Microhabitat Utilization and the Spatial Distribution of Rainforest Canopy

Total Page:16

File Type:pdf, Size:1020Kb

Microhabitat Utilization and the Spatial Distribution of Rainforest Canopy ResearchOnline@JCU This file is part of the following reference: Wardhaugh, Carl William (2011) Microhabitat utilisation and the spatial distribution of rainforest canopy invertebrate communities. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/32002/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/32002/ Microhabitat Utilisation and the Spatial Distribution of Rainforest Canopy Invertebrate Communities Thesis submitted by Carl William Wardhaugh BSc, MSc, University of Canterbury, NZ In November 2011 For the degree of Doctor of Philosophy In the School of Marine and Tropical Sciences James Cook University, Cairns Statement of Access I, the undersigned, author of this work and copyright owner of this thesis, grant the University a permanent non-exclusive licence to store, display or copy any or all of the thesis, in all forms of media, for use within the University, and to make the thesis freely available online to other persons or organisations. I understand that James Cook University will make this thesis available for use within the University Library and via the Australian Digital Theses network for use elsewhere. I understand that as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place any further restrictions on access to this work. …16/01/2014…… (Signature) (Date) Declaration I declare that this thesis is my own work and has been submitted in any form for another degree or diploma at any university or other institute of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given. ……16/01/2014…… (Signature) (Date) Electronic copy I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within the limits of the technology available. ……16/01/2014…… (Signature) (Date) Declaration on Ethics The research presented and reported in this thesis was conducted within the guidelines for research ethics outlined in the National Statement on Ethics Conduct in Research Involving Humans (1999), the Joint NHMRC/AVCC Statement and guidelines on Research Practice (1997), the James Cook University Policy on Experimentation Ethics, Standard Practices and Guidelines (2001), and the James Cook University Statement and Guidelines on Research Practice (2001). The research methodology did not require clearance from the James Cook University Experimentation Ethics Review Committee. ……16/01/2014…… (Signature) (Date) Statement of the Contribution of Others Nature of Assistance Contribution Name and Affiliation of Co- contributors Intellectual support Data analysis Will Edwards (principal Editorial assistance supervisor), Marine and Tropical Biology, James Cook Univeristy Concept development Nigel Stork (associate Editorial assistance supervisor), Griffith School of Environment, Griffith University Editorial assistance (Chapter Peter Grimbacher, 3 only) Department of Resource Management and Geography, University of Melbourne Financial support APA scholarship MTSRF grant Skyrail Rainforest Foundation student grant Graduate Research Scheme Dedicated to the 40,374 invertebrates who gave their lives for this research… …lest we forget Acknowledgements First and foremost I would like to thank my wife Katherine for all of her support, and for enduring years of subsisting on just her wages and my paltry (but much appreciated) APA scholarship. I would also like to thank my supervisors, Will Edwards and Nigel Stork for all of their help, advice and valuable input. Peter Grimbacher, for all the discussions and collaboration, and for helping to identify those beetles that just didn’t want to be identified. The good people at the Skyrail Rainforest Foundation who provided me with the funds to carry out much of my fieldwork. The Graduate Research School for providing me with the funds to attend the ATBC conference and present my work to the big names in tropical entomology and ecology. This grant also allowed me to travel to Canberra to visit the Australian National Insect Collection to meet many of Australia’s leading entomologists, as well as see one of the largest insect collections in the world. Cassandra Nicols at the canopy crane, for organising all of my fieldtrips, even though the paperwork never seemed to get to her to let her know when I was coming or what I was doing. All of the crane drivers; Andrew Thompson, Shane Kelly, and Russell Holmes. Thanks for not breaking the crane while I was on it, resulting in a perilous descent from the box on a rope. Andrew Krockenberger, Mike Liddell, Sue Kelly, Eva King, Leanne Shilitoe, and Peter Franks for all of their help behind the scenes, crossing the t’s and dotting the i’s. All my friends and family for their support. Sure most of them don’t know exactly what I do, but they support it nonetheless! And anyone else that I have forgotten. Cheers. Go the Drunken Hellfish… Abstract The tropical rainforest is renowned for its high invertebrate species richness. Yet our understanding of the spatial distribution of the invertebrate communities inhabiting tropical rainforest canopies is very poor. Most mass-sampling invertebrate biodiversity studies from the rainforest canopy have either focussed on whole trees, via sampling methods such as canopy fogging, or on subsets of the invertebrate community (usually a particular herbivorous taxonomic group) inhabiting a single microhabitat type (usually the leaves), via hand collection and foliage beating techniques. Consequently, previous studies have been unable to examine the fine-scale spatial distribution of canopy invertebrates within individual trees, or establish where in the canopy different invertebrates are concentrated. This information is vital if we are to make accurate predictions about species and community level responses to disturbance and climate change, or make accurate calculations about ecosystem processes and species richness. I carried out a long-term mass-collecting effort from five canopy microhabitats (mature leaves, new leaves, flowers, fruit, and suspended dead wood) using hand collecting and beating techniques from a canopy crane to examine spatial differences in invertebrate density, diversity, community structure, host specificity, and body size in an Australian tropical rainforest. First, I examined microhabitat differentiation in the invertebrate communities associated with each microhabitat. Specifically, I examined variation between microhabitats in invertebrate density, taxonomic composition and guild structure. I also focused on the beetle community to examine differences between microhabitats in species richness, overlap, abundance patterns, and guild structure. I focused on the beetle community since beetles are arguably the most species-rich taxon on Earth and are biologically diverse. Second, I examined the host specificity of beetles inhabiting different microhabitats to test the assumption that most host specific species are herbivores on the leaves that interact antagonistically with the host tree. This assumption is the basis for many global biodiversity estimates and has resulted in the majority of studies in tropical rainforest canopies being restricted to herbivores on the leaves. Lastly, I investigate body size variation between microhabitats. Since microhabitats vary in a number of qualitative and quantitative factors, I examined whether microhabitat choice has influenced the evolution of the body sizes of the invertebrates that utilise them. I collected 40,374 invertebrates from all five microhabitats, including 10,335 beetles which were sorted to 372 morphospecies. Per unit weight, invertebrate densities on flowers were 10 to 10,000 greater than on new or mature leaves. At the species level, flowers were utilised by an estimated 40% of canopy beetle species, despite constituting just 0.06% of crown biomass. Overlap between microhabitats in species composition was also very low, indicating that each microhabitat is utilised by a relatively unique assemblage. In terms of feeding guild structure, invertebrate communities varied between each microhabitat, largely in relation to the food sources provided. For example, herbivores were found predominantly on new leaves and flowers, but were underrepresented among the invertebrate communities inhabiting the other microhabitats. Fungivores and saprophages however, dominated the communities occupying suspended dead wood. Contrary to expectation, host specificity was equally high between an assemblage of herbivorous beetles on the leaves that interact antagonistically with the host tree, and an assemblage of flower-visitors that interact mutualistically with the host plant. Indeed, both herbivores and non-herbivores on flowers were as host specific as herbivores on leaves. Only species that do not interact directly with the host tree (non-herbivores on the leaves) were significantly more generalised in host use. Consequently, the previous assumption that most host specialists on a tree are herbivores on the leaves is refuted, since half of the host specific species were flower-visitors,
Recommended publications
  • A REVISION of the GENUS ERIOSOMA and ITS ALLIED GENERA in JAPAN (HOMOPTERA : Title APHIDOIDEA)
    A REVISION OF THE GENUS ERIOSOMA AND ITS ALLIED GENERA IN JAPAN (HOMOPTERA : Title APHIDOIDEA) Author(s) Akimoto, Shin'ichi Insecta matsumurana. New series : journal of the Faculty of Agriculture Hokkaido University, series entomology, 27, Citation 37-106 Issue Date 1983-10 Doc URL http://hdl.handle.net/2115/9821 Type bulletin (article) File Information 27_p37-106.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP INSECT A M ATSUMURANA NEW SERIES 27: 37-106 OCTOBER 1983 A REVISION OF THE GENUS ERIOSOMA AND ITS ALLIED GENERA IN JAPAN (HOMOPTERA: APHIDOIDEA) By SHIN'rcHI AKIMOTO Abstract AKIMOTO, S. 1983. A reVlSIOn of the genus Eriosoma and its allied genera in Japan (Homoptera: Aphidoidea). Ins. matsum. n.S. 27: 37-106, 3 tabs., 26 figs. Nine species of Eriosoma and its allied genera, all leaf-roll aphids on Ulmaceae and occur­ ring in Japan, are dealt with. Descriptions of gall-generations, exules, sexuparae and galls are given, with brief biological notes for some species. The species-complex hitherto called Eriosoma japonicum is classified into 6 species, including 5 ones new to science. A parasitic form of Eriosoma yangi, occurring on Ulmus davidiana var. japonica, is formally described as a new subspecies different from the nominate form on Ulmus parvifolia in not only behavior but also morphological characters of their fundatrices. The subdivision of Eriosoma is recon­ sidered in connection with the divergence and distribution of the host plants, and the ulmi group is newly proposed. A leaf-roll aphid associated with Zelkova is described as a new species belonging to Hemipodaphis, which has only been known from the morph occurring on the secon­ dary host in India; on the basis of the new species Hemipodaphis is transferred to the Pemphigidae (Eriosomatinae) from the Hormaphididae.
    [Show full text]
  • Microneura Is a Junior Synonym of Protoneura (Zygoptera, Coenagrionidae)
    International Journal of Odonatology, 2016 Vol. 19, Nos. 1–2, 13–22, http://dx.doi.org/10.1080/13887890.2016.1138692 Microneura is a junior synonym of Protoneura (Zygoptera, Coenagrionidae) M. Olalla Lorenzo-Carballaa,b∗, Yusdiel Torres-Cambasc, Sonia Ferreiraa,d,e, Adrian D. Trapero-Quintanac and Adolfo Cordero-Riverab aInstitute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, UK; bGrupo de Ecoloxía Evolutiva e da Conservación, Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, EUE Forestal, Campus Universitario A Xunqueira s/n, Pontevedra, Spain; cDepartamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente. Patricio Lumumba s/n, Santiago de Cuba, Cuba; d CIBIO/InBio – Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Vairão, Portugal; eDepartamento de Biologia da Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre, Porto, Portugal (Received 9 September 2015; final version received 3 November 2015) Microneura caligata (Hagen in Selys, 1886) is an endangered damselfly presently known from five localities in the central mountains of Cuba. The precise systematic position of this species within the former Neotropical Protoneuridae has been the subject of debate, with previous results from a phyloge- netic analysis based on morphology suggesting that the genus Microneura should be placed within the genus Protoneura. Here, we used mitochondrial and nuclear DNA sequencing to disentangle the taxo- nomic status of this species. Our results show that Microneura belongs to the Protoneura clade, thus making Microneura a junior synonym of Protoneura. Finally, we provide notes on some observations of emergence and ovipositing behaviour of this species.
    [Show full text]
  • Odonata: Zygoptera] Pessacq, Pablo Doctor En Ciencias Naturales
    Naturalis Repositorio Institucional Universidad Nacional de La Plata http://naturalis.fcnym.unlp.edu.ar Facultad de Ciencias Naturales y Museo Sistemática filogenética y biogeografía de los representantes neotropicales de la familia Protoneuridae [Odonata: Zygoptera] Pessacq, Pablo Doctor en Ciencias Naturales Dirección: Muzón, Javier Co-dirección: Spinelli, Gustavo Ricardo Facultad de Ciencias Naturales y Museo 2005 Acceso en: http://naturalis.fcnym.unlp.edu.ar/id/20120126000079 Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional Powered by TCPDF (www.tcpdf.org) SISTEMÁTICA FILOGENÉTICA Y BIOGEOGRAFÍA DE LOS REPRESENTANTES NEOTROPICALES DE LA FAMILIA PROTONEURIDAE (ODONATA: ZYGOPTERA). Autor: LIC. PABLO PESSACQ Director: DR. JAVIER MUZÓN Codirector: DR. GUSTAVO R. SPINELLI UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS NATURALES Y MUSEO 2005 Agradecimientos Todo mi gratitud a mis directores de tesis, Dr. Javier Muzón y Dr. Gustavo Spinelli, quienes me iniciaron pacientemente en el camino de la Sistemática y de la Entomología. Al Dr. Rosser Garrison, su ayuda desinteresada contribuyó mucho en el avance de esta tesis. Al Dr. Oliver Flint, siempre dispuesto a enviar preciados ejemplares. Al la Dra. Janira Martins Costa, el Dr. Juerg De Marmels y el Dr. Frederic Lencioni, por la ayuda prestada y buena predisposición. A Javier, por la amistad, los mates y los viajes compartidos. A mis compañeros de ILPLA: Analía, Eugenia, Juliana, Lia, Lucila (en especial por su habilidad en la repostería), Soledad, Federico, Leandro y Sergio. Hacen que el trabajo y los viajes sean más placenteros todavía. A mi tío, Carlos Grisolía, quien incentivó en mi desde muy chico el interés por los artrópodos.
    [Show full text]
  • Colonization of Ecological Islands: Galling Aphid Populations (Sternorrhyncha: Aphidoidea: Pemphigidae) on Recoveringpistacia Trees After Destruction by Fire
    Eur. J. Entomol. 95: 41-53, 1998 ISSN 1210-5759 Colonization of ecological islands: Galling aphid populations (Sternorrhyncha: Aphidoidea: Pemphigidae) on recoveringPistacia trees after destruction by fire D avid WOOL and M oshe INBAR* Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Israel; e-mail: [email protected] Gall-forming aphids, Pemphigidae, Fordinae,Pistacia, fire, recolonization Abstract. Pistacia palaestina (Anacardiaceae) is a common tree in the natural forest of Mt. Carmel, Is­ rael, and the primary host of five common species of gall-forming aphids (Sternorrhyncha: Aphidoidea: Pemphigidae: Fordinae). After a forest fire, resprouting P. palaestina trees, which are colonized by migrants from outside the burned area, become “ecological islands” for host-specific herbivores. A portion of the Carmel National Park was destroyed by fire in September of 1989. The same winter, thirty-nine resprouting trees that formed green islands in the otherwise barren environment were identified and marked. Tree growth was extraordinarily vigorous during the first year after the fire, but shoot elon­ gation declined markedly in subsequent years. Recolonization of the 39 “islands” by the Fordinae was studied for six consecutive years. Although the life cycle of the aphids and the deciduous phenology of the tree dictate that the “islands” must be newly recolonized every year, the results of this study show that trees are persistently occupied once colonized. This is probably due to establishment of aphid colonies on the roots of secondary hosts near each tree following the first successful production of a gall. Differences in colonization success of different species could be related to both the abundance of dif­ ferent aphid species in the unburned forest and the biological characteristics of each aphid species.
    [Show full text]
  • The Distribution of Leaf Beetles on Multiple Spatial
    THE DISTRIBUTION OF LEAF BEETLES ON MULTIPLE SPATIAL SCALES: CAUSES AND CONSEQUENCES DISSERTATION ZUR ERLANGUNG DES NATURWISSENSCHAFTLICHEN DOKTORGRADES DER BAYERISCHEN JULIUS-MAXIMILIANS-UNIVERSITÄT WÜRZBURG VORGELEGT VON ANNETTE HEISSWOLF AUS MARKTHEIDENFELD WÜRZBURG 2006 Eingereicht am: 12. Mai 2006 Mitglieder der Prüfungskommission: Vorsitzender: Prof. Dr. Wolfgang Rössler Erstgutachter: Prof. Dr. Hans Joachim Poethke Zweitgutachterin: PD Dr. Caroline Müller Tag des Promotionskolloquiums: 02. August 2006 Doktorurkunde ausgehändigt am: .......................... ‘Freude am Schauen und Begreifen ist die schönste Gabe der Natur’ Albert Einstein Table of Contents Table of Contents 5 1 General Introduction 9 1.1 Introduction ............................... 11 1.1.1 Where are herbivores found in the landscape? ......... 13 1.1.2 Which microhabitats do herbivores choose within a habitat? . 16 1.1.3 On which plants do herbivores oviposit? ............ 19 1.1.4 Where on the plant does oviposition occur? .......... 21 1.2 Scope and outline of the thesis ..................... 21 2 Study systems and study area 23 2.1 The specialist system .......................... 25 2.2 The generalist system .......................... 28 2.3 Study area – the nature reserve ‘Hohe Wann’ ............. 30 3 Habitat size, isolation, and quality determine the distribution of a monophagous leaf beetle and its egg parasitoid in a fragmented land- scape 33 3.1 Introduction ............................... 35 3.2 Material and Methods .......................... 36 3.2.1 Study sites ........................... 36 3.2.2 Habitat quality ......................... 36 3.2.3 Patch size ............................ 37 3.2.4 Patch isolation ......................... 38 3.2.5 Statistics ............................ 38 3.3 Results .................................. 39 3.3.1 Incidence of C. canaliculata .................. 39 3.3.2 Population density of C. canaliculata ............. 40 3.3.3 Parasitism by F.
    [Show full text]
  • A Contribution to the Aphid Fauna of Greece
    Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively).
    [Show full text]
  • Beneficial Effects of Flower-Dwelling Predators on Their Host Plant
    Ecology, 85(2), 2004, pp. 446±457 q 2004 by the Ecological Society of America BENEFICIAL EFFECTS OF FLOWER-DWELLING PREDATORS ON THEIR HOST PLANT GUSTAVO Q. ROMERO1 AND JOAÄ O VASCONCELLOS-NETO Departamento de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), C.P. 6109, Campinas, SP, 13083-970 Brazil Abstract. We examined the effects of the sit-and-wait spider Misumenops argenteus (Thomisidae) on the herbivore assemblage and ®tness of the perennial woody shrub Tri- chogoniopsis adenantha (Asteraceae). Because crab spiders prey on both pollinators and phytophagous insects, they can have potentially negative and positive effects on plants. In a manipulative experiment using paired plants, spiders decreased the density of sucking and some endophagous herbivores on the leaves and capitula and reduced the number of damaged achenes produced by the plants. Damaged capitula had a higher proportion of fertilized achenes in plants with spiders than without spiders, but not undamaged capitula. These results indicate that M. argenteus exerted a double positive effect on seed production in T. adenantha. The effect of M. argenteus on herbivores may be taxon speci®c and vary among years with different herbivore abundances. Key words: Asteraceae; direct and indirect effects; ¯oral herbivory; phytophage assemblage; plant ®tness; pollination; seed predators; southeastern Brazil; thomisid spider; Trichogoniopsis ad- enantha; tri-trophic interactions. INTRODUCTION Rypstra 1995, Snyder and Wise 2001, Denno et al. 2002, Moran and Scheidler 2002), and indirectly en- Species that comprise a community may be linked hance plant ®tness (Ruhren and Handel 1999, Snyder directly or indirectly through interactions between re- and Wise 2001).
    [Show full text]
  • Universidade De São Paulo Faculdade De Filosofia, Ciências E Letras De Ribeirão Preto Programa De Pós-Graduação Em Entomologia
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ENTOMOLOGIA “Ecologia das interações e diversidade de insetos em espécies de Fabaceae no Cerrado” “Ecological interactions and diversity of insects on Fabaceae species in the Brazilian Cerrado” Bruno de Sousa Lopes Tese apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para obtenção do título de Doutor em Ciências, obtido no Programa de Pós-Graduação em Entomologia. RIBEIRÃO PRETO - SP 2020 UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ENTOMOLOGIA “Ecologia das interações e diversidade de insetos em espécies de Fabaceae no Cerrado” “Ecological interactions and diversity of insects on Fabaceae species in the Brazilian Cerrado” “Versão corrigida” Bruno de Sousa Lopes Tese apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para obtenção do título de Doutor em Ciências, obtido no Programa de Pós-Graduação em Entomologia. RIBEIRÃO PRETO - SP 2020 i UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ENTOMOLOGIA “Ecologia das interações e diversidade de insetos em espécies de Fabaceae no Cerrado” “Ecological interactions and diversity of insects on Fabaceae species in the Brazilian Cerrado” “Versão corrigida” Bruno de Sousa Lopes Tese apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para obtenção do título de Doutor em Ciências, obtido no Programa de Pós-Graduação em Entomologia.
    [Show full text]
  • POPULATION DYNAMICS of the SYCAMORE APHID (Drepanosiphum Platanoidis Schrank)
    POPULATION DYNAMICS OF THE SYCAMORE APHID (Drepanosiphum platanoidis Schrank) by Frances Antoinette Wade, B.Sc. (Hons.), M.Sc. A thesis submitted for the degree of Doctor of Philosophy of the University of London, and the Diploma of Imperial College of Science, Technology and Medicine. Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire, SL5 7PY, U.K. August 1999 1 THESIS ABSTRACT Populations of the sycamore aphid Drepanosiphum platanoidis Schrank (Homoptera: Aphididae) have been shown to undergo regular two-year cycles. It is thought this phenomenon is caused by an inverse seasonal relationship in abundance operating between spring and autumn of each year. It has been hypothesised that the underlying mechanism of this process is due to a plant factor, intra-specific competition between aphids, or a combination of the two. This thesis examines the population dynamics and the life-history characteristics of D. platanoidis, with an emphasis on elucidating the factors involved in driving the dynamics of the aphid population, especially the role of bottom-up forces. Manipulating host plant quality with different levels of aphids in the early part of the year, showed that there was a contrast in aphid performance (e.g. duration of nymphal development, reproductive duration and output) between the first (spring) and the third (autumn) aphid generations. This indicated that aphid infestation history had the capacity to modify host plant nutritional quality through the year. However, generalist predators were not key regulators of aphid abundance during the year, while the specialist parasitoids showed a tightly bound relationship to its prey. The effect of a fungal endophyte infecting the host plant generally showed a neutral effect on post-aestivation aphid dynamics and the degree of parasitism in autumn.
    [Show full text]
  • Coleoptera, Chrysomelidae) in Azerbaijan
    Turk J Zool 25 (2001) 41-52 © T†BÜTAK A Study of the Ecofaunal Complexes of the Leaf-Eating Beetles (Coleoptera, Chrysomelidae) in Azerbaijan Nailya MIRZOEVA Institute of Zoology, Azerbaijan Academy of Sciences, pr. 1128, kv. 504, Baku 370073-AZERBAIJAN Received: 01.10.1999 Abstract: A total of 377 leaf-eating beetle species from 69 genera and 11 subfamilies (Coleoptera, Chrysomelidae) were revealed in Azerbaijan, some of which are important pests of agriculture and forestry. The leaf-eating beetle distribution among different areas of Azerbaijan is presented. In the Great Caucasus 263 species are noted, in the Small Caucasus 206, in Kura - Araks lowland 174, and in Lenkoran zone 262. The distribution of the leaf-eating beetles among different sites is also described and the results of zoogeographic analysis of the leaf-eating beetle fauna are presented as well. Eleven zoogeographic groups of the leaf-eating beetles were revealed in Azerbaijan, which are not very specific. The fauna consists mainly of the common species; the number of endemic species is small. Key Words: leaf-eating beetle, larva, pest, biotope, zoogeography. AzerbaycanÕda Yaprak Bšcekleri (Coleoptera, Chrysomelidae) FaunasÝ †zerinde AraßtÝrmalar …zet: AzerbeycanÕda 11 altfamilyadan 69 cinse ait 377 YaprakbšceÛi (Col.: Chrysomelidae) tŸrŸ belirlenmißtir. Bu bšceklerden bazÝlarÝ tarÝm ve orman alanlarÝnda zararlÝ durumundadÝr. Bu •alÝßmada YaprakbšcekleriÕnin AzerbeycanÕÝn deÛißik bšlgelerindeki daÛÝlÝßlarÝ a•ÝklanmÝßtÝr. BŸyŸk KafkasyaÕda 263, KŸ•Ÿk KafkasyaÕda 206, KŸr-Aras ovasÝnda 174, Lenkaran BšlgesiÕnde ise 262 tŸr bulunmußtur. Bu tŸrlerin farklÝ biotoplardaki durumu ve daÛÝlÝßlarÝ ile ilgili zoocografik analizleride bu •alÝßmada yer almaktadÝr. AzerbeycanÕda belirlenen Yaprakbšcekleri 11 zoocografik grupda incelenmißtir. YapÝlan bu fauna •alÝßmasÝnda belirlenen tŸrlerin bir•oÛu yaygÝn olarak bulunan tŸrlerdir, endemik tŸr sayÝsÝ olduk•a azdÝr.
    [Show full text]
  • Gall-Inducing Aphids (Hemiptera: Aphidoidea: Eriosomatinae) Associated with Salicaceae and Ulmaceae in Razavi Khorasan Province, with New Records for Fauna of Iran
    Acta Phytopathologica et Entomologica Hungarica 54 (1), pp. 113–126 (2019) DOI: 10.1556/038.54.2019.010 Gall-inducing Aphids (Hemiptera: Aphidoidea: Eriosomatinae) Associated with Salicaceae and Ulmaceae in Razavi Khorasan Province, with New Records for Fauna of Iran A. NAJMI1, H. S. NAMAGHI1*, S. BARJADZE2 and L. FEKRAT1 1Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran 2Institute of Zoology, Ilia State University, Tbilisi, Georgia (Received: 11 November 2018; accepted: 16 November 2018) A survey of gall-inducing aphids on elm and poplar trees was carried out during 2017 in Razavi Kho- rasan province, NE Iran. As a result, 15 species of gall-inducing aphids from 5 genera, all belonging to the subfamily Eriosomatinae, were recorded on 6 host plant species. The collected species included the genera Eriosoma, Kaltenbachiella, Pemphigus, Tetraneura and Thecabius. Pemphigus passeki Börner (Hemiptera: Aphididae) and Pemphigus populinigrae (Schrank) (Hemiptera: Aphididae) on Populus nigra var. italica (Sal- icaceae) were new records for the Iranian aphid fauna. Both new recorded species belong to the tribe Pem- phigini, subfamily Eriosomatinae. Among the identified species, 8 aphid species were new records for Razavi Khorasan province. Keywords: Aphid, elm, poplar, fauna, gall-inducing aphid. Many insect groups, around 13,000 species, are known as plant gall makers (Nyman and Julkunen-Tiitto, 2000; Suzuki et al., 2009). Among them, Aphidoidea is a very large superfamily in the hemipteran suborder Sternorrhyncha with about 5000 known species (Blackman and Eastop, 2000; Ge et al., 2016). It is estimated that there are practically 10–20 % gallicolous aphid species nationwide (Chakrabarti, 2007; Chen and Qiao, 2012; Álvarez et al., 2013).
    [Show full text]
  • VARIAÇÕES MORFOLÓGICAS NAS FLORES DE Byrsonima Intermedia (MALPIGHIACEAE) E SEU IMPACTO NO VALOR ADAPTATIVO DA ESPÉCIE: POLINIZAÇÃO E PRODUÇÃO DE FRUTOS
    Universidade Federal de Uberlândia Instituto de Biologia Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais VARIAÇÕES MORFOLÓGICAS NAS FLORES DE Byrsonima intermedia (MALPIGHIACEAE) E SEU IMPACTO NO VALOR ADAPTATIVO DA ESPÉCIE: POLINIZAÇÃO E PRODUÇÃO DE FRUTOS ANA CAROLINA MONETTA DE CARVALHO 2015 ANA CAROLINA MONETTA DE CARVALHO VARIAÇÕES MORFOLÓGICAS NAS FLORES DE Byrsonima intermedia (MALPIGHIACEAE) E SEU IMPACTO NO VALOR ADAPTATIVO DA ESPÉCIE: POLINIZAÇÃO E PRODUÇÃO DE FRUTOS Dissertação apresentada à Universidade Federal de Uberlândia, como parte das exigências para obtenção do título de Mestre em Ecologia e Conservação de Recursos Naturais. Orientadora Prof. Dr. Helena Maura Torezan Silingardi Uberlândia Fevereiro 2015 . AGRADECIMENTOS A Deus, por me ensinar que "para tudo há um tempo e para coisa há um momento debaixo dos Céus" (Eclesiastes 3,1). Aos meus pais, José Aparecido de Carvalho e Elizabete Aparecida Monetta de Carvalho, pelo apoio em todas as minhas decisões e pelo amor que fica maior a cada quilômetro que nos separa. À professora Helena Maura Torezan Silingardi e ao professor Kleber Del Claro, por me receberem de braços abertos, mesmo sem me conhecer. Ao Programa de Pós Graduação em Ecologia e Conservação de Recursos Naturais, INBIO e UFU, pela disponibilização de recursos que fizeram possível a realização desse trabalho. Á Coordenação Geral de Ensino Superior (CAPES) pelo apoio financeiro ao longo de todo período do curso. Aos membros da banca, professora Cecília Lomônaco de Paula e professor Regildo Márcio Gonçalves da Silva, por aceitarem o convite e, desde já, por todas as considerações que acrescentarão muito a este trabalho. Ao amigo Gudryan Jackson Barônio, por toda a sinceridade, todo incentivo nas minhas tentativas de todas as técnicas de arte possíveis e pela ajuda nas estatísticas e em toda a construção desse trabalho.
    [Show full text]