From Greenhouse to Icehouse: Understanding Earth's Climate Extremes Through Models and Proxies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thesis Paleo-Feedbacks in the Hydrological And
THESIS PALEO-FEEDBACKS IN THE HYDROLOGICAL AND ENERGY CYCLES IN THE COMMUNITY CLIMATE SYSTEM MODEL 3 Submitted by Melissa A. Burt Department of Atmospheric Science In partial fulfillment of the requirements for the Degree of Master of Science Colorado State University Fort Collins, Colorado Summer 2008 COLORADO STATE UNIVERSITY April 29, 2008 WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR SUPERVISION BY MELISSA A. BURT ENTITLED PALEO-FEEDBACKS IN THE HYDROLOGICAL AND ENERGY CYCLES IN THE COMMUNITY CLIMATE SYSTEM MODEL 3 BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE. Committee on Graduate work ________________________________________ ________________________________________ ________________________________________ ________________________________________ ________________________________________ Adviser ________________________________________ Department Head ii ABSTRACT OF THESIS PALEO FEEDBACKS IN THE HYDROLOGICAL AND ENERGY CYCLES IN THE COMMUNITY CLIMATE SYSTEM MODEL 3 The hydrological and energy cycles are examined using the Community Climate System Model version 3 (CCSM3) for two climates, the Last Glacial Maximum (LGM) and Present Day. CCSM3, developed at the National Center for Atmospheric Research, is a coupled global climate model that simulates the atmosphere, ocean, sea ice, and land surface interactions. The Last Glacial Maximum occurred 21 ka (21,000 yrs before present) and was the cold extreme of the last glacial period with maximum extent of ice in the Northern Hemisphere. During this period, external forcings (i.e. solar variations, greenhouse gases, etc.) were significantly different in comparison to present. The “Present Day” simulation discussed in this study uses forcings appropriate for conditions before industrialization (Pre-Industrial 1750 A.D.). This research focuses on the joint variability of the hydrological and energy cycles for the atmosphere and lower boundary and climate feedbacks associated with these changes at the Last Glacial Maximum. -
Recent Declines in Warming and Vegetation Greening Trends Over Pan-Arctic Tundra
Remote Sens. 2013, 5, 4229-4254; doi:10.3390/rs5094229 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra Uma S. Bhatt 1,*, Donald A. Walker 2, Martha K. Raynolds 2, Peter A. Bieniek 1,3, Howard E. Epstein 4, Josefino C. Comiso 5, Jorge E. Pinzon 6, Compton J. Tucker 6 and Igor V. Polyakov 3 1 Geophysical Institute, Department of Atmospheric Sciences, College of Natural Science and Mathematics, University of Alaska Fairbanks, 903 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 2 Institute of Arctic Biology, Department of Biology and Wildlife, College of Natural Science and Mathematics, University of Alaska, Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA; E-Mails: [email protected] (D.A.W.); [email protected] (M.K.R.) 3 International Arctic Research Center, Department of Atmospheric Sciences, College of Natural Science and Mathematics, 930 Koyukuk Dr., Fairbanks, AK 99775, USA; E-Mail: [email protected] 4 Department of Environmental Sciences, University of Virginia, 291 McCormick Rd., Charlottesville, VA 22904, USA; E-Mail: [email protected] 5 Cryospheric Sciences Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mail: [email protected] 6 Biospheric Science Branch, NASA Goddard Space Flight Center, Code 614.1, Greenbelt, MD 20771, USA; E-Mails: [email protected] (J.E.P.); [email protected] (C.J.T.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-907-474-2662; Fax: +1-907-474-2473. -
Amplified Arctic Warming by Phytoplankton Under Greenhouse Warming
Amplified Arctic warming by phytoplankton under greenhouse warming Jong-Yeon Parka, Jong-Seong Kugb,1, Jürgen Badera,c, Rebecca Rolpha,d, and Minho Kwone aMax Planck Institute for Meteorology, D-20146 Hamburg, Germany; bSchool of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea; cUni Climate, Uni Research & Bjerknes Centre for Climate Research, NO-5007 Bergen, Norway; dSchool of Integrated Climate system sciences, University of Hamburg, D-20146 Hamburg, Germany; and eKorea Institute of Ocean Science and Technology, Ansan 426-744, South Korea Edited by Christopher J. R. Garrett, University of Victoria, Victoria, BC, Canada, and approved March 27, 2015 (received for review September 1, 2014) Phytoplankton have attracted increasing attention in climate suggested substantial future changes in global phytoplankton, with science due to their impacts on climate systems. A new generation the opposite sign of their trends in different regions (15–17). Such of climate models can now provide estimates of future climate climate change-induced phytoplankton response would impact cli- change, considering the biological feedbacks through the development mate systems, given the aforementioned biological feedbacks. of the coupled physical–ecosystem model. Here we present the geo- Previous studies discovered an increase in the annual area- physical impact of phytoplankton, which is often overlooked in future integrated primary production in the Arctic, which is caused by the climate projections. A suite of future warming experiments using a fully thinning and melting of sea ice and the corresponding increase in coupled ocean−atmosphere model that interacts with a marine ecosys- the phytoplankton growing area (18, 19). -
