7. Category Theory and Products I Want to Prove the Theorem That a Finite
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table of Contents
UNIVERSAL PROPERTY & CASUALTY INSURANCE COMPANY MASSACHUSETTS PERSONAL PROPERTY MANUAL HOMEOWNERS PROGRAM EDITION 02/15 TABLE OF CONTENTS RULE CONTENT PAGE NO. 1 Application of Program Rules 1 2 Reserved for Future Use 1 3 Extent of Coverage 1 4 Reserved for Future Use 1 5 Policy Fee 1 6 Reserved for Future Use 1 7 Policy Period, Minimum Premium and Waiver of Premium 1 8 Rounding of Premiums 1 9 Changes and Mid-Term Premium Adjustments 2 10 Effective Date and Important Notices 2 11 Protective Device Credits 2 12 Townhouses or Rowhouses 2 13 Underwriting Surcharges 3 14 Mandatory Additional Charges 3 15 Payment and Payment Plan Options 4 16 Building Code Compliance 5 100 Reserved for Future Use 5 101 Limits of Liability and Coverage Relationship 6 102 Description of Coverages 6 103 Mandatory Coverages 7 104 Eligibility 7 105 Secondary Residence Premises 9 106 Reserved for Future Use 9 107 Construction Definitions 9 108 Seasonal Dwelling Definition 9 109 Single Building Definition 9 201 Policy Period 9 202 Changes or Cancellations 9 203 Manual Premium Revision 9 204 Reserved for Future Use 10 205 Reserved for Future Use 10 206 Transfer or Assignment 10 207 Reserved for Future Use 10 208 Premium Rounding Rule 10 209 Reserved for Future Use 10 300 Key Factor Interpolation Computation 10 301 Territorial Base Rates 11 401 Reserved for Future Use 20 402 Personal Property (Coverage C ) Replacement Cost Coverage 20 403 Age of Home 20 404 Ordinance or Law Coverage - Increased Limits 21 405 Debris Removal – HO 00 03 21 406 Deductibles 22 407 Additional -
Arxiv:1705.02246V2 [Math.RT] 20 Nov 2019 Esyta Ulsubcategory Full a That Say [15]
WIDE SUBCATEGORIES OF d-CLUSTER TILTING SUBCATEGORIES MARTIN HERSCHEND, PETER JØRGENSEN, AND LAERTIS VASO Abstract. A subcategory of an abelian category is wide if it is closed under sums, summands, kernels, cokernels, and extensions. Wide subcategories provide a significant interface between representation theory and combinatorics. If Φ is a finite dimensional algebra, then each functorially finite wide subcategory of mod(Φ) is of the φ form φ∗ mod(Γ) in an essentially unique way, where Γ is a finite dimensional algebra and Φ −→ Γ is Φ an algebra epimorphism satisfying Tor (Γ, Γ) = 0. 1 Let F ⊆ mod(Φ) be a d-cluster tilting subcategory as defined by Iyama. Then F is a d-abelian category as defined by Jasso, and we call a subcategory of F wide if it is closed under sums, summands, d- kernels, d-cokernels, and d-extensions. We generalise the above description of wide subcategories to this setting: Each functorially finite wide subcategory of F is of the form φ∗(G ) in an essentially φ Φ unique way, where Φ −→ Γ is an algebra epimorphism satisfying Tord (Γ, Γ) = 0, and G ⊆ mod(Γ) is a d-cluster tilting subcategory. We illustrate the theory by computing the wide subcategories of some d-cluster tilting subcategories ℓ F ⊆ mod(Φ) over algebras of the form Φ = kAm/(rad kAm) . Dedicated to Idun Reiten on the occasion of her 75th birthday 1. Introduction Let d > 1 be an integer. This paper introduces and studies wide subcategories of d-abelian categories as defined by Jasso. The main examples of d-abelian categories are d-cluster tilting subcategories as defined by Iyama. -
Universal Properties, Free Algebras, Presentations
Universal Properties, Free Algebras, Presentations Modern Algebra 1 Fall 2016 Modern Algebra 1 (Fall 2016) Universal Properties, Free Algebras, Presentations 1 / 14 (1) f ◦ g exists if and only if dom(f ) = cod(g). (2) Composition is associative when it is defined. (3) dom(f ◦ g) = dom(g), cod(f ◦ g) = cod(f ). (4) If A = dom(f ) and B = cod(f ), then f ◦ idA = f and idB ◦ f = f . (5) dom(idA) = cod(idA) = A. (1) Ob(C) = O is a class whose members are called objects, (2) Mor(C) = M is a class whose members are called morphisms, (3) ◦ : M × M ! M is a binary partial operation called composition, (4) id : O ! M is a unary function assigning to each object A 2 O a morphism idA called the identity of A, (5) dom; cod : M ! O are unary functions assigning to each morphism f objects called the domain and codomain of f respectively. The laws defining categories are: Defn (Category) A category is a 2-sorted partial algebra C = hO; M; ◦; id; dom; codi where Modern Algebra 1 (Fall 2016) Universal Properties, Free Algebras, Presentations 2 / 14 (1) f ◦ g exists if and only if dom(f ) = cod(g). (2) Composition is associative when it is defined. (3) dom(f ◦ g) = dom(g), cod(f ◦ g) = cod(f ). (4) If A = dom(f ) and B = cod(f ), then f ◦ idA = f and idB ◦ f = f . (5) dom(idA) = cod(idA) = A. (2) Mor(C) = M is a class whose members are called morphisms, (3) ◦ : M × M ! M is a binary partial operation called composition, (4) id : O ! M is a unary function assigning to each object A 2 O a morphism idA called the identity of A, (5) dom; cod : M ! O are unary functions assigning to each morphism f objects called the domain and codomain of f respectively. -
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints by Mehrdad Sabetzadeh A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2003 by Mehrdad Sabetzadeh Abstract A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints Mehrdad Sabetzadeh Master of Science Graduate Department of Computer Science University of Toronto 2003 Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. This may result in inconsis- tencies between the descriptions provided by stakeholders. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this thesis, we propose a category-theoretic framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is a graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) cocomplete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. Taking advantage of the same category-theoretic techniques used in defining fuzzy viewpoints, we will also introduce a more general graph-based formalism that may find applications in other contexts. ii To my mother and father with love and gratitude. Acknowledgements First of all, I wish to thank my supervisor Steve Easterbrook for his guidance, support, and patience. -
Notes and Solutions to Exercises for Mac Lane's Categories for The
Stefan Dawydiak Version 0.3 July 2, 2020 Notes and Exercises from Categories for the Working Mathematician Contents 0 Preface 2 1 Categories, Functors, and Natural Transformations 2 1.1 Functors . .2 1.2 Natural Transformations . .4 1.3 Monics, Epis, and Zeros . .5 2 Constructions on Categories 6 2.1 Products of Categories . .6 2.2 Functor categories . .6 2.2.1 The Interchange Law . .8 2.3 The Category of All Categories . .8 2.4 Comma Categories . 11 2.5 Graphs and Free Categories . 12 2.6 Quotient Categories . 13 3 Universals and Limits 13 3.1 Universal Arrows . 13 3.2 The Yoneda Lemma . 14 3.2.1 Proof of the Yoneda Lemma . 14 3.3 Coproducts and Colimits . 16 3.4 Products and Limits . 18 3.4.1 The p-adic integers . 20 3.5 Categories with Finite Products . 21 3.6 Groups in Categories . 22 4 Adjoints 23 4.1 Adjunctions . 23 4.2 Examples of Adjoints . 24 4.3 Reflective Subcategories . 28 4.4 Equivalence of Categories . 30 4.5 Adjoints for Preorders . 32 4.5.1 Examples of Galois Connections . 32 4.6 Cartesian Closed Categories . 33 5 Limits 33 5.1 Creation of Limits . 33 5.2 Limits by Products and Equalizers . 34 5.3 Preservation of Limits . 35 5.4 Adjoints on Limits . 35 5.5 Freyd's adjoint functor theorem . 36 1 6 Chapter 6 38 7 Chapter 7 38 8 Abelian Categories 38 8.1 Additive Categories . 38 8.2 Abelian Categories . 38 8.3 Diagram Lemmas . 39 9 Special Limits 41 9.1 Interchange of Limits . -
Universal Property & Casualty Insurance Company
UNIVERSAL PROPERTY & CASUALTY INSURANCE COMPANY FLORIDA PERSONAL PROPERTY MANUAL DWELLING SECTION TABLE OF CONTENTS RULE CONTENT PAGE NO. 1 Introduction 1 2 Applications for Insurance 1 3 Extent of Coverage 6 4 Cancellations 6 5 Policy Fee 7 6 Commissions 8 7 Policy Period, Minimum Premium and Waiver of Premium 8 8 Rounding of Premiums 8 9 Changes and Mid-Term Premium Adjustments 8 10 Effective Date and Important Notices 8 11 Protective Device Discounts 9 12 Townhouse or Rowhouse 9 13 Underwriting Surcharges 10 14 Mandatory Additional Charges 10 15 Payment and Payment Plan Options 11 16 Building Code Compliance 12 100 Additional Underwriting Requirements – Dwelling Program 15 101 Forms, Coverage, Minimum Limits of Liability 16 102 Perils Insured Against 17 103 Eligibility 18 104 Reserved for Future Use 19 105 Seasonal Dwelling Definition 19 106 Construction Definitions 19 107 Single Building Definition 19 201 Policy Period 20 202 Changes or Cancellations 20 203 Manual Premium Revision 20 204 Multiple Locations 20 205 Reserved for Future Use 20 206 Transfer or Assignment 20 207 Reserved for Future Use 20 208 Reserved for Future Use 20 209 Whole Dollar Premium Rule 20 301 Base Premium Computation 21 302 Vandalism and Malicious Mischief – DP 00 01 Only 32 303 Reserved for Future Use 32 304 Permitted Incidental Occupancies 32 306 Hurricane Rates 33 402 Superior Construction 36 403 Reserved for Future Use 36 404 Dwelling Under Construction 36 405 Reserved for Future Use 36 406 Water Back-up and Sump Discharge or Overflow - Florida 36 407 Deductibles -
Direct Products and Homomorphisms
Commuting properties Direct products and homomorphisms Simion Breaz logo Simion Breaz Direct products and homomorphisms Products and coproducts Commuting properties Contravariant functors Covariant functors Outline 1 Commuting properties Products and coproducts Contravariant functors Covariant functors logo Simion Breaz Direct products and homomorphisms Products and coproducts Commuting properties Contravariant functors Covariant functors Introduction Important properties of objects in particular categories (e.g. varieties of universal algebras) can be described using commuting properties of some canonical functors. For instance, in [Ad´amek and Rosicki: Locally presentable categories] there are the following examples: If V is a variety of finitary algebras and A ∈ V then A is finitely generated iff the functor Hom(A, −): V → Set preserves direct unions (i.e. directed colimits of monomorphisms); A is finitely presented (i.e. it is generated by finitely many generators modulo finitely many relations) iff the functor Hom(A, −): V → Set preserves directed colimits. logo Simion Breaz Direct products and homomorphisms Products and coproducts Commuting properties Contravariant functors Covariant functors Introduction Important properties of objects in particular categories (e.g. varieties of universal algebras) can be described using commuting properties of some canonical functors. For instance, in [Ad´amek and Rosicki: Locally presentable categories] there are the following examples: If V is a variety of finitary algebras and A ∈ V then A is finitely generated iff the functor Hom(A, −): V → Set preserves direct unions (i.e. directed colimits of monomorphisms); A is finitely presented (i.e. it is generated by finitely many generators modulo finitely many relations) iff the functor Hom(A, −): V → Set preserves directed colimits. -
N-Quasi-Abelian Categories Vs N-Tilting Torsion Pairs 3
N-QUASI-ABELIAN CATEGORIES VS N-TILTING TORSION PAIRS WITH AN APPLICATION TO FLOPS OF HIGHER RELATIVE DIMENSION LUISA FIOROT Abstract. It is a well established fact that the notions of quasi-abelian cate- gories and tilting torsion pairs are equivalent. This equivalence fits in a wider picture including tilting pairs of t-structures. Firstly, we extend this picture into a hierarchy of n-quasi-abelian categories and n-tilting torsion classes. We prove that any n-quasi-abelian category E admits a “derived” category D(E) endowed with a n-tilting pair of t-structures such that the respective hearts are derived equivalent. Secondly, we describe the hearts of these t-structures as quotient categories of coherent functors, generalizing Auslander’s Formula. Thirdly, we apply our results to Bridgeland’s theory of perverse coherent sheaves for flop contractions. In Bridgeland’s work, the relative dimension 1 assumption guaranteed that f∗-acyclic coherent sheaves form a 1-tilting torsion class, whose associated heart is derived equivalent to D(Y ). We generalize this theorem to relative dimension 2. Contents Introduction 1 1. 1-tilting torsion classes 3 2. n-Tilting Theorem 7 3. 2-tilting torsion classes 9 4. Effaceable functors 14 5. n-coherent categories 17 6. n-tilting torsion classes for n> 2 18 7. Perverse coherent sheaves 28 8. Comparison between n-abelian and n + 1-quasi-abelian categories 32 Appendix A. Maximal Quillen exact structure 33 Appendix B. Freyd categories and coherent functors 34 Appendix C. t-structures 37 References 39 arXiv:1602.08253v3 [math.RT] 28 Dec 2019 Introduction In [6, 3.3.1] Beilinson, Bernstein and Deligne introduced the notion of a t- structure obtained by tilting the natural one on D(A) (derived category of an abelian category A) with respect to a torsion pair (X , Y). -
Lecture 1.3: Direct Products and Sums
Lecture 1.3: Direct products and sums Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 8530, Advanced Linear Algebra M. Macauley (Clemson) Lecture 1.3: Direct products and sums Math 8530, Advanced Linear Algebra 1 / 5 Overview In previous lectures, we learned about vectors spaces and subspaces. We learned about what it meant for a subset to span, to be linearly independent, and to be a basis. In this lecture, we will see how to create new vector spaces from old ones. We will see several ways to \multiply" vector spaces together, and will learn how to construct: the complement of a subspace the direct sum of two subspaces the direct product of two vector spaces M. Macauley (Clemson) Lecture 1.3: Direct products and sums Math 8530, Advanced Linear Algebra 2 / 5 Complements and direct sums Theorem 1.5 (a) Every subspace Y of a finite-dimensional vector space X is finite-dimensional. (b) Every subspace Y has a complement in X : another subspace Z such that every vector x 2 X can be written uniquely as x = y + z; y 2 Y ; z 2 Z; dim X = dim Y + dim Z: Proof Definition X is the direct sum of subspaces Y and Z that are complements of each other. More generally, X is the direct sum of subspaces Y1;:::; Ym if every x 2 X can be expressed uniquely as x = y1 + ··· + ym; yi 2 Yi : We denote this as X = Y1 ⊕ · · · ⊕ Ym. M. Macauley (Clemson) Lecture 1.3: Direct products and sums Math 8530, Advanced Linear Algebra 3 / 5 Direct products Definition The direct product of X1 and X2 is the vector space X1 × X2 := (x1; x2) j x1 2 X1; x2 2 X2 ; with addition and multiplication defined component-wise. -
Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1
Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1: A directed set I is a set with a partial order ≤ such that for every i; j 2 I there is k 2 I such that i ≤ k and j ≤ k. Let R be a ring. A directed system of R-modules indexed by I is a collection of R modules fMi j i 2 Ig with a R module homomorphisms µi;j : Mi ! Mj for each pair i; j 2 I where i ≤ j, such that (i) for any i 2 I, µi;i = IdMi and (ii) for any i ≤ j ≤ k in I, µi;j ◦ µj;k = µi;k. We shall denote a directed system by a tuple (Mi; µi;j). The direct limit of a directed system is defined using a universal property. It exists and is unique up to a unique isomorphism. Theorem 2 (Direct limits). Let fMi j i 2 Ig be a directed system of R modules then there exists an R module M with the following properties: (i) There are R module homomorphisms µi : Mi ! M for each i 2 I, satisfying µi = µj ◦ µi;j whenever i < j. (ii) If there is an R module N such that there are R module homomorphisms νi : Mi ! N for each i and νi = νj ◦µi;j whenever i < j; then there exists a unique R module homomorphism ν : M ! N, such that νi = ν ◦ µi. The module M is unique in the sense that if there is any other R module M 0 satisfying properties (i) and (ii) then there is a unique R module isomorphism µ0 : M ! M 0. -
Basic Category Theory and Topos Theory
Basic Category Theory and Topos Theory Jaap van Oosten Jaap van Oosten Department of Mathematics Utrecht University The Netherlands Revised, February 2016 Contents 1 Categories and Functors 1 1.1 Definitions and examples . 1 1.2 Some special objects and arrows . 5 2 Natural transformations 8 2.1 The Yoneda lemma . 8 2.2 Examples of natural transformations . 11 2.3 Equivalence of categories; an example . 13 3 (Co)cones and (Co)limits 16 3.1 Limits . 16 3.2 Limits by products and equalizers . 23 3.3 Complete Categories . 24 3.4 Colimits . 25 4 A little piece of categorical logic 28 4.1 Regular categories and subobjects . 28 4.2 The logic of regular categories . 34 4.3 The language L(C) and theory T (C) associated to a regular cat- egory C ................................ 39 4.4 The category C(T ) associated to a theory T : Completeness Theorem 41 4.5 Example of a regular category . 44 5 Adjunctions 47 5.1 Adjoint functors . 47 5.2 Expressing (co)completeness by existence of adjoints; preserva- tion of (co)limits by adjoint functors . 52 6 Monads and Algebras 56 6.1 Algebras for a monad . 57 6.2 T -Algebras at least as complete as D . 61 6.3 The Kleisli category of a monad . 62 7 Cartesian closed categories and the λ-calculus 64 7.1 Cartesian closed categories (ccc's); examples and basic facts . 64 7.2 Typed λ-calculus and cartesian closed categories . 68 7.3 Representation of primitive recursive functions in ccc's with nat- ural numbers object . -
Abelian Categories
Abelian Categories Lemma. In an Ab-enriched category with zero object every finite product is coproduct and conversely. π1 Proof. Suppose A × B //A; B is a product. Define ι1 : A ! A × B and π2 ι2 : B ! A × B by π1ι1 = id; π2ι1 = 0; π1ι2 = 0; π2ι2 = id: It follows that ι1π1+ι2π2 = id (both sides are equal upon applying π1 and π2). To show that ι1; ι2 are a coproduct suppose given ' : A ! C; : B ! C. It φ : A × B ! C has the properties φι1 = ' and φι2 = then we must have φ = φid = φ(ι1π1 + ι2π2) = ϕπ1 + π2: Conversely, the formula ϕπ1 + π2 yields the desired map on A × B. An additive category is an Ab-enriched category with a zero object and finite products (or coproducts). In such a category, a kernel of a morphism f : A ! B is an equalizer k in the diagram k f ker(f) / A / B: 0 Dually, a cokernel of f is a coequalizer c in the diagram f c A / B / coker(f): 0 An Abelian category is an additive category such that 1. every map has a kernel and a cokernel, 2. every mono is a kernel, and every epi is a cokernel. In fact, it then follows immediatly that a mono is the kernel of its cokernel, while an epi is the cokernel of its kernel. 1 Proof of last statement. Suppose f : B ! C is epi and the cokernel of some g : A ! B. Write k : ker(f) ! B for the kernel of f. Since f ◦ g = 0 the map g¯ indicated in the diagram exists.