On the Cheek-Bones in Teleostome Fishes by T

Total Page:16

File Type:pdf, Size:1020Kb

On the Cheek-Bones in Teleostome Fishes by T ON THE CHEEK-BONES IN TELEOSTOME FISHES BY T. S. WESTOLL, B.Sc., PH.D. Department of Zoology, University College, London THIS study was prompted by observations on the cheek-bones of certain Palaeoniscid and Holostean Fishes, which suggested that a more definite answer could now be given to the unsatisfactory problem of the homology of the bones of the cheek in certain Fishes. The examination of further material confirmed this view, and the body of evidence collected, though no doubt very incomplete, seems to be sufficient for a coherent account of the fate of certain cheek-bones during the long geological history of the Fishes. While gathering this evidence during the past year or two the writer has made observations on fossil Fishes belonging to many museums and institutes: in particular he desires to thank Mr C. Forster Cooper, M.A. (University Museum of Zoology, Cambridge), Mr T. Russell Goddard, M.Sc., F.L.S. (Hancock Museum, Newcastle-on-Tyne), Dr J. Piveteau (Paris), Dr A. C. Stephen (Royal Scottish Museum, Edinburgh), and Prof. D'Arcy W. Thompson (University Museum of Zoology, St Andrews) for allowing him to study and borrow so much material. Prof. E. A. Stensi6, Dr G. Save-Soderbergh, Dr H. Aldinger and Dr E. Nielsen were very kind in showing me much pertinent material, some of it yet unpublished, which forms part of the splendid collec- tions from East Greenland and Spitzbergen preserved in the Riksmuseum, Stockholm, and at Upsala, and I wish to thank them for these and many other courtesies. The work was begun while investigating the English Permian Palaeoniscids under the supervision of Prof. G. Hickling, F.G.S., to whom I am deeply indebted for constant kindness and encouragement. It has been continued in London, and I desire to thank Dr E. I. White, F.G.S., and the authorities of the Natural History Museum for allowing me the full use of the magnificent fossil fish collections there. I can only acknowledge in small part the great debt which I owe to Prof. D. M. S. Watson, F.R.S., who has continuously translated his interest in the writer's palaeontological research into active help and acute criticism. Finally, I wish to thank the Department of Scientific and Industrial Research for a Senior Research Award, without which this and other work could not have been attempted. STATEMENT OF PROBLEM The determination of the true homologue of the mammalian squamosal in the very primitive Tetrapods was for long a vexed question, and only in recent years has it been clearly demonstrated that the bone is represented in the cheek as a dermal plate associated, in the most primitive forms, with the On the Cheek-Bones in Teleostome Fishes 363 horizontal part of the jugal canal or its equivalent "slime-groove" (nomen- clature stabilised by Save-S6derbergh, 1933, p. 7). The equivalent of this bone in a Rhipidistian such as Osteolepis is easily distinguished, and has, in general, the same geographical and anatomical relationships. This provides us with a starting-point for a discussion of the piscine cheek. It will be unnecessary to discuss here the historical differences of opinion about the position of the squamosal in lower Tetrapods and primitive Fishes, as we are concerned with the fate of the squamosal, quadratojugal and pre- opercular, as defined, for example in Save-Soderbergh's account of Osteolepis (op. cit.). Since the recognition of the true squamosal in Fishes there have been few definite opinions expressed on the fate of that bone in the "higher" Fishes. Stensi6 (1921, p. 139), however, in a characteristically cautious passage, has stated most of the possibilities, according to his views on the nature of the Rhipidistian squamosal. He suggests that the squamosal in Crossopterygians may really be derived from a number of rudiments fused together, and goes on: " One may venture the supposition that all the homologues of the elements forming the squamosal in the Rhipidistids have never been fused with one another into one bone-plate in the Actinopterygians, but that they were either distributed among the surrounding bones, or with partial modifications had been fused into certain larger units which afterwards preserved their mutual independence or else were finally more and more reduced. In the Palaeoniscids, Platysomids and Catopterids it is conceivable that the original squamosal elements were divided up between the maxillary and the pre-opercular, and that they have even provided material for the so-called post-orbitals. In certain Protospondyli, such as the Semionotids and Eugnathids, they all probably provided material for the majority of the so-called post-orbitals (suborbitals); the ventral one, or some of them, can probably, as we have seen, be considered as corresponding to the