Cold Season Emissions Dominate the Arctic Tundra Methane Budget
Cold season emissions dominate the Arctic tundra methane budget Donatella Zonaa,b,1,2, Beniamino Giolic,2, Róisín Commaned, Jakob Lindaasd, Steven C. Wofsyd, Charles E. Millere, Steven J. Dinardoe, Sigrid Dengelf, Colm Sweeneyg,h, Anna Kariong, Rachel Y.-W. Changd,i, John M. Hendersonj, Patrick C. Murphya, Jordan P. Goodricha, Virginie Moreauxa, Anna Liljedahlk,l, Jennifer D. Wattsm, John S. Kimballm, David A. Lipsona, and Walter C. Oechela,n aDepartment of Biology, San Diego State University, San Diego, CA 92182; bDepartment of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom; cInstitute of Biometeorology, National Research Council, Firenze, 50145, Italy; dSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; eJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099; fDepartment of Physics, University of Helsinki, FI-00014 Helsinki, Finland; gCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80304; hEarth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305; iDepartment of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; jAtmospheric and Environmental Research, Inc., Lexington, MA 02421; kWater and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775-7340; lInternational Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775-7340; mNumerical Terradynamic Simulation -
Downloaded 09/28/21 01:47 AM UTC 8414 JOURNAL of CLIMATE VOLUME 27
15 NOVEMBER 2014 Z H A N G A N D L I 8413 A Simple Analytical Model for Understanding the Formation of Sea Surface Temperature Patterns under Global Warming* LEI ZHANG Department of Atmospheric Sciences, University of Hawai‘i at Manoa, Honolulu, Hawaii TIM LI Department of Atmospheric Sciences, University of Hawai‘i at Manoa, Honolulu, Hawaii, and Climate Dynamics Research Center/Earth System Modeling Center, International Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China (Manuscript received 13 May 2014, in final form 12 August 2014) ABSTRACT How sea surface temperature (SST) changes under global warming is critical for future climate projection because SST change affects atmospheric circulation and rainfall. Robust features derived from 17 models of phase 5 of the Coupled Model Intercomparison Project (CMIP5) include a much greater warming in high latitudes than in the tropics, an El Niño–like warming over the tropical Pacific and Atlantic, and a dipole pattern in the Indian Ocean. However, the physical mechanism responsible for formation of such warming patterns remains open. A simple theoretical model is constructed to reveal the cause of the future warming patterns. The result shows that a much greater polar, rather than tropical, warming depends primarily on present-day mean SST and surface latent heat flux fields, and atmospheric longwave radiation feedback associated with cloud change further enhances this warming contrast. In the tropics, an El Niño–like warming over the Pacific and Atlantic arises from a similar process, while cloud feedback resulting from different cloud regimes between east and west ocean basins also plays a role. -
What the Geological Record Tells Us About Our Present and Future Climate
Downloaded from http://jgs.lyellcollection.org/ by guest on October 2, 2021 Perspective Journal of the Geological Society https://doi.org/10.1144/jgs2020-239 | Vol. 178 | 2020 | jgs2020-239 Geological Society of London Scientific Statement: what the geological record tells us about our present and future climate Caroline H. Lear1*, Pallavi Anand2, Tom Blenkinsop1, Gavin L. Foster3, Mary Gagen4, Babette Hoogakker5, Robert D. Larter6, Daniel J. Lunt7, I. Nicholas McCave8, Erin McClymont9, Richard D. Pancost10, Rosalind E.M. Rickaby11, David M. Schultz12, Colin Summerhayes13, Charles J.R. Williams7 and Jan Zalasiewicz14 1 School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, CF10 3AT, UK 2 School of Environment Earth and Ecosystem Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK 3 National Oceanography Centre Southampton, University of Southampton, European Way, Southampton, SO14 3ZH, UK 4 Geography Department, Swansea University, Swansea, SA2 8PP, UK 5 Lyell Centre, Heriot Watt University, Research Avenue South, Edinburgh, EH14 4AP, UK 6 British Antarctic Survey, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK 7 School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK 8 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK 9 Department of Geography, Durham University, Lower Mountjoy, South Road, Durham, DH1 3LE, UK 10 School of Earth Sciences, University of Bristol, Wills Memorial -
