Topological M-Theory As Unification of Form Theories of Gravity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Special Geometry of the Moduli Space of String Vacua with Fluxes
Preprint typeset in JHEP style - HYPER VERSION On special geometry of the moduli space of string vacua with fluxes Boyu Hou, Sen Hu, Yanhong Yang 1 Department of physics, Northwest University, Xi’an, Shannxi, 2 Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026 † [email protected] Abstract: In this paper we construct a special geometry over the moduli space of type II string vacua with both NS and RR fluxes turning on. Depending on what fluxes are turning on we divide into three cases of moduli space of general- ized structures. They are respectively generalized Calabi-Yau structures, generalized Calabi-Yau metric structures and N = 1 generalized string vacua. It is found that the ddJ lemma can be established for all three cases. With the help of the ddJ lemma we identify the moduli space locally as a subspace of dH cohomologies. This leads naturally to the special geometry of the moduli space. It has a flat symplectic structure and a K¨ahler metric with the Hitchin functional (modified if RR fluxes are arXiv:0806.3393v1 [hep-th] 20 Jun 2008 included) the K¨ahler potential. Our work is based on previous works of Hitchin and recent works of Gra˜na-Louis-Waldram, Goto, Gualtieri, Yi Li and Tomasiello. The special geometry is useful in flux compactifications of type II string theories. Keywords: Generalized structure, string vacua, special geometry. Contents 1. Introduction 2 2. Geometry of G structures 3 2.1 Moving frames: G structures 3 2.2 Special geometry over the moduli space of Calabi-Yau manifolds 4 3. -
SUPERSYMMETRY 1. Introduction the Purpose
SUPERSYMMETRY JOSH KANTOR 1. Introduction The purpose of these notes is to give a short and (overly?)simple description of supersymmetry for Mathematicians. Our description is far from complete and should be thought of as a first pass at the ideas that arise from supersymmetry. Fundamental to supersymmetry is the mathematics of Clifford algebras and spin groups. We will describe the mathematical results we are using but we refer the reader to the references for proofs. In particular [4], [1], and [5] all cover spinors nicely. 2. Spin and Clifford Algebras We will first review the definition of spin, spinors, and Clifford algebras. Let V be a vector space over R or C with some nondegenerate quadratic form. The clifford algebra of V , l(V ), is the algebra generated by V and 1, subject to the relations v v = v, vC 1, or equivalently v w + w v = 2 v, w . Note that elements of· l(V ) !can"b·e written as polynomials· in V · and this! giv"es a splitting l(V ) = l(VC )0 l(V )1. Here l(V )0 is the set of elements of l(V ) which can bCe writtenC as a linear⊕ C combinationC of products of even numbers ofCvectors from V , and l(V )1 is the set of elements which can be written as a linear combination of productsC of odd numbers of vectors from V . Note that more succinctly l(V ) is just the quotient of the tensor algebra of V by the ideal generated by v vC v, v 1. -
Distinguished University Professor" at the University of Amsterdam Since 2005, Where He Has Held the Chair of Mathematical Physics Since 1992
Biography Robbert Dijkgraaf Robbert Dijkgraaf (born 1960) has been "Distinguished University Professor" at the University of Amsterdam since 2005, where he has held the chair of mathematical physics since 1992. Since 2008 he is President of the Royal Netherlands Academy of Arts and Sciences (KNAW). Robbert Dijkgraaf studied physics and mathematics at Utrecht University. After an interlude studying painting at Amsterdam's Gerrit Rietveld Academy, he gained his PhD cum laude in Utrecht in 1989. His supervisor was the Nobel Prize-winner Gerard 't Hooft. Robbert Dijkgraaf subsequently held positions at Princeton University and at Princeton's Institute for Advanced Study. His current focus is on string theory, quantum gravity, and the interface between mathematics and particle physics. His research was