quadratojugal: in the Teleosts the homologues of the squamosal elements usually seem to be reduced. Some- times, however, it seems possible that parts of them may persist in the plates of the infra-orbital chain, in the cases when these plates are much developed and cover the cheek between the orbit and the pre-opercular to any great extent." Save-Soderbergh (1934, p. 14), when comparing Crossopterygians with Actinopterygians, has adopted a very interesting point of view. "The dermal bones of the cheeks are certainly not simply homologous, or even easily com- parable in the two groups.... After all, it seems perhaps most probable that the pattern of dermal bones of the Choanata and that of the Actinopterygians have evolved quite independently from ancestors with either a very high number of bones-a mosaic-or with a more or less undivided dermal covering of the head." The writer's work on fossil Fishes has convinced him that the ancestors of the Choanata and Actinopterygians had, in times not much earlier than 364 T. S. Westoll the first known appearance of those groups, a mosaic of dermal bones covering the head, and that the sensory organs of the lateral line system were each related to a dermal bone. The examination of Dipnoans and Crossopterygians has made it clear to him, moreover, that many of the larger bones found in the skull of known Fishes are due to coalescence of the lateral line units, with growth of these elements at the expense of the "anamestic" bones between (Westoll, 1936), and not to indiscriminate fusion of plates of the original mosaic. The sensory organs of the lateral line system appear to the author to be of very great importance in determining the position of dermal bones in the primitive Fishes, and have allowed a new interpretation of the cheek to be made. In the following account the conditions in the various groups of Fishes will be described, followed by a discussion of the results in the light of what has been said above. CROSSOPTERYGII The cheek-bones of Osteolepis correspond so closely with those of an Ichthyostegid or Eogyrinus that there can be no doubt of individual homo- logies (fig. 1 A and B). The main morphological distinctions are: (i) the binding of the cheek-bones to the skull roof in Tetrapods, and (ii) the broad contact between squamosal and maxillary in Osteolepis (not found, however, in some Rhipidistia). The latter point is not of great importance, as it is probably due only to the excessive backward extension of the cheek in Osteolepis. The important anatomical similarity is the fact that the squamosal is pierced by the jugal canal of the lateral line system: in Osteolepis the squamosal is also associated with the dorsal part of the vertical cheek-line of pit-organs. The jugal canal passes backwards into the short vertical pre-opercular canal, and passes for- wards to anastomose with the infra-orbital canal in the jugal. The distribution of the other bones is well shown in fig. 1 B. This typical arrangement is only slightly modified in most other Rhipidistia (e.g. Diplopterax, Thursius, Mega- lichthys, Eusthenopteron, etc.'), but frequently a continuous sheet of cosmine covers squamosal and quadratojugal, although the bones are separate (cf. Westoll, 1936). The conditions in Holoptychius, however, are more complex (fig. 1 C). The structure can be made out admirably in H. flemingi from Dura Den, and the figure is derived from specimens at St Andrews. The cheek is comparatively much longer than in Osteolepis, and, probably because of the large size of the squamosal even in that fish, it appears that a single growth centre proved inadequate to cover a larger cheek. The consequence is that there are two squamosal bones, and two small bones have been necessary to fill space: these are of the type for which the author has proposed the name anamestic (Westoll, loc. cit.). The pre-opercular has been pushed backwards and has divided the bones of the opercular folds into two series. The structure will not be further 1 Author's observations. On the Cheek-Bones in Teleostome Fishes 365 c Fig. 1. Fig. 2. Fig. 1. A. Cheek of Ichthyostegid, mainly from Ichthyosteqopsis wimani S.-S. After Save- Soderbergh. B. Cheek of O8teolepis macrolepidotu8 Ag. After Save-Soderbergh. C. Cheek of Holoptychiusflemingi. Drawn from material at St Andrew's University Museum ofZoology. Fig. 2. A. Cheek of Whiteia (Lower Trias, Madagascar). After Moy-Thomas, additions by author. B. Cheek of Wimania sinuosa Stensio. After Stensio. C. Cheek of Axelia robusta Stensio. After Stensio. 366 T. S. Westoll described here, as Dr G. Save-Soderbergh is to deal with the structure of Holoptychius in detail. Turning now to the Coelacanths, we find more divergence. The cheek of the Devonian forms is, unfortunately, unknown. In most other Coelacanths from various geological formations the cheek has quite a characteristic aspect.
