory exercises using various software tools to simulate astronomical data. You will perform exercises in the analysis of these data sets. Brief reports will be required and graded for these laboratory exercises. In addition to the laboratory sessions and exercises there will also be reading assignments/homework, quizzes and a final exam. Homework assignments WILL NOT be collected or graded. The main purpose of the homework assignments will be to help you prepare for quizzes as well as the final exam. A comprehensive final exam will also be given. The TENTATIVE grading scheme is as follows: Activity Tentative Weight Class Exercises 25% Observing Exercises 20% Written Reports 25% Midterm Exam 10% Final Exam 20% Written Reports (4060 students only): A written report is to be prepared for some of the laboratory exercises or projects performed by students enrolled in PHYS 4060. A standard outline for an experimental report is the following: 1.Introduction - Description of Physics Topic to be studied 2.Description of experimental procedure: Apparatus - Drawings are often helpful Procedure 3.Presentation of raw data 4.Analysis of data Extraction of physics results Estimation of statistical uncertainties Estimation of systematic uncertainties 5.Conclusions Presentation of results Comparison with theory Discussion of possible improvements,... It is imperative that the report is LEGIBLE. Typewritten reports are more likely to meet this requirement than handwritten reports. However, it is not necessary to spend inordinate amounts of time assuring that the report is aesthetically perfect. Hand drawn figures pasted into the report are acceptable. Important Dates: Event Date Last day to drop (delete) class: Wednesday August 31 Last day to withdraw from class: Friday October 21 Midterm Exam To be scheduled Fall Break October 10-15 Classes End Friday December 9 Tuesday December 13 8:30-10:30 PM Final Exam: (PHYS 205) http://www.sa.utah.edu/regist/calendar/datesDeadlines/Fall2011.htm
Recommended publications
  • Astronomy (ASTR) 1
    Astronomy (ASTR) 1 ASTR 3300. Astrophysics of Planetary Astronomy (ASTR) Systems. Units: 3 Semester Prerequisite: ASTR 2300 Courses Physical principles of planetary systems and their formation, stellar structure and evolution. Formerly PHYS 370; students may not earn credit ASTR 1000. Introduction to Planetary for both courses. Astronomy. Units: 3 ASTR 3310. Astrophysics of Galaxies and Semester Prerequisite: Satisfactory completion of GE mathematics requirement, area B4 Cosmology. Units: 3 A brief history of the development of astronomy followed by modern Semester Prerequisite: ASTR 2300 descriptions of our planetary system, extrasolar systems, and the Physical principles of stellar evolution, galactic structure, extragalactic possibilities of life in the universe. Discussions of methods of extending astrophysics, and cosmology. knowledge of the universe. No previous background in natural sciences is ASTR 4000. Observational Astronomy. Units: required. Satisfies GE Category B1. Formerly offered as ASTR 103. 3 ASTR 1000L. Introduction to Planetary Semester Prerequisite: ASTR 2300, PHYS 3300 or other computer Astronomy Lab. Unit: 1 programming course. Prerequisite: CSE 201 or other computer Semester Prerequisite: Satisfactory completion of GE mathematics programming course requirement, area B4 Introduction to the operation of telescopes to image astronomical targets, Semester Corequisite: ASTR 1000 primarily in the optical range. Topics include night sky motion and Laboratory associated with Introduction to Planetary Astronomy (ASTR coordinate systems; digital imaging, reduction, and analysis; proposal 1000). Satisfies GE Category B3. Materials fee required. design and review; and observation run planning. Projects include observation and analysis of both pre-determined objects and objects ASTR 1010. Introduction to Galaxies and of the students' choosing. Presentations throughout the course using Cosmology.
