Approaches in the Photosynthetic Production of Sustainable Fuels By
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Open 1-Dissertation NEK V12 4
The Pennsylvania State University The Graduate School Department of Chemical Engineering DEVELOPMENT OF BIOLOGICAL PLATFORM FOR THE AUTOTROPHIC PRODUCTION OF BIOFUELS A Dissertation in Chemical Engineering by Nymul Khan 2015 Nymul Khan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2015 The dissertation of Nymul Khan was reviewed and approved* by the following: Wayne Curtis Professor, Chemical Engineering Dissertation Advisor Chair of Committee Esther Gomez Assistant Professor, Chemical Engineering Manish Kumar Assistant Professor, Chemical Engineering John Regan Professor, Environmental Engineering Phillip E. Savage Walter L. Robb Family Endowed Chair Head of the Department of Chemical Engineering *Signatures are on file in the Graduate School iii ABSTRACT The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E’s (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country’s petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpa- e.energy.gov/ProgramsProjects/Electrofuels.aspx). -
Summaries of FY 2001 Activities Energy Biosciences
Summaries of FY 2001 Activities Energy Biosciences August 2002 ABSTRACTS OF PROJECTS SUPPORTED IN FY 2001 (NOTE: Dollar amounts are for a twelve-month period using FY 2001 funds unless otherwise stated) 1. U.S. Department of Agriculture Urbana, IL 61801 Biochemical and molecular analysis of a new control pathway in assimilate partitioning Daniel R. Bush, USDA-ARS and Department of Plant Biology, University of Illinois at Urbana- Champaign $72,666 (21 months) Plant leaves capture light energy from the sun and transform that energy into a useful form in the process called photosynthesis. The primary product of photosynthesis is sucrose. Generally, 50 to 80% of the sucrose synthesized is transported from the leaf to supply organic nutrients to many of the edible parts of the plant such as fruits, grains, and tubers. This resource allocation process is called assimilate partitioning and alterations in this system are known to significantly affect crop productivity. We recently discovered that sucrose plays a second vital role in assimilate partitioning by acting as a signal molecule that regulates the activity and gene expression of the proton-sucrose symporter that mediates long-distance sucrose transport. Research this year showed that symporter protein and transcripts turn-over with half-lives of about 2 hr and, therefore, sucrose transport activity and phloem loading are directly proportional to symporter transcription. Moreover, we showed that sucrose is a transcriptional regulator of symporter expression. We concluded from those results that sucrose-mediated transcriptional regulation of the sucrose symporter plays a key role in coordinating resource allocation in plants. 2. U. -
Bacterial Degradation of Isoprene in the Terrestrial Environment Myriam
Bacterial Degradation of Isoprene in the Terrestrial Environment Myriam El Khawand A thesis submitted to the University of East Anglia in fulfillment of the requirements for the degree of Doctor of Philosophy School of Environmental Sciences November 2014 ©This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derive there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. Abstract Isoprene is a climate active gas emitted from natural and anthropogenic sources in quantities equivalent to the global methane flux to the atmosphere. 90 % of the emitted isoprene is produced enzymatically in the chloroplast of terrestrial plants from dimethylallyl pyrophosphate via the methylerythritol pathway. The main role of isoprene emission by plants is to reduce the damage caused by heat stress through stabilizing cellular membranes. Isoprene emission from microbes, animals, and humans has also been reported, albeit less understood than isoprene emission from plants. Despite large emissions, isoprene is present at low concentrations in the atmosphere due to its rapid reactions with other atmospheric components, such as hydroxyl radicals. Isoprene can extend the lifetime of potent greenhouse gases, influence the tropospheric concentrations of ozone, and induce the formation of secondary organic aerosols. While substantial knowledge exists about isoprene production and atmospheric chemistry, our knowledge of isoprene sinks is limited. Soils consume isoprene at a high rate and contain numerous isoprene-utilizing bacteria. However, Rhodococcus sp. AD45 is the only terrestrial isoprene-degrading bacterium characterized in any detail. -
Metabolic Engineering of Escherichia Coli for Natural Product Biosynthesis