Tundra Ecosystems Observed to Be CO2 Sources Due to Differential Amplification of the Carbon Cycle
Ecology Letters, (2013) 16: 1307–1315 doi: 10.1111/ele.12164 REVIEW AND SYNTHESIS Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle Abstract E. F. Belshe1* E. A. G. Schuur1 and Are tundra ecosystems currently a carbon source or sink? What is the future trajectory of tundra carbon B. M. Bolker2 fluxes in response to climate change? These questions are of global importance because of the vast quanti- 1 ties of organic carbon stored in permafrost soils. In this meta-analysis, we compile 40 years of CO2 flux Department of Biology, University observations from 54 studies spanning 32 sites across northern high latitudes. Using time-series analysis, of Florida, Gainesville, FL, 32611, we investigated if seasonal or annual CO2 fluxes have changed over time, and whether spatial differences USA in mean annual temperature could help explain temporal changes in CO flux. Growing season net CO 2Department of Mathematics and 2 2 uptake has definitely increased since the 1990s; the data also suggest (albeit less definitively) an increase in Statistics, McMaster University, Hamilton, ON, L8S 4K1, USA winter CO2 emissions, especially in the last decade. In spite of the uncertainty in the winter trend, we esti- mate that tundra sites were annual CO2 sources from the mid-1980s until the 2000s, and data from the last *Correspondence: 7 years show that tundra continue to emit CO2 annually. CO2 emissions exceed CO2 uptake across the E-mail: [email protected] range of temperatures that occur in the tundra biome. Taken together, these data suggest that despite increases in growing season uptake, tundra ecosystems are currently CO2 sources on an annual basis. -
Astronomical Troubles for the Astronomical Hypothesis of Ice Ages
Overviews Astronomical troubles for the astronomical hypothesis of ice ages Michael J. Oard The astronomical theory of ice ages based on the Milankovitch mechanism has become the ruling paradigm of Pleistocene paleoclimatology. It is even used to date sedimentation during the pre-Pleistocene period. However, there is little, if any, physical basis behind it. It does not provide a mechanism for the sudden onset of the ice- age cycle at 2.7 Ma, nor why the 41-kyr tilt cycle predominated between 2.7 and 0.9 Ma, why it shifted to the 100-kyr cycle at 0.9 Ma, how the very weak 100-kyr eccentricity cycle could even affect solar radiation, and why such weak changes in solar radiation could produce such dramatic climate changes as ice ages. The Milankovitch hypothesis was supposedly ‘proved’ by statistical matches with deep-sea cores obtained in the 1950s through to the 1970s. However, cores require very accurate dating, which was beyond the state of the art back then. The fact that the Milankovitch hypothesis is so strongly believed attested more to the reinforcement syndrome. he astronomical theory of the ice ages, also called the the theory, including deep-sea cores, ice cores, pollen cores TMilankovitch theory, has swept the climate community and lake sediment cores. Scientists have become so certain during the past 40 years. It is the new paleoclimate paradigm of the theory that they have ‘tuned’ or modified climatic for multiple ice ages repeating at regular intervals during data sets to the Milankovitch cycles. Needless to say, this the past 2.7 Ma of uniformitarian time. -
The Little Ice Age and the Coming of the Anthropocene
Asian Review of World Histories 2:1 (January 2014), 1-16 © 2014 The Asian Association of World Historians doi: http://dx.doi.org/10.12773/arwh.2014.2.1.001 The Little Ice Age and the Coming of the Anthropocene Ji-Hyung CHO Ewha Womans University Seoul, Korea (Republic of) [email protected] Abstract This paper examines the historical relationship between the Little Ice Age and the Anthropocene, which has not yet been studied. The Little Ice Age is the coldest multi-century period in the Holocene. The reforestation of huge farmlands, abandoned due to pandemics in the Americas, aggravated the cooling weather of the Little Ice Age. It was in the long and severe cold of the Little Ice Age that the transition from renewable energy to non-renewable energy was completed in Britain in the latter part of the eighteenth century, and when the pattern of linear growth in greenhouse gas concentrations was forged in the ecosystems of the Earth. The Little Ice Age forced humans to depend on fossil fuels while the advent of warmer and more stable climate in the Holocene enabled them to start agriculture in an energy revolution 11,000 years ago, thus making the coming of the Anthropocene possible. Keywords Anthropocene, Little Ice Age, greenhouse gas, wood, coal, fossil fuel, climate change In the last 11,000 years of human history, the Little Ice Age (LIA) is the coldest multi-century period and one of several global mil- Downloaded from Brill.com09/29/2021 01:24:16AM via free access 2 | ASIAN REVIEW OF WORLD HISTORIES 2:1 (JANUARY 2014) lennial-scale climate anomalies.1 The cooling climate and alpine glacial advances were recognized in many areas around the globe. -
Anthropocene
ANTHROPOCENE Perrin Selcer – University of Michigan Suggested Citation: Selcer, Perrin, “Anthropocene,” Encyclopedia of the History of Science (March 2021) doi: 10.34758/be6m-gs41 From the perspective of the history of science, the origin of the Anthropocene appears to be established with unusual precision. In 2000, Nobel laureate geochemist Paul Crutzen proposed that the planet had entered the Anthropocene, a new geologic epoch in which humans had become the primary driver of global environmental change. This definition should be easy to grasp for a generation that came of age during a period when anthropogenic global warming dominated environmental politics. The Anthropocene extends the primacy of anthropogenic change from the climate system to nearly every other planetary process: the cycling of life-sustaining nutrients; the adaptation, distribution, and extinction of species; the chemistry of the oceans; the erosion of mountains; the flow of freshwater; and so on. The human footprint covers the whole Earth. Like a giant balancing on the globe, each step accelerates the rate of change, pushing the planet out of the stable conditions of the Holocene Epoch that characterized the 11,700 years since the last glacial period and into a turbulent unknown with “no analog” in the planet’s 4.5 billion-year history. It is an open question how much longer humanity can keep up. For its advocates, the Anthropocene signifies more than a catastrophic regime shift in planetary history. It also represents a paradigm shift in how we know global change from environmental science to Earth System science. Explaining the rise the Anthropocene, therefore, requires grappling with claims of both ontological and epistemological rupture; that is, we must explore the entangled histories of the Earth and its observers. -
Connections Between Tropical and Polar Climate Change Lead Institution
PROJECT TITLE: Connections between tropical and polar climate change Lead Institution: University of Exeter Lead Supervisor: Prof James Screen, University of Exeter, Mathematics Co-Supervisor: Dr Thomas Bracegirdle, British Antarctic Survey Co-Supervisor: Dr Doug Smith, Met Office, Hadley Centre Project Enquiries: [email protected] Arctic sea ice has declined rapidly in recent decades, in California drought has been linked to Arctic sea- large part due to manmade global warming. These two ice loss. Arctic sea-ice loss induces changes in the images visualise the summer sea ice cover in 1984 and global energy balance, effecting tropical rainfall. 2016, obtained from satellite observations. The thickest ice Decreased tropical convection then drives a is coloured whitest. This dramatic loss of sea ice may trigger northward propagating Rossby wave-train, further climatic changes across the planet, as far away as forming a ridge in the North Pacific, which steers the tropics. wet tropical air masses away from California. Project Background Despite being thousands of kilometres apart, climatic changes in the tropical and polar regions of the planet are highly interconnected. In recent decades, the Arctic has warmed more than twice as fast as the global average – a phenomenon known as Arctic amplification. Emerging evidence suggests that a substantial portion of Arctic warming may be driven remotely from the tropics. Yet, the atmospheric and oceanic processes through which the tropics influence the Arctic are not fully understood. There is also increasing recognition that the effects of Arctic warming are not limited to the Arctic: what happens in the Arctic doesn’t stay in the Arctic (see this explainer video: https://bit.ly/2Csj1Yg). -
On the Causes of Mid-Pliocene Warmth and Polar Amplification
This is a repository copy of On the causes of mid-Pliocene warmth and polar amplification. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/88182/ Version: Accepted Version Article: Lunt, DJ, Haywood, AM, Schmidt, GA et al. (3 more authors) (2012) On the causes of mid-Pliocene warmth and polar amplification. Earth and Planetary Science Letters, 321-32 (8). 128 - 138. ISSN 0012-821X https://doi.org/10.1016/j.epsl.2011.12.042 © 2012, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ *Manuscript Click here to view linked References On the causes of mid-Pliocene warmth and polar amplification Daniel J.