    [Show full text]
  • Astronomy (Astr) 1
    ASTRONOMY (ASTR) 1 ASTR 102. Introduction to Astronomy: Stars, Galaxies & Cosmology. 3 ASTRONOMY (ASTR) Credits. The sun, stellar observables, star birth, evolution, and death, novae and ASTR 61. First-Year Seminar: The Copernican Revolution. 3 Credits. supernovae, white dwarfs, neutron stars, black holes, the Milky Way This seminar explores the 2,000-year effort to understand the motion galaxy, normal galaxies, active galaxies and quasars, dark matter, dark of the sun, moon, stars, and five visible planets. Earth-centered cosmos energy, cosmology, early universe. Honors version available gives way to the conclusion that earth is just another body in space. Requisites: Prerequisite, ASTR 101, or pre- or co-requisite, PHYS 117 Cultural changes accompany this revolution in thinking. or 119; Permission of the instructor for students lacking the pre- or co- Gen Ed: PL, NA, WB. requisites. Grading status: Letter grade Gen Ed: PL. Same as: PHYS 61. Grading status: Letter grade. ASTR 63. First-Year Seminar: Catastrophe and Chaos: Unpredictable ASTR 102H. Introduction to Astronomy: Stars, Galaxies & Cosmology. 3 Physics. 3 Credits. Credits. Physics is often seen as the most precise and deterministic of sciences. The sun, stellar observables, star birth, evolution, and death, novae and Determinism can break down, however. This seminar explores the rich supernovae, white dwarfs, neutron stars, black holes, the Milky Way and diverse areas of modern physics in which "unpredictability" is the galaxy, normal galaxies, active galaxies and quasars, dark matter, dark norm. Honors version available. energy, cosmology, early universe. ASTR 63H. First-Year Seminar: Catastrophe and Chaos: Unpredictable Requisites: Prerequisite, ASTR 101, or pre- or co-requisite, PHYS 117 Physics.
    [Show full text]
  • Astr-Astronomy 1
    ASTR-ASTRONOMY 1 ASTR 1116. Introduction to Astronomy Lab, Special ASTR-ASTRONOMY 1 Credit (1) This lab-only listing exists only for students who may have transferred to ASTR 1115G. Introduction Astro (lec+lab) NMSU having taken a lecture-only introductory astronomy class, to allow 4 Credits (3+2P) them to complete the lab requirement to fulfill the general education This course surveys observations, theories, and methods of modern requirement. Consent of Instructor required. , at some other institution). astronomy. The course is predominantly for non-science majors, aiming Restricted to Las Cruces campus only. to provide a conceptual understanding of the universe and the basic Prerequisite(s): Must have passed Introduction to Astronomy lecture- physics that governs it. Due to the broad coverage of this course, the only. specific topics and concepts treated may vary. Commonly presented Learning Outcomes subjects include the general movements of the sky and history of 1. Course is used to complete lab portion only of ASTR 1115G or ASTR astronomy, followed by an introduction to basic physics concepts like 112 Newton’s and Kepler’s laws of motion. The course may also provide 2. Learning outcomes are the same as those for the lab portion of the modern details and facts about celestial bodies in our solar system, as respective course. well as differentiation between them – Terrestrial and Jovian planets, exoplanets, the practical meaning of “dwarf planets”, asteroids, comets, ASTR 1120G. The Planets and Kuiper Belt and Trans-Neptunian Objects. Beyond this we may study 4 Credits (3+2P) stars and galaxies, star clusters, nebulae, black holes, and clusters of Comparative study of the planets, moons, comets, and asteroids which galaxies.
    [Show full text]
  • Observational Astronomy
    Observational Astronomy Dr Elizabeth Stanway, [email protected] A brief history of observational astronomy Astronomical alignments 32,500 year old… star chart? e.g. Stonehenge c.5000 yr old A brief history of observational astronomy Armillary spheres and astrolabes Independently invented in China and Greece c. 200bce Astronomical alignments e.g. Stonehenge c.5000 yr old A brief history of observational astronomy Armillary spheres and astrolabes Independently invented in China and Greece c. 200bce Chaucer wrote a treatise on the astrolabe in 1391 A brief history of observational astronomy The Antikythera Mechanism – a calendar and orrery from c.100bce A brief history of observational astronomy It took 1500 years to make similarly complex astronomical clocks – e.g. Samuel Watson of Coventry (1690) Can show planetary orbits, dates, times, lunar and solar cycles, eclipses. In the collection of Windsor castle (image reproduced from Royal Collections Trust) The first telescopes 1608: Hans Lippershey/Jacob Metius Refracting telescopes… may 1608: Gallileo Gallilei have been around decades before - or even longer 1611: Johannes Kepler 1668: Isaac Newton Reflecting telescope – proposed earlier 1936: Karl Jansky Radio telescopes 1963: Riccardo Giacconi X-Ray telescopes 1968: Nancy Grace Roman Space telescopes Key Questions to consider: Where is your target? What effect will the atmosphere - coordinate systems have? - precession of the equinoxes - atmospheric refraction - proper motion - atmospheric extinction - seeing and sky brightness - adaptive optics When can you observe it? - equatorial vs alt/az - hour angles - how do we measure time? Angles Observational astronomy is all about angles: 1 AU @ 1 pc subtends 1 arcsecond = 1”.
    [Show full text]
  • Astronomy (ASTR) 1
    Astronomy (ASTR) 1 ASTR 203 Introduction to Observational Astronomy ASTRONOMY (ASTR) Prerequisites: ASTR 103/ASTR 103H or equivalent Notes: The course consists of 2 lecture hours and three evening ASTR 103 Descriptive Astronomy laboratory hours per week. Description: Approach is essentially nonmathematical. Survey of the Description: Exploration of equipment and techniques needed to observe nature and motions of the planets, the sun, the stars, and their lives, and investigate the motions and objects in the night sky. galaxies, and the structure of the universe. Black holes, pulsars, quasars, Credit Hours: 4 and other objects of special interest included. Max credits per semester: 4 Credit Hours: 3 Max credits per degree: 4 Max credits per semester: 3 Grading Option: Graded with Option Max credits per degree: 3 ASTR 204 Introduction to Astronomy and Astrophysics Grading Option: Graded with Option Prerequisites: PHYS 211/211H; MATH 107/107H; parallel ASTR 224 Prerequisite for: ASTR 113; ASTR 203 Notes: Survey of the sun, the solar system, stellar properties, stellar ACE: ACE 4 Science systems, interstellar matter, galaxies, and cosmology. ASTR 103H Honors: Descriptive Astronomy Description: Survey of the sun, the solar system, stellar properties, stellar Prerequisites: Good standing in the University Honors Program or by systems, interstellar matter, galaxies, and cosmology. invitation Credit Hours: 3 Notes: Broad look at astronomy for non-science majors. Max credits per semester: 3 Description: Approach is essentially non-mathematical, but simple Max credits per degree: 3 algebra is employed where appropriate. Sun and solar system, the stars, Grading Option: Graded with Option galaxies, and cosmology. Black holes, pulsars, quasars, and other objects Prerequisite for: ASTR 224 of special interest included.
    [Show full text]
  • ASTR 444 – Observational Astronomy (4) Course Outline
    March 2011 ASTR 444 – Observational Astronomy (4) Course Outline Introduction to observational astronomy. Coordinate systems, telescopes and observational instruments (CCDs, filters, spectrographs), observational methods and techniques, data reduction and analysis. Laboratory activities include use of a telescope, CCD camera for data acquisition, data reduction and analysis, and presentation of results. 3 lectures. 1 laboratory. Prerequisites: ASTR 301 and ASTR 302, or consent of instructor. This course in observational astronomy will complete the required course selection for students pursuing a minor in astronomy. Students minoring in astronomy should have exposure to the acquisition and analysis of actual astronomical data. In addition to providing this background, the course will serve as the capstone course for the minor, allowing student access to a telescope and experience working with the equipment and computer analysis techniques of a professional astronomer. The course complements the content material covered in ASTR 301/302/326. Learning Objectives and Criteria: The expected outcomes are: (1) Understanding usage of astronomical equipment such as CCD cameras, telescopes, and spectrographs (2) Understanding of astronomical techniques such as time-series photometry, spectroscopy, fitting PSFs, and data reduction (3) Completion of data analysis of a specific astronomical object of study with a group (4) Understanding of the field of astronomy and the role that observational astronomy and astronomical data play in our understanding of the universe Text and References: Birney, D. Scott, Gonzales, Guillermo, Oesper, David, Observational Astronomy, 2nd Ed, Cambridge University Press Content and Method: Method: ASTR 444 is offered in a traditional lecture format. It meets a total of 4 hours a week.
    [Show full text]
  • Big Astronomy Educator Guide
    Show Summary 2 EDUCATOR GUIDE National Science Standards Supported 4 Main Questions and Answers 5 TABLE OF CONTENTS Glossary of Terms 9 Related Activities 10 Additional Resources 17 Credits 17 SHOW SUMMARY Big Astronomy: People, Places, Discoveries explores three observatories located in Chile, at extreme and remote places. It gives examples of the multitude of STEM careers needed to keep the great observatories working. The show is narrated by Barbara Rojas-Ayala, a Chilean astronomer. A great deal of astronomy is done in the nation of Energy Camera. Here we meet Marco Bonati, who is Chile, due to its special climate and location, which an Electronics Detector Engineer. He is responsible creates stable, dry air. With its high, dry, and dark for what happens inside the instrument. Marco tells sites, Chile is one of the best places in the world for us about this job, and needing to keep the instrument observational astronomy. The show takes you to three very clean. We also meet Jacoline Seron, who is a of the many telescopes along Chile’s mountains. Night Assistant at CTIO. Her job is to take care of the instrument, calibrate the telescope, and operate The first site we visit is the Cerro Tololo Inter-American the telescope at night. Finally, we meet Kathy Vivas, Observatory (CTIO), which is home to many who is part of the support team for the Dark Energy telescopes. The largest is the Victor M. Blanco Camera. She makes sure the camera is producing Telescope, which has a 4-meter primary mirror. The science-quality data.
    [Show full text]
  • Astronomy (ASTR) 1
    Astronomy (ASTR) 1 Astronomy (ASTR) ASTR 1000. Introduction to the Universe. 3 Hours. A survey of the universe, examining the historical origins of astronomy; the motions and physical properties of the Sun, Moon, and planets; the formation, evolution, and death of stars; and the structure of galaxies and the expansion of the Universe. ASTR 1010K. Astronomy of the Solar System. 4 Hours. Astronomy from early ideas of the cosmos to modern observational techniques. The solar system planets, satellites, and minor bodies. The origin and evolution of the solar system. Three lectures and one night laboratory session per week. ASTR 1020K. Stellar and Galactic Astronomy. 4 Hours. The study of the Sun and stars, their physical properties and evolution, interstellar matter, star clusters, our Galaxy and other galaxies, the origin and evolution of the Universe. Three lectures and one night laboratory session per week. ASTR 2010. Tools of Astronomy. 1 Hour. An introduction to observational techniques for the beginning astronomy major. Completion of this course will enable the student to use the campus observatory without direct supervision. The student will be given instruction in the use of the observatory and its associated equipment. Includes laboratory safety, research methods, exploration of resources (library and Internet), and an outline of the discipline. ASTR 2020. The Planetarium. 1 Hour. Prerequisites: ASTR 1000, ASTR 1010K, ASTR 1020K, or permission of instructor. Instruction in the operation of the campus planetarium and delivery of planetarium programs. Completion of this course will qualify the student to prepare and give planetarium programs to visiting groups. ASTR 2950. Directed Study.
    [Show full text]
  • Astronomy 113 Laboratory Manual
    UNIVERSITY OF WISCONSIN - MADISON Department of Astronomy Astronomy 113 Laboratory Manual Fall 2011 Professor: Snezana Stanimirovic 4514 Sterling Hall [email protected] TA: Natalie Gosnell 6283B Chamberlin Hall [email protected] 1 2 Contents Introduction 1 Celestial Rhythms: An Introduction to the Sky 2 The Moons of Jupiter 3 Telescopes 4 The Distances to the Stars 5 The Sun 6 Spectral Classification 7 The Universe circa 1900 8 The Expansion of the Universe 3 ASTRONOMY 113 Laboratory Introduction Astronomy 113 is a hands-on tour of the visible universe through computer simulated and experimental exploration. During the 14 lab sessions, we will encounter objects located in our own solar system, stars filling the Milky Way, and objects located much further away in the far reaches of space. Astronomy is an observational science, as opposed to most of the rest of physics, which is experimental in nature. Astronomers cannot create a star in the lab and study it, walk around it, change it, or explode it. Astronomers can only observe the sky as it is, and from their observations deduce models of the universe and its contents. They cannot ever repeat the same experiment twice with exactly the same parameters and conditions. Remember this as the universe is laid out before you in Astronomy 113 – the story always begins with only points of light in the sky. From this perspective, our understanding of the universe is truly one of the greatest intellectual challenges and achievements of mankind. The exploration of the universe is also a lot of fun, an experience that is largely missed sitting in a lecture hall or doing homework.
    [Show full text]
  • Optical Astronomy from Orbiting Observatories
    The Space Congress® Proceedings 1981 (18th) The Year of the Shuttle Apr 1st, 8:00 AM Optical Astronomy from Orbiting Observatories P. M. Perry Astronomy Department, Computer Sciences Corporation William R. Whitman Technical Staff, Astronomy Department, Computer Sciences Corporation Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Perry, P. M. and Whitman, William R., "Optical Astronomy from Orbiting Observatories" (1981). The Space Congress® Proceedings. 5. https://commons.erau.edu/space-congress-proceedings/proceedings-1981-18th/session-2/5 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. OPTICAL Dr. P. M. Perry, Manager Mr. William R. Whitman, Astronomy Department of Technical Staff Computer Sciences Corporation Astronomy Department Computer Sciences Corporation ABSTRACT Atmospheric extinction, seeing, and "light pollution" £re the most significant factors ultraviolet, visible, and infrared wavelengths) affecting the quality of observations obtained conducted by modern ground-based observatories from ground-based optical telescopes, degrading is that of atmospheric extinction and seeing. resolution and limiting reach. In addition, Irregularities in the earth's atmosphere tend the earth's atmosphere is opaque to radiation to degrade star images to much below the per­ shorter than 0.3 microns preventing the ultra­ formance potential of good instruments. Even violet from being observed in detail from the under the best observing conditions with the ground. The solution to these problems has been best ground-based instruments 5 a resolution of to move astronomical telescopes into earth orbit.
    [Show full text]
  • Observational Astronomy Introduction
    Observational Astronomy Introduction Ast 401/Phy 580 Fall 2015 Dr. Philip Massey Photo by Kathryn Neugent Phil Photo by Kathryn Neugent Astronomer at Lowell Observatory since 2000 Photo by Kathryn Neugent Lowell Observatory Astronomer at Kitt Peak National Observatory (1984-2000) Photo by Kathryn Neugent Kitt Peak 4-meter Mayall telescope Adjunct at NAU (1993-present) Taught AST 180/181 various times Teaching AST 401/PHY 580 since Fall 2013 Photo by Kathryn Neugent Research Interests: Massive Stars Most luminous Hottest (on MS) Coolest (red supergiants) Weirdest Photo by Kathryn Neugent M31: the Andromeda Galaxy SMC LMC The 6.5-meter MMT Observatory Photo by Kathryn Neugent 6.5-meter Clay Magellan telescope Photo by Yuri Beletsky Photo by Yuri Beletsky How does it work? • Two 75-minute traditional lectures per week (T, Th 9:35-10:50am), going a bit deeper than the text. Instructor: me (Philip Massey) • Lab every Wednesday afternoon 3:00-5:30pm with telescope reserved Wednesday evenings (7:00-9:30pm). Instructor: Ed Anderson • Single grade (60% class, 40% lab) How does it work? • Ast 401/401L is “advanced” class for astronomy majors. • Phy 580 students will also give a short presentation. • Study some of techniques of research astronomy. • Much more computer analysis than observing. • Use campus 20-in to collect data for analysis. • Field trip to the 4.3-meter DCT---pretty pictures! Overview 1. The Basics A. Celestial sphere and coordinates--Chapter 1+suppl. B. Time--Chapter 2+suppl. C. Spherical triangles—Chapter 4 D. Catalogs (Guest lecture: Brian Skiff)—Chapter 3. E.
    [Show full text]
  • Astronomical Observations: a Guide for Allied Researchers
    Astronomical observations: a guide for allied researchers P. Barmby Department of Physics & Astronomy University of Western Ontario London, Canada N6A 3K7 March 13, 2019 Abstract Observational astrophysics uses sophisticated technology to collect and measure electro- magnetic and other radiation from beyond the Earth. Modern observatories produce large, complex datasets and extracting the maximum possible information from them requires the expertise of specialists in many fields beyond physics and astronomy, from civil engineers to statisticians and software engineers. This article introduces the essentials of professional astronomical observations to colleagues in allied fields, to provide context and relevant back- ground for both facility construction and data analysis. It covers the path of electromagnetic radiation through telescopes, optics, detectors, and instruments, its transformation through processing into measurements and information, and the use of that information to improve our understanding of the physics of the cosmos and its history. 1 What do astronomers do? Everyone knows that astronomers study the sky. But what sorts of measurements do they make, and how do these translate into data that can be analyzed to understand the universe? This article introduces astronomical observations to colleagues in related fields (e.g., engineering, statistics, computer science) who are assumed to be familiar with quantitative measurements and computing but not necessarily with astronomy itself.1 Specialized terms which may be unfamiliar to the reader are italicized on first use. The references in this article include a mix of technical papers and less- technical descriptive works. Shorter introductions to astronomical observations, data and statistics are given by [29, 33]. Comprehensive technical introductions to astronomical observations are found in several recent textbooks [12, 45, 50].
    [Show full text]