Trends in Biotechnology Special Issue: Metabolic Engineering Review Metabolic Engineering of Escherichia coli for Natural Product Biosynthesis Dongsoo Yang,1,4 Seon Young Park,1,4 Yae Seul Park,1 Hyunmin Eun,1 and Sang Yup Lee1,2,3,∗ Natural products are widely employed in our daily lives as food additives, Highlights pharmaceuticals, nutraceuticals, and cosmetic ingredients, among others. E. coli has emerged as a prominent host However, their supply has often been limited because of low-yield extraction for natural product biosynthesis. from natural resources such as plants. To overcome this problem, metabolically Escherichia coli Improved enzymes with higher activity, engineered has emerged as a cell factory for natural product altered substrate specificity, and product biosynthesis because of many advantages including the availability of well- selectivity can be obtained by structure- established tools and strategies for metabolic engineering and high cell density based or computer simulation-based culture, in addition to its high growth rate. We review state-of-the-art metabolic protein engineering. E. coli engineering strategies for enhanced production of natural products in , Balancing the expression levels of genes together with representative examples. Future challenges and prospects of or pathway modules is effective in natural product biosynthesis by engineered E. coli are also discussed. increasing the metabolic flux towards target compounds. E. coli as a Cell Factory for Natural Product Biosynthesis System-wide analysis of metabolic Natural products have been widely used in food and medicine in human history. Many of these networks, omics analysis, adaptive natural products have been developed as pharmaceuticals or employed as structural backbones laboratory evolution, and biosensor- based screening can further increase for the development of new drugs [1], and also as food and cosmetic ingredients. -
Isoprene Synthase and Polynucleotide Encoding Same, and Method for Producing Isoprene Monomer
(19) TZZ Z_T (11) EP 2 857 509 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 08.04.2015 Bulletin 2015/15 C12N 15/09 (2006.01) C08F 36/08 (2006.01) C12N 1/21 (2006.01) C12N 9/88 (2006.01) (2006.01) (21) Application number: 13796298.1 C12P 5/02 (22) Date of filing: 12.03.2013 (86) International application number: PCT/JP2013/056866 (87) International publication number: WO 2013/179722 (05.12.2013 Gazette 2013/49) (84) Designated Contracting States: • FUKUSHIMA, Yasuo AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Kodaira-shi GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Tokyo 187-8531 (JP) PL PT RO RS SE SI SK SM TR • YOKOYAMA, Keiichi Designated Extension States: Kawasaki-shi BA ME Kanagawa 210-8681 (JP) • NISHIO, Yosuke (30) Priority: 30.05.2012 JP 2012123724 Kawasaki-shi 30.05.2012 JP 2012123728 Kanagawa 210-8681 (JP) • TAJIMA, Yoshinori (71) Applicants: Kawasaki-shi • Bridgestone Corporation Kanagawa 210-8681 (JP) Tokyo 104-8340 (JP) • MIHARA, Yoko • Ajinomoto Co., Inc. Kawasaki-shi Tokyo 104-8315 (JP) Kanagawa 210-8681 (JP) • NAKATA, Kunio (72) Inventors: Kawasaki-shi • HAYASHI, Yasuyuki Kanagawa 210-8681 (JP) Kodaira-shi Tokyo 187-8531 (JP) (74) Representative: Grünecker Patent- und • HARADA, Minako Rechtsanwälte Kodaira-shi PartG mbB Tokyo 187-8531 (JP) Anwaltssozietät • TAKAOKA, Saaya Leopoldstrasse 4 Kodaira-shi 80802 München (DE) Tokyo 187-8531 (JP) (54) ISOPRENE SYNTHASE AND POLYNUCLEOTIDE ENCODING SAME, AND METHOD FOR PRODUCING ISOPRENE MONOMER (57) The present invention provides means useful for (b) a polynucleotide that comprises a nucleotide se- establishing an excellent isoprene monomer production quence having 90% or more identity to the nucleotide system. -
(12) United States Patent (10) Patent No.: US 8,535,916 B2 Del Cardayre Et Al
US008535916B2 (12) United States Patent (10) Patent No.: US 8,535,916 B2 Del Cardayre et al. (45) Date of Patent: Sep. 17, 2013 (54) MODIFIEDMICROORGANISMS AND USES (51) Int. Cl. THEREFOR CI2P 7/64 (2006.01) (52) U.S. Cl. (75) Inventors: Stephen B. Del Cardayre, Belmont, CA USPC .......................................................... 435/134 (US); Shane Brubaker, Oakland, CA (58) Field of Classification Search (US); Jay D. Keasling, Berkeley, CA USPC .......................................................... 435/134 (US) See application file for complete search history. (73) Assignee: LS9, Inc., South San Francisco, CA (US) (56) References Cited (*) Notice: Subject to any disclaimer, the term of this PUBLICATIONS patent is extended or adjusted under 35 IPER PCT/US2007/003736 (2007).* U.S.C. 154(b) by 497 days. Ohmiya et al. Journal of Bioscience and Bioengineering,95(6): 549 561 (2003).