Recommended publications
  • Cryptoclidid Plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert
    Journal of Vertebrate Paleontology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujvp20 Cryptoclidid plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert Rodrigo A. Otero , Jhonatan Alarcón-Muñoz , Sergio Soto-Acuña , Jennyfer Rojas , Osvaldo Rojas & Héctor Ortíz To cite this article: Rodrigo A. Otero , Jhonatan Alarcón-Muñoz , Sergio Soto-Acuña , Jennyfer Rojas , Osvaldo Rojas & Héctor Ortíz (2020): Cryptoclidid plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert, Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2020.1764573 To link to this article: https://doi.org/10.1080/02724634.2020.1764573 View supplementary material Published online: 17 Jul 2020. Submit your article to this journal Article views: 153 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology e1764573 (14 pages) © by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2020.1764573 ARTICLE CRYPTOCLIDID PLESIOSAURS (SAUROPTERYGIA, PLESIOSAURIA) FROM THE UPPER JURASSIC OF THE ATACAMA DESERT RODRIGO A. OTERO,*,1,2,3 JHONATAN ALARCÓN-MUÑOZ,1 SERGIO SOTO-ACUÑA,1 JENNYFER ROJAS,3 OSVALDO ROJAS,3 and HÉCTOR ORTÍZ4 1Red Paleontológica Universidad de Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile, [email protected]; 2Consultora Paleosuchus Ltda., Huelén 165, Oficina C, Providencia, Santiago, Chile; 3Museo de Historia Natural y Cultural del Desierto de Atacama. Interior Parque El Loa s/n, Calama, Región de Antofagasta, Chile; 4Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario, Concepción, Región del Bío Bío, Chile ABSTRACT—This study presents the first plesiosaurs recovered from the Jurassic of the Atacama Desert that are informative at the genus level.
    [Show full text]
  • Université Du Québec
    UNIVERSITÉ DU QUÉBEC PRÉCISIONS SUR L'ANATOMIE DE L'OSTÉOLÉPIFORME EUSTHENOPTERON FOORDI DU DÉVONIEN SUPÉRIEUR DE MIGUASHA, QUÉBEC MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À RIMOUSKI Comme exigence partielle du programme de Maîtrise en Gestion de la Faune et de ses Habitats PAR JOËL LEBLANC Août 2005 UNIVERSITÉ DU QUÉBEC À RIMOUSKI Service de la bibliothèque Avertissement La diffusion de ce mémoire ou de cette thèse se fait dans le respect des droits de son auteur, qui a signé le formulaire « Autorisation de reproduire et de diffuser un rapport, un mémoire ou une thèse ». En signant ce formulaire, l’auteur concède à l’Université du Québec à Rimouski une licence non exclusive d’utilisation et de publication de la totalité ou d’une partie importante de son travail de recherche pour des fins pédagogiques et non commerciales. Plus précisément, l’auteur autorise l’Université du Québec à Rimouski à reproduire, diffuser, prêter, distribuer ou vendre des copies de son travail de recherche à des fins non commerciales sur quelque support que ce soit, y compris l’Internet. Cette licence et cette autorisation n’entraînent pas une renonciation de la part de l’auteur à ses droits moraux ni à ses droits de propriété intellectuelle. Sauf entente contraire, l’auteur conserve la liberté de diffuser et de commercialiser ou non ce travail dont il possède un exemplaire. 11 TABLE DES MATIÈRES TABLE DES MATIÈRES .... ..... ............................. .. ...... .. .... .. .... ........... ... ............................. .ii LISTE DES TABLEAUX .. ............
    [Show full text]
  • Tetrapods, Amphibians, and Life on Land
    Department of Geological Sciences | Indiana University Dinosaurs and their relatives (c) 2015, P. David Polly Geology G114 Strolling through life Tetrapods, amphibians, and life on land Tetrapods - the clade of four- limbed terrestrial vertebrates Living tetrapod groups: * amphibians * mammals (including humans) * lizards and snakes * crocodilians * birds Eurypos , early Permian temnospondyl (painting by Douglas Henderson, 1990) Department of Geological Sciences | Indiana University Dinosaurs and their relatives (c) 2015, P. David Polly Geology G114 Lobe-finned fish (Sarcopterygia) Living coelacanth Fossil sarcopterygians Late Cretaceous (ca. 65 mya) Carboniferous (ca. 300 mya) Department of Geological Sciences | Indiana University Dinosaurs and their relatives (c) 2015, P. David Polly Geology G114 Comparison of pectoral fins Actinopterygian Sarcopterygian (ray finned) (lobe finned) Scapulocoracoid Humerus Ulna Radius Department of Geological Sciences | Indiana University Dinosaurs and their relatives (c) 2015, P. David Polly Geology G114 Coelacanth pectoral fins Department of Geological Sciences | Indiana University Dinosaurs and their relatives (c) 2015, P. David Polly Geology G114 Ancestral characteristics of living tetrapods • Pelvic and pectoral girdles • Forelimb with humerus, radius, and ulna bones • Hindlimb with femur, tibia, and fibula bones • five digits on the feet • sprawling posture • undulating locomotion • skull with no fenestra Department of Geological Sciences | Indiana University Dinosaurs and their relatives (c) 2015, P. David Polly Geology G114 Tetrapoda: vertebrates more closely related to living Phylogeny of Bony Fish amphibians and amniotes than to their nearest living relatives Fossil taxa coelocanths and Fish-like amphibian-like lung fish Tetrapods Tetrapods Actinopterygia Coelocanths Dipnoans (lungfish) Osteolepis Eusthenopteron Pandericthyes Acanthostega Icthyostega tetrapods Derived Tetrapoda Sarcopterygia Osteichthyes After Coates and Ruta, 2007.
    [Show full text]
  • 35-51 New Data on Pleuropholis Decastroi (Teleostei, Pleuropholidae)
    Geo-Eco-Trop., 2019, 43, 1 : 35-51 New data on Pleuropholis decastroi (Teleostei, Pleuropholidae), a “pholidophoriform” fish from the Lower Cretaceous of the Eurafrican Mesogea Nouvelles données sur Pleuropholis decastroi (Teleostei, Pleuropholidae), un poisson “pholidophoriforme” du Crétacé inférieur de la Mésogée eurafricaine Louis TAVERNE 1 & Luigi CAPASSO 2 Résumé: Le crâne et le corps de Pleuropholis decastroi, un poisson fossile de l’Albien (Crétacé inférieur) du sud de l’Italie, sont redécrits en détails. P. decastroi diffère des autres espèces du genre par ses deux nasaux en contact médian et qui séparent complètement le dermethmoïde ( = rostral) des frontaux. Avec son maxillaire extrêmement élargi qui couvre la mâchoire inférieure et son supramaxillaire fortement réduit, P. decastroi semble plus nettement apparenté avec Pleuropholis cisnerosorum, du Jurassique supérieur du Mexique, qu’avec les autres espèces du genre. Par ses mâchoires raccourcies et ses nombreux os orbitaires, Pleuropholis apparaît également comme le genre le plus spécialisé de la famille. La position systématique des Pleuropholidae au sein du groupe des « pholidophoriformes » est discutée. Mots-clés: Pleuropholis decastroi, Albien, Italie du sud, Pleuropholis, Pleuropholidae, “Pholidophoriformes”, ostéologie, position systématique. Abstract: The skull and the body of Pleuropholis decastroi, a fossil fish from the marine Albian (Lower Cretaceous) of southern Italy, are re-described in details. P. decastroi differs from the other species of the genus by their two nasals that are in contact along the mid-line, completely separating the dermethmoid (= rostral) from the frontals. With its extremely broadened maxilla that covers the lower jaw and its strongly reduced supramaxilla, P. decastroi seems more closely related to Pleuropholis cisnerosorum, from the Upper Jurassic of Mexico, than to the other species of the genus.
    [Show full text]
  • A New Osteolepidid Fish From
    Rea. West. Aust. MU8. 1985, 12(3): 361-377 ANew Osteolepidid Fish from the Upper Devonian Gogo Formation, Western Australia J.A. Long* Abstract A new osteolepidid crossopterygian, Gogonasus andrewsi gen. et sp. nov., is des­ cribed from a single fronto-ethmoidal shield and associated ethmosphenoid, from the Late Devonian (Frasnian) Gogo Formation, Western Australia. Gogonasus is is distinguished from other osteolepids by the shape and proportions of the fronto­ ethmoidal shield, absence of palatal fenestrae, well developed basipterygoid pro­ cesses and moderately broad parasphenoid. The family Osteolepididae is found to be paraphyletic, with Gogonasus being regarded as a plesiomorphic osteolepidid at a similar level of organisation to Thursius. Introduction Much has been published on the well-preserved Late Devonian fish fauna from the Gogo Formation, Western Australia, although to date all the papers describing fish have been on placoderms (Miles 1971; Miles and Dennis 1979; Dennis and Miles 1979-1983; Young 1984), palaeoniscoids (Gardiner 1973, 1984; Gardiner and Bartram 1977) or dipnoans (Miles 1977; Campbell and Barwick 1982a, 1982b, 1983, 1984a). This paper describes the only osteolepiform from the fauna (Gardiner and Miles 1975), a small snout with associated braincase, ANU 21885, housed in the Geology Department, Australian National University. The specimen, collected by the Australian National University on the 1967 Gogo Expedition, was prepared by Dr S.M. Andrews (Royal Scottish Museum) and later returned to the ANU. Onychodus is the only other crossopterygian in the fauna. In its proportions and palatal structure the new specimen provides some additional new points of the anatomy of osteolepiforms. Few Devonian crossopte­ rygians are known from Australia, and so the specimen is significant in having resemblances to typical Northern Hemisphere species.
    [Show full text]
  • The Scales of Mesozoic Actinopterygians
    Mesozoic Fishes – Systematics and Paleoecology, G. Arratia & G. Viohl (eds.): pp. 83-93, 6 figs. © 1996 by Verlag Dr. Friedrich Pfeil, München, Germany – ISBN 3-923871–90-2 The scales of Mesozoic actinopterygians Hans-Peter SCHULTZE Abstract Cycloid scales (elasmoid scales with circuli) are a unique character of teleosts above the level of Pholidophorus and Pholidophoroides. Cycloid scales have two layers. A bony layer, usually acellular, is superimposed on a basal plate composed of partially mineralized layers of plywoodlike laminated collagen fibres. The tissue of the basal layer is refered to here as elasmodin. Basal teleosts (sensu PATTERSON 1973) possess rhombic scales with a bony base overlain by ganoin (lepidosteoid ganoid scale). Amioid scales (elasmoid scales with longitudinally to radially arranged ridges or rods on the overlapped field) are found within halecomorphs. This scale type evolved more than once within primitive actinopterygians and other osteichthyan fishes. It may have even developed twice within halecomorphs, in Caturidae and Amiidae, from rhombic scales of lepidosteoid type. Some basal genera of halecomorphs show remains of a dentine layer between ganoin and bone that is characteristic of actinopterygians below the halecostome level. The Semionotidae placed at the base of the Halecostomi, exhibit scale histology transitional between the palaeoniscoid and lepidosteoid scale type. Introduction Actinopterygians, from primitive Coccolepididae to advanced teleosts, are represented in the Solnhofen lithographic limestone. These are fishes with rhombic and round scales. Ganoid scales of the lepidosteoid type are found in the following fishes: semionotid Lepidotes and Heterostrophus, macrosemiids Histionotus, Macrosemius, Notagogus and Propterus, ophiopsid Ophiopsis, caturids Furo and Brachyichthys, aspido- rhynchid Belonostomus, pleuropholid Pleuropholis, and pholidophorid Pholidophorus.
    [Show full text]
  • Vertebrate Remains Are Relatively Well Known in Late Jurassic Deposits of Western Cuba. the Fossil Specimens That Have Been Coll
    Paleontología Mexicana, 3 (65): 24-39 (versión impresa), 4: 24-39 (versión electrónica) Catalogue of late jurassiC VerteBrate (pisCes, reptilian) speCiMens froM western CuBa Manuel Iturralde-Vinent ¹, *, Yasmani Ceballos Izquierdo ² A BSTRACT Vertebrate remains are relatively well known in Late Jurassic deposits of western Cuba. The fossil specimens that have been collected so far are dispersed in museum collections around the world and some have been lost throughout the years. A reas- sessment of the fossil material stored in some of these museums’ collections has generated new data about the fossil-bearing lo- calities and greatly increased the number of formally identified specimens. The identified bone elements and taxa suggest a high vertebrate diversity dominated by actinopterygians and reptiles, including: long-necked plesiosaurs, pliosaurs, metriorhynchid crocodilians, pleurodiran turtles, ichthyosaurs, pterosaurs, and sauropod dinosaurs. This assemblage is commonly associated with unidentified remains of terrestrial plants and rare microor- ganisms, as well as numerous marine invertebrates such as am- monites, belemnites, pelecypods, brachiopods, and ostracods. This fossil assemblage is particularly valuable because it includes the most complete marine reptile record of a chronostratigraphic interval, which is poor in vertebrate remains elsewhere. In this contribution, the current status of the available vertebrate fossil specimens from the Late Jurassic of western Cuba is provided, along with a brief description of the fossil materials. Key words: Late Jurassic, Oxfordian, dinosaur, marine reptiles, fish, western Cuba. I NTRODUCTION Since the early 20th century, different groups of collectors have discovered 1 Retired curator, Museo a relatively rich and diverse vertebrate assemblage in the Late Jurassic stra- Nacional de Historia Natural, ta of western Cuba, which has been only partially investigated (Brown and Havana, Cuba.
    [Show full text]
  • The Strawberry Bank Lagerstätte Reveals Insights Into Early Jurassic Lifematt Williams, Michael J
    XXX10.1144/jgs2014-144M. Williams et al.Early Jurassic Strawberry Bank Lagerstätte 2015 Downloaded from http://jgs.lyellcollection.org/ by guest on September 27, 2021 2014-144review-articleReview focus10.1144/jgs2014-144The Strawberry Bank Lagerstätte reveals insights into Early Jurassic lifeMatt Williams, Michael J. Benton &, Andrew Ross Review focus Journal of the Geological Society Published Online First doi:10.1144/jgs2014-144 The Strawberry Bank Lagerstätte reveals insights into Early Jurassic life Matt Williams1, Michael J. Benton2* & Andrew Ross3 1 Bath Royal Literary and Scientific Institution, 16–18 Queen Square, Bath BA1 2HN, UK 2 School of Earth Sciences, University of Bristol, Bristol BS8 2BU, UK 3 National Museum of Scotland, Chambers Street, Edinburgh EH1 1JF, UK * Correspondence: [email protected] Abstract: The Strawberry Bank Lagerstätte provides a rich insight into Early Jurassic marine vertebrate life, revealing exquisite anatomical detail of marine reptiles and large pachycormid fishes thanks to exceptional preservation, and especially the uncrushed, 3D nature of the fossils. The site documents a fauna of Early Jurassic nektonic marine animals (five species of fishes, one species of marine crocodilian, two species of ichthyosaurs, cephalopods and crustaceans), but also over 20 spe- cies of insects. Unlike other fossil sites of similar age, the 3D preservation at Strawberry Bank provides unique evidence on palatal and braincase structures in the fishes and reptiles. The age of the site is important, documenting a marine ecosystem during recovery from the end-Triassic mass extinction, but also exactly coincident with the height of the Toarcian Oceanic Anoxic Event, a further time of turmoil in evolution.
    [Show full text]
  • Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal)
    Alexandre Renaud Daniel Guillaume Licenciatura em Biologia celular Mestrado em Sistemática, Evolução, e Paleobiodiversidade Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal) Dissertação para obtenção do Grau de Mestre em Paleontologia Orientador: Miguel Moreno-Azanza, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Co-orientador: Octávio Mateus, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Júri: Presidente: Prof. Doutor Paulo Alexandre Rodrigues Roque Legoinha (FCT-UNL) Arguente: Doutor Hughes-Alexandres Blain (IPHES) Vogal: Doutor Miguel Moreno-Azanza (FCT-UNL) Júri: Dezembro 2018 MICROVERTEBRATES OF THE LOURINHÃ FORMATION (LATE JURASSIC, PORTUGAL) © Alexandre Renaud Daniel Guillaume, FCT/UNL e UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa tem o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. ACKNOWLEDGMENTS First of all, I would like to dedicate this thesis to my late grandfather “Papi Joël”, who wanted to tie me to a tree when I first start my journey to paleontology six years ago, in Paris. And yet, he never failed to support me at any cost, even if he did not always understand what I was doing and why I was doing it. He is always in my mind. Merci papi ! This master thesis has been one-year long project during which one there were highs and lows.
    [Show full text]
  • Article (PDF, 1844
    Fossil Record 10(1) (2007), 17–37 / DOI 10.1002/mmng.200600016 Eurycormus –– Eurypoma, two Jurassic actinopterygian genera with mixed identity Gloria Arratia* & Hans-Peter Schultze** The University of Kansas, Biodiversity Research Center and Department of Ecology and Evolutionary Biology, 1345 Jayhawk Blvd., Lawrence, KS 66045-7561. U.S.A. Received 1 August 2006, accepted 31 August 2006 Published online 30 January 2007 With 14 figures Key words: actinopterygian fishes, Upper Jurassic, southern Germany, morphology, systematics. Abstract Three Late Jurassic actinopterygian species are commonly placed in the genus Eurycormus: E. egertoni, E. grandis and E. spe- ciosus. A detailed comparison supports an earlier assignment to two different genera, Eurycormus Wagner, 1863 (speciosus) and Eurypoma Huxley, 1866 (E. egertoni and E. grande). Systematically, the two genera are only distantly related; Eurycormus belongs to the Teleosteomorpha, whereas Eurypoma is a halecomorph closely related to or a member of the Caturoidea with- in the Amiiformes. Schlu¨ sselwo¨ rter: Actinopterygii, Oberer Jura, Su¨ ddeutschland, Morphologie, Systematik. Zusammenfassung Drei oberjurassische Actinopterygier-Arten, egertoni, grandis und speciosus, werden gewo¨ hnlich zur Gattung Eurycormus ge- stellt. Ein detaillierter Vergleich der drei Arten besta¨tigt eine fru¨ here Zuordnung zu zwei verschiedenen Gattungen, Eurycor- mus Wagner, 1863 (speciosus) und Eurypoma Huxley, 1866 (E. egertoni und E. grande), die zwei ho¨ heren Taxa innerhalb der Neopterygii zugeordnet werden: Eurycormus zu den Teleosteomorpha und Eurypoma zu den Amiiformes innerhalb der Hale- comorphi, mo¨ glicherweise nahe oder innerhalb der Caturoidea. # 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Introduction cies, E. grandis (see Fig. 2A), from the Upper Jur- assic of Cambridgeshire, England, within this Agassiz (1843) named a Late Jurassic fish from genus.
    [Show full text]
  • Exceptional Vertebrate Biotas from the Triassic of China, and the Expansion of Marine Ecosystems After the Permo-Triassic Mass Extinction
    Earth-Science Reviews 125 (2013) 199–243 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction Michael J. Benton a,⁎, Qiyue Zhang b, Shixue Hu b, Zhong-Qiang Chen c, Wen Wen b, Jun Liu b, Jinyuan Huang b, Changyong Zhou b, Tao Xie b, Jinnan Tong c, Brian Choo d a School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK b Chengdu Center of China Geological Survey, Chengdu 610081, China c State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China d Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China article info abstract Article history: The Triassic was a time of turmoil, as life recovered from the most devastating of all mass extinctions, the Received 11 February 2013 Permo-Triassic event 252 million years ago. The Triassic marine rock succession of southwest China provides Accepted 31 May 2013 unique documentation of the recovery of marine life through a series of well dated, exceptionally preserved Available online 20 June 2013 fossil assemblages in the Daye, Guanling, Zhuganpo, and Xiaowa formations. New work shows the richness of the faunas of fishes and reptiles, and that recovery of vertebrate faunas was delayed by harsh environmental Keywords: conditions and then occurred rapidly in the Anisian. The key faunas of fishes and reptiles come from a limited Triassic Recovery area in eastern Yunnan and western Guizhou provinces, and these may be dated relative to shared strati- Reptile graphic units, and their palaeoenvironments reconstructed.
    [Show full text]
  • Re-Evaluation of Pachycormid Fishes from the Late Jurassic of Southwestern Germany
    Editors' choice Re-evaluation of pachycormid fishes from the Late Jurassic of Southwestern Germany ERIN E. MAXWELL, PAUL H. LAMBERS, ADRIANA LÓPEZ-ARBARELLO, and GÜNTER SCHWEIGERT Maxwell, E.E., Lambers, P.H., López-Arbarello, A., and Schweigert G. 2020. Re-evaluation of pachycormid fishes from the Late Jurassic of Southwestern Germany. Acta Palaeontologica Polonica 65 (3): 429–453. Pachycormidae is an extinct group of Mesozoic fishes that exhibits extensive body size and shape disparity. The Late Jurassic record of the group is dominated by fossils from the lithographic limestone of Bavaria, Germany that, although complete and articulated, are not well characterized anatomically. In addition, stratigraphic and geographical provenance are often only approximately known, making these taxa difficult to place in a global biogeographical context. In contrast, the late Kimmeridgian Nusplingen Plattenkalk of Baden-Württemberg is a well-constrained locality yielding hundreds of exceptionally preserved and prepared vertebrate fossils. Pachycormid fishes are rare, but these finds have the potential to broaden our understanding of anatomical variation within this group, as well as provide new information regarding the trophic complexity of the Nusplingen lagoonal ecosystem. Here, we review the fossil record of Pachycormidae from Nusplingen, including one fragmentary and two relatively complete skulls, a largely complete fish, and a fragment of a caudal fin. These finds can be referred to three taxa: Orthocormus sp., Hypsocormus posterodorsalis sp. nov., and Simocormus macrolepidotus gen. et sp. nov. The latter taxon was erected to replace “Hypsocormus” macrodon, here considered to be a nomen dubium. Hypsocormus posterodorsalis is known only from Nusplingen, and is characterized by teeth lacking apicobasal ridging at the bases, a dorsal fin positioned opposite the anterior edge of the anal fin, and a hypural plate consisting of a fused parhypural and hypurals.
    [Show full text]