recognized in 2003 with the award of the NWO Spinoza Prize, the highest scientific award in the Netherlands. Robbert Dijkgraaf has been a visiting professor at universities including Harvard, MIT, Berkeley, and Kyoto. He is on the editorial boards of numerous scientific periodicals, and is also the scientific adviser to institutes in Cambridge, Bonn, Stanford, Dublin, and Paris. Since 2009 he is co-chair of the InterAcademy Council, a multinational organization of science academies, together with Professor Lu Yongxiang, President of the Chinese Academy of Sciences. Many of his activities are at the interface between science and society. His column in the NRC Handelsblad newspaper is intended for a broad public and deals with science, the arts, and other matters. A collection has been published in his book Blikwisselingen (Prometheus | Bert Bakker, 2008). Robbert Dijkgraaf is dedicated to bringing about greater public awareness of science, for example through his involvement with popular TV science programmes. -
Wall-Crossing, Free Fermions and Crystal Melting
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Commun. Math. Phys. 301, 517–562 (2011) Communications in Digital Object Identifier (DOI) 10.1007/s00220-010-1153-1 Mathematical Physics Wall-Crossing, Free Fermions and Crystal Melting Piotr Sułkowski1,2, 1 California Institute of Technology, Pasadena, CA 91125, USA. E-mail: [email protected] 2 Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA Received: 15 December 2009 / Accepted: 10 June 2010 Published online: 26 October 2010 – © The Author(s) 2010. This article is published with open access at Springerlink.com Abstract: We describe wall-crossing for local, toric Calabi-Yaumanifolds without com- pact four-cycles, in terms of free fermions, vertex operators, and crystal melting. Firstly, to each such manifold we associate two states in the free fermion Hilbert space. The overlap of these states reproduces the BPS partition function corresponding to the non- commutative Donaldson-Thomas invariants, given by the modulus square of the topolog- ical string partition function. Secondly, we introduce the wall-crossing operators which represent crossing the walls of marginal stability associated to changes of the B-field through each two-cycle in the manifold. BPS partition functions in non-trivial chambers are given by the expectation values of these operators. Thirdly, we discuss crystal inter- pretation of such correlators for this whole class of manifolds. We describe evolution of these crystals upon a change of the moduli, and find crystal interpretation of the flop transition and the DT/PT transition. The crystals which we find generalize and unify various other Calabi-Yau crystal models which appeared in literature in recent years. -
An Intrinsic Volume Functional on Almost Complex 6-Manifolds
Almost complex 6-manifolds M. Verbitsky, July 7, 2005 An intrinsic volume functional on almost complex 6-manifolds and nearly K¨ahler geometry Misha Verbitsky1 [email protected], [email protected] Abstract Let (M, I) be an almost complex 6-manifold. The ob- struction to integrability of the almost complex structure (the so-called Nijenhuis tensor) N : Λ0,1(M) Λ2,0(M) maps a 3-dimensional bundle to a 3-dimensional−→ one. We say that Nijenhuis tensor is non-degenerate if it is an iso- morphism. An almost complex manifold (M, I) is called nearly K¨ahler if it admits a Hermitian form ω such that (ω) is totally antisymmetric, being the Levi-Civita connection.∇ We show that a nearly∇ K¨ahler metric on a given almost complex 6-manifold with non-degenerate Ni- jenhuis tensor is unique (up to a constant). We interpret the nearly K¨ahler property in terms of G2-geometry and in terms of connections with totally antisymmetric torsion, obtaining a number of equivalent definitions. We construct a natural diffeomorphism-invariant func- tional I M VolI on the space of almost complex struc- tures on−→M, similar to the Hitchin functional, and compute its extrema inR the following important case. Consider an almost complex structure I with non-degenerate Nijenhuis tensor, admitting a Hermitian connection with totally an- tisymmetric torsion. We show that the Hitchin-like func- tional I M VolI has an extremum in I if and only if (M, I) is−→ nearly K¨ahler. R arXiv:math/0507179v7 [math.DG] 2 Nov 2007 Contents 0 Introduction 2 0.1 Almost complex manifolds with non-degenerate Nijenhuis tensor . -
Equivariant De Rham Cohomology and Gauged Field Theories
Equivariant de Rham cohomology and gauged field theories August 15, 2013 Contents 1 Introduction 2 1.1 Differential forms and de Rham cohomology . .2 1.2 A commercial for supermanifolds . .3 1.3 Topological field theories . .5 2 Super vector spaces, super algebras and super Lie algebras 11 2.1 Super algebras . 12 2.2 Super Lie algebra . 14 3 A categorical Digression 15 3.1 Monoidal categories . 15 3.2 Symmetric monoidal categories . 17 4 Supermanifolds 19 4.1 Definition and examples of supermanifolds . 19 4.2 Super Lie groups and their Lie algebras . 23 4.3 Determining maps from a supermanifold to Rpjq ................ 26 5 Mapping supermanifolds and the functor of points formalism 31 5.1 Internal hom objects . 32 5.2 The functor of points formalism . 34 5.3 The supermanifold of endomorphisms of R0j1 .................. 36 5.4 Vector bundles on supermanifolds . 37 5.5 The supermanifold of maps R0j1 ! X ...................... 41 5.6 The algebra of functions on a generalized supermanifold . 43 1 1 INTRODUCTION 2 6 Gauged field theories and equivariant de Rham cohomology 47 6.1 Equivariant cohomology . 47 6.2 Differential forms on G-manifolds. 49 6.3 The Weil algebra . 53 6.4 A geometric interpretation of the Weil algebra . 57 1 Introduction 1.1 Differential forms and de Rham cohomology Let X be a smooth manifold of dimension n. We recall that Ωk(X) := C1(X; ΛkT ∗X) is the vector space of differential k-forms on X. What is the available structure on differential forms? 1. There is the wedge product Ωk(M) ⊗ Ω`(M) −!^ Ωk+`(X) induced by a vector bundle homomorphism ΛkT ∗X ⊗ Λ`T ∗X −! Λk+`T ∗X ∗ Ln k This gives Ω (X) := k=0 Ω (X) the structure of a Z-graded algebra. -
Calabi-Yau Geometry and Higher Genus Mirror Symmetry
Calabi-Yau Geometry and Higher Genus Mirror Symmetry A dissertation presented by Si Li to The Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Mathematics Harvard University Cambridge, Massachusetts May 2011 © 2011 { Si Li All rights reserved. iii Dissertation Advisor: Professor Shing-Tung Yau Si Li Calabi-Yau Geometry and Higher Genus Mirror Symmetry Abstract We study closed string mirror symmetry on compact Calabi-Yau manifolds at higher genus. String theory predicts the existence of two sets of geometric invariants, from the A-model and the B-model on Calabi-Yau manifolds, each indexed by a non-negative inte- ger called genus. The A-model has been mathematically established at all genera by the Gromov-Witten theory, but little is known in mathematics for B-model beyond genus zero. We develop a mathematical theory of higher genus B-model from perturbative quantiza- tion techniques of gauge theory. The relevant gauge theory is the Kodaira-Spencer gauge theory, which is originally discovered by Bershadsky-Cecotti-Ooguri-Vafa as the closed string field theory of B-twisted topological string on Calabi-Yau three-folds. We generalize this to Calabi-Yau manifolds of arbitrary dimensions including also gravitational descen- dants, which we call BCOV theory. We give the geometric description of the perturbative quantization of BCOV theory in terms of deformation-obstruction theory. The vanishing of the relevant obstruction classes will enable us to construct the higher genus B-model. We carry out this construction on the elliptic curve and establish the corresponding higher genus B-model. -
Is String Theory Holographic? 1 Introduction
Holography and large-N Dualities Is String Theory Holographic? Lukas Hahn 1 Introduction1 2 Classical Strings and Black Holes2 3 The Strominger-Vafa Construction3 3.1 AdS/CFT for the D1/D5 System......................3 3.2 The Instanton Moduli Space.........................6 3.3 The Elliptic Genus.............................. 10 1 Introduction The holographic principle [1] is based on the idea that there is a limit on information content of spacetime regions. For a given volume V bounded by an area A, the state of maximal entropy corresponds to the largest black hole that can fit inside V . This entropy bound is specified by the Bekenstein-Hawking entropy A S ≤ S = (1.1) BH 4G and the goings-on in the relevant spacetime region are encoded on "holographic screens". The aim of these notes is to discuss one of the many aspects of the question in the title, namely: "Is this feature of the holographic principle realized in string theory (and if so, how)?". In order to adress this question we start with an heuristic account of how string like objects are related to black holes and how to compare their entropies. This second section is exclusively based on [2] and will lead to a key insight, the need to consider BPS states, which allows for a more precise treatment. The most fully understood example is 1 a bound state of D-branes that appeared in the original article on the topic [3]. The third section is an attempt to review this construction from a point of view that highlights the role of AdS/CFT [4,5]. -
The Mathematics of Fivebranes 3 Translates in a Deep Quantum Symmetry (S-Duality) of the 4-Dimensional Yang- Mills Theory
Doc. Math.J. DMV 1 Ì ÅØÑ Ó ÚÖÒ× Robbert Dijkgraaf Abstract. Fivebranes are non-perturbative objects in string theory that general- ize two-dimensional conformal field theory and relate such diverse sub- jects as moduli spaces of vector bundles on surfaces, automorphic forms, elliptic genera, the geometry of Calabi-Yau threefolds, and generalized Kac-Moody algebras. 1991 Mathematics Subject Classification: 81T30 Keywords and Phrases: quantum field theory, elliptic genera, automor- phic forms 1 Introduction This joint session of the sections Mathematical Physics and Algebraic Geometry celebrates a historic period of more than two decades of remarkably fruitful inter- actions between physics and mathematics. The ‘unreasonable effectiveness,’ depth and universality of quantum field theory ideas in mathematics continue to amaze, with applications not only to algebraic geometry, but also to topology, global anal- ysis, representation theory, and many more fields. The impact of string theory has been particularly striking, leading to such wonderful developments as mirror sym- arXiv:hep-th/9810157v1 21 Oct 1998 metry, quantum cohomology, Gromov-Witten theory, invariants of three-manifolds and knots, all of which were discussed at length at previous Congresses. Many of these developments find their origin in two-dimensional conformal field theory (CFT) or, in physical terms, in the first-quantized, perturbative for- mulation of string theory. This is essentially the study of sigma models or maps of Riemann surfaces Σ into a space-time manifold X. Through the path-integral over all such maps a CFT determines a partition function Zg on the moduli space Mg of genus g Riemann surfaces. String amplitudes are functions Z(λ), with λ the string coupling constant, that have asymptotic series of the form 2g−2 Z(λ) ∼ λ Zg. -
Robbert Dijkgraaf
1 Robbert Dijkgraaf Publicaties, wetenschappelijk 1 R. Dijkgraaf, E. Verlinde, and H. Verlinde, c = 1 Conformal Field Theories on Riemann Surfaces, Commun. Math. Phys. 115 (1988). 2 R. Dijkgraaf, E. Verlinde, and H. Verlinde, Conformal Field Theory at c = 1, in Nonperturbative Quantum Field Theory, Proceedings of the 1987 Cargese Summer School, G. 't Hooft et al. eds. (Plenum, New York, 1988) 577-590. 3 R. Dijkgraaf, E. Verlinde, and H. Verlinde, On Moduli Spaces of Conformal Field Theories with c=1, in Perspectives in String Theory, P. Di Vecchia and J.L. Petersen eds. (World Scientific, 1988) 117-137. 4 R. Dijkgraaf and E. Verlinde, Modular Invariance and the Fusion Algebra, Nucl. Phys. B (Proc. Suppl.) 5B (1988) 87. 5 R. Dijkgraaf, Recent Progress in Rational Conformal Field Theory, in Les Houches, Session XLIX, 1988, Fields, Strings and Critical Phenomena, E. Brézin and J. Zinn-Justin eds. (Elsevier 1990), 291-304. 6 R. Dijkgraaf, C. Vafa, E. Verlinde, and H. Verlinde, Operator Algebra of Orbifold Models, Commun. Math. Phys. 123 (1989) 485. 7 R. Dijkgraaf and E. Witten, Topological Gauge Theories and Group Cohomology, Commun. Math. Phys. 129 (1990) 393. 8 R. Dijkgraaf, V. Pasquier, and Ph. Roche, Quasi-Quantum Groups Related to Orbifold Models, in the Proceedings of the International Colloquium on Modern Quantum Field Theory, Tata Institute of Fundamental Research, 375-383. 9 R. Dijkgraaf, V. Pasquier, and Ph. Roche, Quasihopf Algebras, Group Cohomology and Orbifold Models, in Annecy 1990, Recent advances in Field theory, Nucl. Phys. Proc. Suppl. 18B (1990) 60-72; in Pavia 1990, Integrable systems and quantum groups, 75-98. -
Connection Description of 3D Gravity
Connection description of 3D Gravity joint work with Y. Herfray and C. Scarinci arXiv:1605.07510 Workshop on Teichmueller theory and geometric structures on 3-dimensional manifolds Kirill Krasnov (Nottingham) School of Mathematical Sciences First Year Research Report PhD. in Mathematical Sciences Student: Supervisor: Johnny Espin Prof. Kirill Krasnov July 11, 2013 We usually describe geometry using metrics Works in any dimension Natural constructions: Einstein metrics Ricci flow There are of course other types of geometric structures (reductions of the structure group of the frame bundle) and other types of geometry (e.g. complex, symplectic) In specific dimensions other descriptions possible 2D - complex rather than conformal structure 3D - Cartan formalism (Chern-Simons) 4D - Penrose encodes metric into an almost complex structure on twistor space plus contact form Many have previously suggested that metric may not be the best “variable” to describe gravity In the approach to be described 3D geometry is encoded by connection on space(time) rather than metric Discovered in: Connection formulation of (2+1)-dimensional Einstein gravity and topologically massive gravity Peter Peldan (Goteborg, ITP). Oct 1991. 33 pp. Published in Class.Quant.Grav. 9 (1992) 2079-2092 Cited by 9 records interpretation via a certain 3-form in the total space of the SU(2) bundle over space(time) Plan Einstein-Cartan, Chern-Simons descriptions of 3D gravity 3D gravity in terms of connections Volume gradient flow on connections - torsion flow 6D interpretation 3D gravity -
Topics in Algebraic Supergeometry Over Projective Spaces
Dipartimento di Matematica \Federigo Enriques" Dottorato di Ricerca in Matematica XXX ciclo Topics in Algebraic Supergeometry over Projective Spaces MAT/03 Candidato: Simone Noja Relatore: Prof. Bert van Geemen Correlatore: Prof. Sergio Luigi Cacciatori Coordinatore di Dottorato: Prof. Vieri Mastropietro A.A. 2016/2017 Contents Introduction 4 1 Algebraic Supergeometry 8 1.1 Main Definitions and Fundamental Constructions . .8 1.2 Locally-Free Sheaves on a Supermanifold and Even Picard Group . 14 1.3 Tangent and Cotangent Sheaf of a Supermanifold . 16 1.4 Berezinian Sheaf, First Chern Class and Calabi-Yau Condition . 21 2 Supergeometry of Projective Superspaces 24 2.1 Cohomology of O n|m ` ................................. 24 P p q n|m 2.2 Invertible Sheaves and Even Picard Group Pic0pP q ................ 26 2.3 Maps and Embeddings into Projective Superspaces . 31 2.4 Infinitesimal Automorphisms and First Order Deformations . 32 2.4.1 Supercurves over P1 and the Calabi-Yau Supermanifold P1|2 ......... 35 2.5 P1|2 as N “ 2 Super Riemann Surface . 37 2.6 Aganagic-Vafa's Mirror Supermanifold for P1|2 .................... 41 3 N “ 2 Non-Projected Supermanifolds over Pn 45 3.1 Obstruction to the Splitting of a N “ 2 Supermanifold . 45 3.2 N “ 2 Non-Projected Supermanifolds over Projective Spaces . 49 3.3 Non-Projected Supermanifolds over P1 ......................... 50 1 3.3.1 Even Picard Group of P!pm; nq ......................... 52 1 3.3.2 Embedding of P!p2; 2q: an Example by Witten . 54 3.4 Non-Projected Supermanifolds over P2 ......................... 56 2 3.4.1 P!pFM q is a Calabi-Yau Supermanifold .