* (21) Appl. No.: 12/526,209 * cited by examiner (22) PCT Filed: Feb. 13, 2007 Primary Examiner — Tekchand Saidha (86). PCT No.: PCT/US2007/003736 (74) Attorney, Agent, or Firm — Brigitte A. Hajos S371 (c)(1), (57) ABSTRACT (2), (4) Date: Dec. 6, 2010 The invention provides a genetically modified microorgan ism that acquires the ability to consume a renewable feed (87) PCT Pub. No.: WO2008/100251 stock (such as cellulose) and produce products. This organ PCT Pub. Date: Aug. 21, 2008 ism can be used to ferment cellulose, one of the most abundant renewable resources available, and produce prod (65) Prior Publication Data uctS. US 2011 FOO97769 A1 Apr. 28, 2011 8 Claims, 1 Drawing Sheet U.S. Patent Sep. 17, 2013 US 8,535,916 B2 Anchor Peptide - Scaffoldin US 8,535,916 B2 1. -
Genetic Variants in Root Architecture-Related Genes in A
Prince et al. BMC Genomics (2015) 16:132 DOI 10.1186/s12864-015-1334-6 RESEARCH ARTICLE Open Access Genetic variants in root architecture-related genes in a Glycine soja accession, a potential resource to improve cultivated soybean Silvas J Prince1†, Li Song1†, Dan Qiu1, Joao V Maldonado dos Santos1,2, Chenglin Chai1, Trupti Joshi2,3, Gunvant Patil1, Babu Valliyodan1, Tri D Vuong1, Mackensie Murphy1, Konstantinos Krampis4, Dominic M Tucker4, Ruslan Biyashev4, Anne E Dorrance5, MA Saghai Maroof4, Dong Xu2,3, J Grover Shannon1 and Henry T Nguyen1,2* Abstract Background: Root system architecture is important for water acquisition and nutrient acquisition for all crops. In soybean breeding programs, wild soybean alleles have been used successfully to enhance yield and seed composition traits, but have never been investigated to improve root system architecture. Therefore, in this study, high-density single-feature polymorphic markers and simple sequence repeats were used to map quantitative trait loci (QTLs) governing root system architecture in an inter-specific soybean mapping population developed from a cross between Glycine max and Glycine soja. Results: Wild and cultivated soybean both contributed alleles towards significant additive large effect QTLs on chromosome 6 and 7 for a longer total root length and root distribution, respectively. Epistatic effect QTLs were also identified for taproot length, average diameter, and root distribution. These root traits will influence the water and nutrient uptake in soybean. Two cell division-related genes (Dtypecyclinand auxin efflux carrier protein) with insertion/ deletion variations might contribute to the shorter root phenotypes observed in G. soja compared with cultivated soybean. -
KNIGHT-DISSERTATION-2014.Pdf
Copyright by Rebecca Anne Knight 2014 The Dissertation Committee for Rebecca Anne Knight Certifies that this is the approved version of the following dissertation: Coordinated Response and Regulation of Carotenogenesis in Thermosynechococcus elongatus (BP-1): Implications for Commercial Application Committee: Jerry J. Brand, Supervisor Hal S. Alper, Co-Supervisor Enamul Huq Robert K. Jansen David R. Nobles Coordinated Response and Regulation of Carotenogenesis in Thermosynechococcus elongatus (BP-1): Implications for Commercial Application by Rebecca Anne Knight, B.A., B.S.E., M.S.E. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin December 2014 Dedication Dedicated to my parents, who taught me to always work hard, and never stop learning. Acknowledgements I think there is a unique experience that people like myself undergo when working in industry then returning to academia. Very little is taken for granted on campus, so much to learn and take advantage of knowledge-wise. Then there is the flip side; long hours in the lab, the struggle to find your niche and contribution to the scientific community, and a much tighter budget both for research and personal life. I am here to say that without my family and their encouragement and sacrifices I would not have made it. My loving husband, who’s been my biggest supporter, and my wonderful step-daughters, whom I have dragged to campus numerous times and have essentially lived in my shoes for six whole years. -
European Patent Office U.S. Patent and Trademark Office
