Mary-Anne Bellwood Mackay

Total Page:16

File Type:pdf, Size:1020Kb

Mary-Anne Bellwood Mackay The use of adjuvant L-arginine in schizophrenia: A behavioural and neurochemical analysis by Mary-Anne Bellwood MacKay A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Psychopharmacology Department of Psychiatry University of Alberta © Mary-Anne Bellwood MacKay, 2016 ABSTRACT Schizophrenia is a complex neurodevelopmental illness that often requires a combination of treatments to adequately control its symptoms. Despite the availability of several neuroleptic medications on the market, many patients with schizophrenia remain symptomatic. Research has shifted emphasis towards impaired glutamate signaling as a major contributor to the illness. Drug targets specific to the glutamate-nitric oxide (NO) pathway may offer a promising new approach to treatment. The therapeutic effect of the amino acid L-arginine (Arg), the substrate for the NO-producing enzyme neuronal nitric oxide synthase (nNOS) was examined in this thesis. As an augmenting strategy, Arg was administered (at 6g per day) to patients with schizophrenia in an attempt to improve the efficacy of antipsychotic therapy. Responders to Arg therapy had a reduction in anxiety symptoms that were previously resistant to prescribed medication. The anxiolytic effect of Arg may be directly related to an increase in endogenous central NO production and the downstream induction of cyclic guanosine monophosphate (cGMP)-mediated signaling cascades. L-Arginine also proved to be a safe strategy in the treatment of schizophrenia and did not exacerbate any of the known side-effects that were already present as a result of ongoing antipsychotic therapy. This thesis also investigated genetic influences on glutamate N- methyl-D-aspartate (NMDA) receptor functioning and treatment response to Arg therapy. The Neuronal Period-Arylhydrocarbon Nuclear Translocator ii (ARNT)-Single-minded (PAS) domain containing 3 (NPAS3) gene codes for a protein that functions as a transcription factor. NPAS3 and its related variants may be important for the development of functional postsynaptic density (PSD-95) scaffolding proteins that directly link the NMDA receptor to the nNOS enzyme in the brain. Variants associated with NPAS3 and schizophrenia were examined to elucidate the integrity of the PSD-95 protein and used to predict the outcome of the effects of adjuvant Arg therapy. Two carriers of a NPAS3 variant who did not respond to Arg treatment may have had compromised NMDA receptor function related to altered neurodevelopmental processes that occurred during early brain development. Participants were also genotyped for the catechol-O- methyltransferase (COMT ) enzyme single nucleotide polymorphism (SNP) p.V158M to explore the relationship between this genetic marker and clinical outcomes. No significant gene-gene interaction between NPAS3 and COMT was determined that would influence treatment response to Arg therapy. Preclinical experiments were also included in this thesis to determine the behavioural and neurochemical mechanisms by which Arg was able to exert its therapeutic effect. Competing metabolic enzymes that utilize Arg as a substrate were investigated by measurement of related amino acids ornithine (Orn) and citrulline (Cit). The immediate potentiation of whole brain Cit levels following Arg administration suggested that NO is produced quickly and NOS enzymes require a much lower concentration of Arg than that of the arginase enzymes. iii This thesis was also able to confirm the utility of phencyclidine (PCP) as a comprehensive pharmacological model of psychosis and the ability of antipsychotic drugs to reduce PCP-induced hyperlocomotor activity. The administration of Arg alone in a rodent PCP model had no significant effect on hyperlocomotor activity (a behavioural measure of the positive symptoms of psychosis) and it also did not enhance the locomotor-reducing effects of antipsychotic drugs. These results were consistent with the clinical trial data where no significant changes in positive symptoms were also found when augmenting antipsychotic treatment with Arg. Although Arg therapy was unable to potentiate antipsychotic effects in schizophrenia, work presented in this thesis does support the use of Arg as a tolerable and effective strategy that may target intrinsic anxiety in treatment-refractory schizophrenia. iv PREFACE This thesis is an original work done by Mary-Anne Bellwood MacKay. The clinical research project which is part of this thesis received research ethics approval from the University of Alberta Research Ethics Board, Project Name “A RANDOMISED DOUBLE-BLIND CROSS-OVER, PLACEBO-CONTROLLED ADJUNCTIVE TREATMENT OF L-ARGININE ADDED TO TREATMENT AS USUAL (TAU) IN SCHIZOPHRENIA: AN EXPLORATORY THERAPEUTIC CLINICAL TRIAL PROTOCOL” REB approval No. MS3_Pro00002053 DECEMBER 14, 2007. v DEDICATION I would like to dedicate this thesis to my father Ronald George Buchanan MacKay vi ACKNOWLEGEMENTS I would like to express my appreciation for all of the support and encouragement I have received from a number of people throughout my studies. First of all, to my supervisor, Dr. Serdar Dursun, who has been a tremendous mentor and teacher to me. I can never thank him enough for his exceptional guidance as a clinical research scientist. I have been so fortunate to work along side him and could not have asked for a better supervisor. I would also like to thank the members of my supervisory committee. To Dr. Glen Baker, for his ongoing support throughout my project and for his excellent guidance in the writing of this thesis. Also, to Dr. John Lind, for his words of encouragement over the years and his infectious enthusiasm for statistical methods. Thanks as well to Drs. Satyabrata Kar and Harold Robertson for taking the time to review my thesis as external examiners. To Gail Rauw, for spending all of the time you did with me in the lab and patiently teaching me the analytical techniques relevant to my thesis. Thanks to all at the Neurochemical Research Unit for making me feel so welcome. To Andy Greenshaw, your support and perspective made the milestones of graduate school seem much less intimidating. Also, thanks to Drs. Diane Cox and Georgina Macintyre for allowing me to work with you in your laboratory. Thanks also to Drs. P.J. White and Cory Czarnecki and all of the psychiatrists and nurses at Alberta Hospital Edmonton as well as the Addictions and Mental Health Clinic in Edmonton who helped support my efforts in recruiting for my study. A heartfelt thank you to all of the dedicated individuals that participated in the study and who were willing to investigate L-Arginine treatment for their illness. Finally, I am forever grateful to my family for their love and support. To my mum, I could not have completed this thesis without you. Thank you for being so kind and good to us. To my brother, his genuine love of science has always been an inspiration to me. He is the smartest fellow I know. And finally, to my friends, Lynn and Terence, for teaching me about true determination and to never give up. vii TABLE OF CONTENTS CHAPTER 1 – GENERAL INTRODUCTION ............................................................. 1 1.1 FORWORD ........................................................................................................................... 2 1.2 SCHIZOPHRENIA .............................................................................................................. 3 1.2.1 Neurodevelopmental hypothesis ........................................................................ 3 1.2.2 Disease course ............................................................................................................ 4 1.2.3 Etiology .......................................................................................................................... 5 1.2.4 Genetic risk factors ................................................................................................... 5 1.2.5 Environmental risk factors .................................................................................... 6 1.2.6 Diagnosis ....................................................................................................................... 7 1.3 ANTIPSYCOTIC DRUG DEVELOPMENT ................................................................... 8 1.3.1 First-generation antipsychotic drugs ................................................................ 8 1.3.2 Second-generation antipsychotic drugs ........................................................... 9 1.3.3 Third-generation antipsychotic drugs aripiprazole and brexpiprazole ........................................................................................................................................ 11 1.4 GLUTAMATE .................................................................................................................... 11 1.4.1 Glutamate synthesis ............................................................................................... 11 1.4.2 Glutamate receptors .............................................................................................. 12 1.5 NMDA RECEPTOR COMPLEX .................................................................................... 15 1.6 NITRIC OXIDE ................................................................................................................. 18 1.7 DYSREGULATED GLUTAMATE IN SCHIZOPHRENIA ....................................... 19 viii 1.7.1 Glutamate hypofunction hypothesis ..............................................................
Recommended publications
  • Tolerance and Resistance to Organic Nitrates in Human Blood Vessels
    \ö-\2- Tolerance and Resistance to Organic Nitrates in Human Blood Vessels Peter Radford Sage MBBS, FRACP Thesis submit.ted for the degree of Doctor of Philosuphy Department of Medicine University of Adelaide and Cardiology Unit The Queen Elizabeth Hospital I Table of Gontents Summary vii Declaration x Acknowledgments xi Abbreviations xil Publications xtil. l.INTRODUCTION l.L Historical Perspective I i.2 Chemical Structure and Available Preparations I 1.3 Cellular/biochemical mechanism of action 2 1.3.1 What is the pharmacologically active moiety? 3 1.3.2 How i.s the active moiety formed? i 4 1.3.3 Which enzyme system(s) is involved in nitrate bioconversi<¡n? 5 1.3.4 What is the role of sulphydryl groups in nitrate action? 9 1.3.5 Cellular mechanism of action after release of the active moiety 11 1.4 Pharmacokinetics t2 1.5 Pharmacological Effects r5 1.5.1 Vascular effects 15 l.5.2Platelet Effects t7 1.5.3 Myocardial effects 18 1.6 Clinical Efhcacy 18 1.6.1 Stable angina pectoris 18 1.6.2 Unstable angina pectoris 2t 1.6.3 Acute myocardial infarction 2l 1.6.4 Congestive Heart Failure 23 ll 1.6.5 Other 24 1.7 Relationship with the endothelium and EDRF 24 1.7.1 EDRF and the endothelium 24 1.7.2 Nitrate-endothelium interactions 2l 1.8 Factors limiting nitrate efficacy' Nitrate tolerance 28 1.8.1 Historical notes 28 1.8.2 Clinical evidence for nitrate tolerance 29 1.8.3 True/cellular nitrate tolerance 31 1.8.3.1 Previous studies 31 | .8.3.2 Postulated mechanisms of true/cellular tolerance JJ 1.8.3.2.1 The "sulphydryl depletion" hypothesis JJ 1.8.3.2.2 Desensitization of guanylate cyclase 35 1 8.i.?..3 Impaired nitrate bioconversion 36 1.8.3.2.4'Ihe "superoxide hypothesis" 38 I.8.3.2.5 Other possible mechanisms 42 1.8.4 Pseudotolerance ; 42 1.8.4.
    [Show full text]
  • The G Protein-Coupled Glutamate Receptors As Novel Molecular Targets in Schizophrenia Treatment— a Narrative Review
    Journal of Clinical Medicine Review The G Protein-Coupled Glutamate Receptors as Novel Molecular Targets in Schizophrenia Treatment— A Narrative Review Waldemar Kryszkowski 1 and Tomasz Boczek 2,* 1 General Psychiatric Ward, Babinski Memorial Hospital in Lodz, 91229 Lodz, Poland; [email protected] 2 Department of Molecular Neurochemistry, Medical University of Lodz, 92215 Lodz, Poland * Correspondence: [email protected] Abstract: Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology. Citation: Kryszkowski, W.; Boczek, T. The G Protein-Coupled Glutamate Keywords: schizophrenia; metabotropic glutamate receptors; positive allosteric modulators; negative Receptors as Novel Molecular Targets allosteric modulators; drug development; animal models of schizophrenia; clinical trials in Schizophrenia Treatment—A Narrative Review. J. Clin. Med. 2021, 10, 1475. https://doi.org/10.3390/ jcm10071475 1. Introduction Academic Editors: Andreas Reif, Schizophrenia is a common debilitating disease affecting about 0.3–1% of the human Blazej Misiak and Jerzy Samochowiec population worldwide [1].
    [Show full text]
  • A Textbook of Clinical Pharmacology and Therapeutics This Page Intentionally Left Blank a Textbook of Clinical Pharmacology and Therapeutics
    A Textbook of Clinical Pharmacology and Therapeutics This page intentionally left blank A Textbook of Clinical Pharmacology and Therapeutics FIFTH EDITION JAMES M RITTER MA DPHIL FRCP FMedSci FBPHARMACOLS Professor of Clinical Pharmacology at King’s College London School of Medicine, Guy’s, King’s and St Thomas’ Hospitals, London, UK LIONEL D LEWIS MA MB BCH MD FRCP Professor of Medicine, Pharmacology and Toxicology at Dartmouth Medical School and the Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA TIMOTHY GK MANT BSC FFPM FRCP Senior Medical Advisor, Quintiles, Guy's Drug Research Unit, and Visiting Professor at King’s College London School of Medicine, Guy’s, King’s and St Thomas’ Hospitals, London, UK ALBERT FERRO PHD FRCP FBPHARMACOLS Reader in Clinical Pharmacology and Honorary Consultant Physician at King’s College London School of Medicine, Guy’s, King’s and St Thomas’ Hospitals, London, UK PART OF HACHETTE LIVRE UK First published in Great Britain in 1981 Second edition 1986 Third edition 1995 Fourth edition 1999 This fifth edition published in Great Britain in 2008 by Hodder Arnold, an imprint of Hodden Education, part of Hachette Livre UK, 338 Euston Road, London NW1 3BH http://www.hoddereducation.com ©2008 James M Ritter, Lionel D Lewis, Timothy GK Mant and Albert Ferro All rights reserved. Apart from any use permitted under UK copyright law, this publication may only be reproduced, stored or transmitted, in any form, or by any means with prior permission in writing of the publishers or in the case of reprographic production in accordance with the terms of licences issued by the Copyright Licensing Agency.
    [Show full text]
  • Effects of N-Acetylcysteine on Brain Glutamate Levels and Resting Perfusion in Schizophrenia
    Psychopharmacology https://doi.org/10.1007/s00213-018-4997-2 ORIGINAL INVESTIGATION Effects of N-acetylcysteine on brain glutamate levels and resting perfusion in schizophrenia Grant McQueen1 & John Lally1,2 & Tracy Collier1 & Fernando Zelaya3 & David J. Lythgoe3 & Gareth J. Barker3 & James M. Stone1,4 & Philip McGuire1 & James H. MacCabe1 & Alice Egerton1 Received: 6 March 2018 /Accepted: 6 August 2018 # The Author(s) 2018 Abstract Rationale N-Acetylcysteine (NAC) is currently under investigation as an adjunctive treatment for schizophrenia. The therapeutic potential of NAC may involve modulation of brain glutamate function, but its effects on brain glutamate levels in schizophrenia have not been evaluated. Objectives The aim of this study was to examine whether a single dose of NAC can alter brain glutamate levels. A secondary aim was to characterise its effects on regional brain perfusion. Methods In a double-blind placebo-controlled crossover study, 19 patients with a diagnosis of schizophrenia underwent two MRI scans, following oral administration of 2400 mg NAC or matching placebo. Proton magnetic resonance spectroscopy was used to investigate the effect of NAC on glutamate and Glx (glutamate plus glutamine) levels scaled to creatine (Cr) in the anterior cingulate cortex (ACC) and in the right caudate nucleus. Pulsed continuous arterial spin labelling was used to assess the effects of NAC on resting cerebral blood flow (rCBF) in the same regions. Results Relative to the placebo condition, the NAC condition was associated with lower levels of Glx/Cr, in the ACC (P <0.05), but not in the caudate nucleus. There were no significant differences in CBF in the NAC compared to placebo condition.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,114,138 B2 Cid-Nunez Et Al
    USOO9114138B2 (12) United States Patent (10) Patent No.: US 9,114,138 B2 Cid-Nunez et al. (45) Date of Patent: Aug. 25, 2015 (54) 1',3'-DISUBSTITUTED-4-PHENYL-3,4,5,6- (58) Field of Classification Search TETRAHYDRO-2H, 1'H-14' CPC .......................... A61K 31/4545; CO7D 401/04 BPYRIDINYL-2'-ONES USPC ........................................... 546/194; 514/318 (75) Inventors: Jose Maria Cid-Nunez, Toledo (ES); See application file for complete search history. Andres Avelino Trabanco-Suarez, (56) References Cited Toledo (ES); Gregor James MacDonald, Beerse (BE); Guillaume U.S. PATENT DOCUMENTS Albert Jacques Duvey, Geneva (CH): 4,051,244. A 9/1977 Mattioda et al. Robert Johannes Lutjens, Geneva 4,066,651 A 1/1978 Brittain et al. (CH); Terry Patrick Finn, Geneva (CH) (Continued) (73) Assignees: Janssen Pharmaceuticals, Inc., FOREIGN PATENT DOCUMENTS Titusville, NJ (US); Addex Pharma SA, BE 841390 11, 1976 Geneva (CH) CA 1019323 1Of 1977 (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 287 days. Adam, Octavian R. “Symptomatic Treatment of Huntington Dis (21) Appl. No.: 12/677,618 ease” Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics Apr. 2008, vol. 5, 181-197.* (22) PCT Filed: Sep. 12, 2008 Hook V. Y.H. “Neuroproteases in Peptide Neurotransmission and Neurodegenerative Diseases Applications to Drug Discovery (86). PCT No.: PCT/EP2008/007551 Research” Biodrugs 2006, 20, 105-119.* 371 1 Conn, P.J. “Activation of metabotropic glutamate receptors as a novel S (c)(1), approach for the treatment of schizophrenia.” Trends in Pharmaco (2), (4) Date: Jun.
    [Show full text]
  • Treatment of Schizophrenia Course Director: Philip Janicak, M.D
    S6735- Treatment of Schizophrenia Course Director: Philip Janicak, M.D. #APAAM2016 Saturday, May 14, 2016 Marriott Marquis - Marquis Ballroom D psychiatry.org/ annualmeetingS4637 ANNUAL MEETING May 14-18, 2016 • Atlanta Reference • Janicak PG, Marder SR, Tandon R, Goldman M (Eds.). Schizophrenia: Recent Advances in Diagnosis and Treatment. New York, NY: Springer; 2014. Schizophrenia: Recent Diagnostic Advances, Neurobiology, and the Neuropharmacology of Antipsychotic Drug Therapy Rajiv Tandon, MD Professor of Psychiatry University of Florida College of Medicine Gainesville, Florida Annual Meeting of the American Psychiatric Association New York, New York May 3–7, 2014 Disclosure Information MEMBER, WPA PHARMACOPSYCHIATRY SECTION MEMBER, DSM-5 WORKGROUP ON PSYCHOTIC DISORDERS A CLINICIAN AND CLINICAL RESEARCHER Pharmacological Treatment of Any Disease • Know the Disease that you are treating • Nature; Treatment targets; Treatment goals; • Know the Treatments at your disposal • What they do; How they compare; Costs; • Principles of Treatment • Measurement-based; Targeted; Individualized Program Outline • Nature and Definition of psychosis? • Clinical description • What is wrong in psychotic illness • Dimensions of Psychopathology • Neurobiological Abnormalities • Mechanisms underlying antipsychotic effects? • What contributes to Efficacy • Basis of Side-effect differences 5 Challenges in DSM-IV Construct of Psychotic Disorders ♦ Indistinct Boundaries ♦ With Other Disorders (eg., with OCD) ♦ Within Group of Psychotic Disorders (eg. between
    [Show full text]
  • Hippocampal Dysfunction in the Pathophysiology of Schizophrenia: a Selective Review and Hypothesis for Early Detection and Intervention
    OPEN Molecular Psychiatry (2018) 23, 1764–1772 www.nature.com/mp ORIGINAL ARTICLE Hippocampal dysfunction in the pathophysiology of schizophrenia: a selective review and hypothesis for early detection and intervention JA Lieberman1,2, RR Girgis1,2, G Brucato1,2, H Moore1,2, F Provenzano3, L Kegeles1,2, D Javitt1,2, J Kantrowitz1,2, MM Wall1,2,4, CM Corcoran1, SA Schobel1 and SA Small1,3,5 Scientists have long sought to characterize the pathophysiologic basis of schizophrenia and develop biomarkers that could identify the illness. Extensive postmortem and in vivo neuroimaging research has described the early involvement of the hippocampus in the pathophysiology of schizophrenia. In this context, we have developed a hypothesis that describes the evolution of schizophrenia—from the premorbid through the prodromal stages to syndromal psychosis—and posits dysregulation of glutamate neurotransmission beginning in the CA1 region of the hippocampus as inducing attenuated psychotic symptoms and initiating the transition to syndromal psychosis. As the illness progresses, this pathological process expands to other regions of the hippocampal circuit and projection fields in other anatomic areas including the frontal cortex, and induces an atrophic process in which hippocampal neuropil is reduced and interneurons are lost. This paper will describe the studies of our group and other investigators supporting this pathophysiological hypothesis, as well as its implications for early detection and therapeutic intervention. Molecular Psychiatry advance online publication, 9 January 2018; doi:10.1038/mp.2017.249 INTRODUCTION between dementia praecox and manic-depressive illness by Background and historical context painstaking description of symptoms and illness course. Since Scientists have been challenged to elucidate the pathological then, researchers have continued to search for the neuropatho- basis of mental illness.
    [Show full text]
  • Medical Management of Advanced Heart Failure
    CLINICAL CARDIOLOGY CLINICIAN’S CORNER Medical Management of Advanced Heart Failure Anju Nohria, MD Context Advanced heart failure, defined as persistence of limiting symptoms de- Eldrin Lewis, MD spite therapy with agents of proven efficacy, accounts for the majority of morbidity and mortality in heart failure. Lynne Warner Stevenson, MD Objective To review current medical therapy for advanced heart failure. EART FAILURE HAS EMERGED AS Data Sources We searched MEDLINE for all articles containing the term advanced a major health challenge, in- heart failure that were published between 1980 and 2001; EMBASE was searched from creasing in prevalence as age- 1987-1999, Best Evidence from 1991-1998, and Evidence-Based Medicine from 1995- adjusted rates of myocardial 1999. The Cochrane Library also was searched for critical reviews and meta-analyses Hinfarction and stroke decline.1 Affect- of congestive heart failure. ing 4 to 5 million people in the United Study Selection Randomized controlled trials of therapy for 150 patients or more States with more than 2 million hospi- were included if advanced heart failure was represented. Other common clinical situ- talizations each year, heart failure alone ations were addressed from smaller trials as available, trials of milder heart failure, con- accounts for 2% to 3% of the national sensus guidelines, and both published and personal clinical experience. health care budget. Developments her- Data Extraction Data quality was determined by publication in peer-reviewed lit- alded in the news media increase pub- erature or inclusion in professional society guidelines. lic expectations but focus on decreas- Data Synthesis A primary focus for care of advanced heart failure is ongoing iden- ing disease progression in mild to tification and treatment of the elevated filling pressures that cause disabling symp- moderate stages2,3 or supporting the cir- toms.
    [Show full text]
  • The Evolution of Heart Failure with Reduced Ejection Fraction Pharmacotherapy: What Do We Have and Where Are We Going?
    Pharmacology & Therapeutics 178 (2017) 67–82 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Associate editor: M. Curtis The evolution of heart failure with reduced ejection fraction pharmacotherapy: What do we have and where are we going? Ahmed Selim, Ronald Zolty, Yiannis S. Chatzizisis ⁎ Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE, USA article info abstract Available online 21 March 2017 Cardiovascular diseases represent a leading cause of mortality and increased healthcare expenditure worldwide. Heart failure, which simply describes an inability of the heart to meet the body's needs, is the end point for many Keywords: other cardiovascular conditions. The last three decades have witnessed significant efforts aiming at the discovery Heart failure of treatments to improve the survival and quality of life of patients with heart failure; many were successful, Reduced ejection fraction while others failed. Given that most of the successes in treating heart failure were achieved in patients with re- Pharmacotherapy duced left ventricular ejection fraction (HFrEF), we constructed this review to look at the recent evolution of Novel drugs HFrEF pharmacotherapy. We also explore some of the ongoing clinical trials for new drugs, and investigate poten- tial treatment targets and pathways that might play a role in treating HFrEF in the future. © 2017 Elsevier Inc. All rights reserved. Contents 1. Introduction..............................................
    [Show full text]
  • State-Dependent Dopamine System Regulation Using Current and Novel Antipsychotic Drug Mechanisms: Developmental Implications in a Schizophrenia Model
    Title Page STATE-DEPENDENT DOPAMINE SYSTEM REGULATION USING CURRENT AND NOVEL ANTIPSYCHOTIC DRUG MECHANISMS: DEVELOPMENTAL IMPLICATIONS IN A SCHIZOPHRENIA MODEL by Susan Franklin Sonnenschein B.S., Psychology and Neuroscience, Michigan State University, 2014 Submitted to the Graduate Faculty of the Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2020 Committee Page UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Susan Franklin Sonnenschein It was defended on December 19, 2019 and approved by Anissa Abi-Dargham, MD, Department of Psychiatry, Stony Brook University Beatriz Luna, PhD, Department of Psychiatry Robert Turner, PhD,, Department of Neurobiology David Volk, MD, PhD, Department of Psychiatry Dissertation Advisor: Anthony Grace, PhD, Department of Neuroscience Dissertation Chair: Susan Sesack, PhD, Department of Neuroscience ii Copyright © by Susan Franklin Sonnenschein 2020 iii STATE-DEPENDENT DOPAMINE SYSTEM REGULATION USING CURRENT AND NOVEL ANTIPSYCHOTIC DRUG MECHANISMS: DEVELOPMENTAL IMPLICATIONS IN A SCHIZOPHRENIA MODEL Susan Franklin Sonnenschein PhD University of Pittsburgh, 2020 Current antipsychotic drugs act on dopamine (DA) D2 receptors for their therapeutic effects, but their limitations have driven a search for novel treatments. Pharmaceutical research is generally performed in normal rats, whereas models that account for variables including disease- relevant pathophysiology
    [Show full text]
  • Investigations Into the Role of Nitric Oxide in Disease
    INVESTIGATIONS INTO THE ROLE OF NITRIC OXIDE IN CARDIOVASCULAR DEVXLOPMENT DISEASE: INSIGHTS GAINED FROM GENETICALLY ENGINEERED MOUSE MODELS OF HUMAN DISEASE Tony Lee A thesis submitted in conformity with the requirements for the degree of Master's of Science Institute of Medicai Science University of Toronto @ Copyright by Tony C. Lee (2000) National Library Bibliothèque nationale I*I of Canada du Canada Acquisitions and Acquisitions et Bibliogaphic Services services bibliogaphiques 395 Wellington Street 395, rue Wellington Ottawa ON K1A ON4 Ottawa ON KIA ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microfonn, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or othewise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. INVESTIGATIONS INTO THE ROLE OF MTNC OXIDE IN CARDIOVASCULAR DEVELOPMENT AND DISEASE: INSIGHTS GAiNED FROM GENETICALLY ENGINEERED MOUSE MODELS OF HUMAN DISEASE B y Tony Lee A thesis submitted in conformity with the requirements for the degree of Master's of Science (2000) Instinite of Medical Science, University of Toronto In the first expenmental series, the antiatherosclerotic effects of Enalûpril vrrsus Irbesartan were compared in the LDL-R knockout mouse model.
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]