EUROPEAN PATENT OFFICE U.S. PATENT AND TRADEMARK OFFICE CPC NOTICE OF CHANGES 89 DATE: JULY 1, 2015 PROJECT RP0098 The following classification changes will be effected by this Notice of Changes: Action Subclass Group(s) Symbols deleted: C12Y 101/01063 C12Y 101/01128 C12Y 101/01161 C12Y 102/0104 C12Y 102/03011 C12Y 103/01004 C12Y 103/0103 C12Y 103/01052 C12Y 103/99007 C12Y 103/9901 C12Y 103/99013 C12Y 103/99021 C12Y 105/99001 C12Y 105/99002 C12Y 113/11013 C12Y 113/12012 C12Y 114/15002 C12Y 114/99028 C12Y 204/01119 C12Y 402/01052 C12Y 402/01058 C12Y 402/0106 C12Y 402/01061 C12Y 601/01025 C12Y 603/02027 Symbols newly created: C12Y 101/01318 C12Y 101/01319 C12Y 101/0132 C12Y 101/01321 C12Y 101/01322 C12Y 101/01323 C12Y 101/01324 C12Y 101/01325 C12Y 101/01326 C12Y 101/01327 C12Y 101/01328 C12Y 101/01329 C12Y 101/0133 C12Y 101/01331 C12Y 101/01332 C12Y 101/01333 CPC Form – v.4 CPC NOTICE OF CHANGES 89 DATE: JULY 1, 2015 PROJECT RP0098 Action Subclass Group(s) C12Y 101/01334 C12Y 101/01335 C12Y 101/01336 C12Y 101/01337 C12Y 101/01338 C12Y 101/01339 C12Y 101/0134 C12Y 101/01341 C12Y 101/01342 C12Y 101/03043 C12Y 101/03044 C12Y 101/98003 C12Y 101/99038 C12Y 102/01083 C12Y 102/01084 C12Y 102/01085 C12Y 102/01086 C12Y 103/01092 C12Y 103/01093 C12Y 103/01094 C12Y 103/01095 C12Y 103/01096 C12Y 103/01097 C12Y 103/0701 C12Y 103/08003 C12Y 103/08004 C12Y 103/08005 C12Y 103/08006 C12Y 103/08007 C12Y 103/08008 C12Y 103/08009 C12Y 103/99032 C12Y 104/01023 C12Y 104/01024 C12Y 104/03024 C12Y 105/01043 C12Y 105/01044 C12Y 105/01045 C12Y 105/03019 C12Y 105/0302 -
Molecular Ecology of Marine Isoprene Degradation Antonia Johnston University of East Anglia
Molecular Ecology of Marine Isoprene Degradation Antonia Johnston University of East Anglia 2014 A thesis submitted to the School of Environmental Sciences in fulfilment of the requirements for the degree of Doctor of Philosophy University of East Anglia, Norwich, UK September 2014 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. Declaration I declare that the content of this thesis entitled “Molecular Ecology of Marine Isoprene Degradation” was undertaken and completed by myself under the supervision of Professor J.C.Murrell, unless otherwise acknowledged and has not been submitted in support of an application for another degree or qualification in this or any other university or institution Antonia Johnston Acknowledgements I would like to thank my primary supervisor, Professor J.C.Murrell, for his help and guidance throughout my PhD. I would also like to thank past and present members of the Murrell lab at the University of Warwick and the University of East Anglia, especially Myriam El Khawand and Dr. Andrew Crombie for their help and collaboration on this project. I thank my secondary supervisor Dr. Jonathon Todd for his advice. I would especially like to thank our collaborators on this project, including Dr. Terry McGenity at the University of Essex, Professor Dan Arp at Oregon State University, Capt. Collett at the 47th Regiment Royal Horse Artillery for assistance with sampling, and Sue Slade at the University of Warwick proteomics facility. -
Reconstruction and Comparison of the Metabolic Potential of Cyanobacteria Cyanothece Sp
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Chemical and Biomolecular Engineering -- All Chemical and Biomolecular Engineering, Faculty Papers Department of 2012 Reconstruction and Comparison of the Metabolic Potential of Cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803 Rajib Saha Pennsylvania State University, [email protected] Alex T. Verseput The Pennsylvania State University Bertram M. Berla Washington University Thomas J. Mueller Pennsylvania State University Himadri B. Pakrasi Washington University See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/chemengall Saha, Rajib; Verseput, Alex T.; Berla, Bertram M.; Mueller, Thomas J.; Pakrasi, Himadri B.; and Maranas, Costas D., "Reconstruction and Comparison of the Metabolic Potential of Cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803" (2012). Chemical and Biomolecular Engineering -- All Faculty Papers. 48. https://digitalcommons.unl.edu/chemengall/48 This Article is brought to you for free and open access by the Chemical and Biomolecular Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Chemical and Biomolecular Engineering -- All Faculty Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Rajib Saha, Alex T. Verseput, Bertram M. Berla, Thomas J. Mueller, Himadri B. Pakrasi, and Costas D. Maranas This article is available at DigitalCommons@University -
Elucidating the Biochemical Wizardry of Triterpene Metabolism in Botroycoccus Braunii
University of Kentucky UKnowledge Theses and Dissertations--Plant and Soil Sciences Plant and Soil Sciences 2011 ELUCIDATING THE BIOCHEMICAL WIZARDRY OF TRITERPENE METABOLISM IN BOTROYCOCCUS BRAUNII Thomas Daniel Niehaus University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Niehaus, Thomas Daniel, "ELUCIDATING THE BIOCHEMICAL WIZARDRY OF TRITERPENE METABOLISM IN BOTROYCOCCUS BRAUNII" (2011). Theses and Dissertations--Plant and Soil Sciences. 1. https://uknowledge.uky.edu/pss_etds/1 This Doctoral Dissertation is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Plant and Soil Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies.