The Truth About Jellyfish

Total Page:16

File Type:pdf, Size:1020Kb

The Truth About Jellyfish The truth about jellyfish The truth about jellyfish By Tony Corey P1707 The image evoked by the word "jellyfish" is usually the transparent, umbrella- shaped animal with ribbony tentacles fringing its rim. Many species do fit this body form, which is called "medusa" because of its resemblance to the snake-haired Gorgon Medusa of Greek myth. But jellyfish exhibit astounding diversity. Even within the basic body form, they differ markedly in shape, size, color, and other attributes. Shape, for example, varies from the familiar umbrella or bell-shaped dome of the lion's mane to the saucer flatness of the moon jelly to the full-bodied roundness of the cannonball jelly. Size ranges from under 1 inch (2.54 centimeters) in the thimble jellyfish of the Caribbean to an imposing 7 to 8 feet (2.1 to 2.4 meters) bell diameter in Arctic specimens of the lion's mane. Coloration, though varied among species, may be notable primarily for its absence. Most jellies are clear to the point of near invisibility—a useful camouflage—although some are brilliantly hued. One variant of sea nettle found in some locations in the Chesapeake Bay, for instance, may display traces of brilliant red flowing in radial lines from the center to the edge of its bell. Tentacles are similarly distinctive from one species to another. Tentacles of the moon jelly drape just below the bell rim, while those of the Arctic lion's mane—the largest of the true jellies—trail 20, 30, even 100 feet into the water. Jello Bodies What all these animals have in common is their gelatinous body http://seagrant.gso.uri.edu/factsheets/jellyfish.html (1 of 5)11/10/2004 4:36:03 AM The truth about jellyfish composition. The consistency of Jello, these aptly named creatures are developed only to the level of tissue organization, they have no organ systems—no brain, no heart, and, with the exception of the box jelly, no eyes. Nor do they have bones or blood or dense muscles. They are essentially packets of water (with about 1 percent carbon and nitrogen and 3 percent salt added) encased in two layers of tissue. The "casing" consists of a thin inner layer (endoderm) that lines the gut and an outer layer (ectoderm) surrounding the "jelly," a substance called the mesoglea. Simplicity informs the function as well as the form of these creatures. Their symmetrical bodies consist of a central opening from which body parts radiate outward. This design allows the jellyfish to respond to food or danger from any direction. A very simple nervous system, or nerve net, triggers the appropriate response to different external stimuli: Receptors that sense movement stimulate the reflexes associated with trapping food; other sensors react to light or darkness or position in the water, directing the animal to swim up or down the water column, to reorient itself, or to correct a shift in balance. Jellyfish—True or False Not all gelatinous marine animals are jellyfish. Even creatures commonly called jellyfish include one organism that is no relation to the true jellies at all. The comb jelly (Mnemiopsis leidyi) has a transparent, gelatinous body similar to that of the jellyfish, but it actually belongs to a different phylum. Comb jellies are members of the phylum Ctenophora (TEEn a for a); true jellies, along with corals and anemones, belong to the phylum Cnidaria (Nih DAR e uh). Distinctions among the creatures in these two phyla are evident in feeding tactics, in locomotion, and in reproduction. True jellies take their feeding techniques from their name. The "cnid" in Cnidaria refers to nettles, stinging barbs called nematocysts. These microscopic weapons line the tentacles of the jellyfish and fire like tiny venom-filled harpoons into organisms that brush against them. Oral arms, appendages that hang from the bell near the mouth, then bring the captured prey to the mouth. In the rudimentary digestive system of the jellyfish, the mouth serves both for ingesting food and expelling waste. From the digestive cavity, radial canals, which are visible as white lines radiating along the bell, transport nutrients throughout the body. http://seagrant.gso.uri.edu/factsheets/jellyfish.html (2 of 5)11/10/2004 4:36:03 AM The truth about jellyfish Comb jellies, on the other hand, capture their prey on a sticky flypaper-like substance that coats the oral lobes of the bell's under-surface. Lacking nematocysts, these animals can't just wait around for prey to trigger its own capture; instead, they go after their food. They "swim" by the action of comblike paddles, composed of rows of fused cilia, that beat in sequence to propel the comb jelly through the water. Locomotion for true jellies is less dynamic. As planktonic animals, they have only limited control over movement, so their mobility is partly a matter of passive drifting on waves and currents. However, they can regulate vertical movement to some extent, employing a kind of jet propulsion. The tissue on the underside of the umbrella contracts, pushing water out of the hollow bell in one direction to propel the jelly in the opposite direction. Clones and Hermaphrodites It is in reproductive strategy that differences between Cnidaria and Ctenophora become especially apparent. True jellies go through a multi- stage life cycle that includes two distinct body forms: the asexual polyp and the sexual medusa. Most familiar in the medusa form, adult jellyfish reproduce in this stage as the male releases sperm into the water and the female gathers the sperm to her mouth where she holds her eggs. As the fertilized eggs develop into larvae (planulae), they detach from the "mother" and drift through the water, eventually settling onto the sea bottom. These sessile (attached) organisms, now called polyps, reproduce asexually by dividing, or budding. The cloned buds, known as ephyra, eventually swim away from their polyp base and grow into adult medusa to start the cycle again. Some jellyfish, along with certain other gelatinous marine animals, have evolved out of this dimorphic (two-shape) cycle, developing either the polyp or the medusa stage to the exclusion of the other. In contrast to the complex reproductive journey of Cnidaria, the reproductive cycle of Ctenophora is simple. Most species of ctenophores are hermaphroditic: A single organism can be both male and female, shedding eggs and sperm into the water. Larvae hatch out of the floating eggs and develop into adults, remaining planktonic throughout their lives. One other gelatinous creature, which seems to occupy a category all its own, is the Portuguese man-of-war (Physalia physalis). This fearsome animal, although a Cnidarian, is not categorized with the true jellies. It is actually a colony of varied individuals, including polyps (feeding organisms) http://seagrant.gso.uri.edu/factsheets/jellyfish.html (3 of 5)11/10/2004 4:36:03 AM The truth about jellyfish and medusae (reproducing organisms). Its bell-equivalent is a gas-filled float, up to 12 inches in length, from which the feeding polyps dangle nematocyst-riddled tentacles. These tentacles can extend 65 feet into the water, creating a generous sting zone. The nematocysts of the man-of-war deliver a particularly toxic and painful sting, which, unlike the stings of most other jellies, can be life threatening to humans. The Human Connection Not really jelly, and not even fish, jellyfish of all stripes are hardy survivors. More than 200 species inhabit the world's oceans, from the arctic to the tropics and from bays and estuaries to offshore and deep-ocean waters. And even though individual jellies typically enjoy a life span of only weeks or months, jellied invertebrates as a group have occupied a niche in the planet's ecosystem for 650 million years. Despite their enduring presence and their wide distribution, jellyfish at first blush seem to have little impact in the realm of humans. But they do in fact have a potent presence in the human world, through interactions both indirect and painfully immediate. Ecologically, jellyfish and other gelatinous creatures are important links in the marine food web. While they are not typically an element of the human diet, they are a source of food for numerous fish species as well as for marine birds, sea turtles, and even other jellyfish. As predators, gelatinous animals can be voracious feeders. Comb jellies in Narragansett Bay, for example, have the capacity to clear the entire crop of fish eggs present in the Bay's upper reaches during ctenophore blooms. Similar razing-grazing episodes have occurred in the Chesapeake Bay, where comb jellies devoured oyster larvae, and in the Gulf of Mexico, where blooms of moon jellies and newly invasive Australian spotted jellyfish recently decimated zooplankton and larval fish populations. The phenomenon is worrisome because of its implications for prey fish populations, and by association, commercial and recreational fish harvests. Of more direct concern to most people than the ecological impact of jellyfish diets is the personal damage of jellyfish stings. Despite the dread jellyfish stings inspire, the actual risks of serious harm are minor. Comb jellies, because they have no nematocysts, pose no threat to humans. Even some Cnidarians have nematocysts insufficiently potent to http://seagrant.gso.uri.edu/factsheets/jellyfish.html (4 of 5)11/10/2004 4:36:03 AM The truth about jellyfish penetrate human skin. The lion's mane and the Portuguese man-of-war, on the other hand, can inflict real damage. Encounters with the latter are unlikely in Rhode Island waters, but run-ins with lion's manes can be fairly common, especially when seasonal conditions boost jellyfish populations.
Recommended publications
  • The Bug Beneath the Bathing Suit: a Case Report and Discussion of Seabather’S Eruption Versus Cutaneous Larva Migrans
    The bug beneath the bathing suit: A case report and discussion of seabather’s eruption versus cutaneous larva migrans Andrew Jensen, BS,* Marcus Goodman, DO, FAOCD** *Medical Student, 4th year, Philadelphia College of Osteopathic Medicine - Georgia Campus, Suwanee, GA **Dermatology Residency Program Director, PCOM/North Fulton Hospital Medical Campus, Roswell, GA Abstract Seabather’s eruption is an important differential diagnosis when a patient who has recently swum in a subtropical ocean presents with a pruritic rash in the distribution of their swimwear. Treatment with systemic corticosteroids is indicated in severe cases and can successfully reduce symptoms. Oral steroid therapy in general has proven to be an effective treatment for many acute and chronic diseases but has long been associated with increased risk for infections. In this report, we present an atypical case of cutaneous larva migrans and discuss its clinical unmasking after systemic steroid treatment was given for an initial diagnosis of seabather’s eruption. Introduction Case Report Figure 2 Seabather’s eruption is a benign, superficial A 52-year-old female presented to her reaction to toxins from marine-animal larvae. dermatologist complaining of an itchy rash on It is the most common marine-related problem her groin and upper leg for one week. The patient in the waters south of the United States.1 stated she recently traveled to Mexico, where she It was reported in Florida as early as 1903 spent several days on the beach and swimming in as a “rash which set up an intense itching” the ocean. Physical exam revealed erythematous, shortly after bathing in ocean water.2 In 1949, edematous papules on her lower abdomen and Sams postulated the eruption was caused by groin, assuming a location directly beneath her “some living, microorganism, in the nature of swimsuit (Figure 1).
    [Show full text]
  • Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish
    diversity Review Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish Michael J. Kingsford * , Jodie A. Schlaefer and Scott J. Morrissey Marine Biology and Aquaculture, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; [email protected] (J.A.S.); [email protected] (S.J.M.) * Correspondence: [email protected] Abstract: Understanding the hierarchy of populations from the scale of metapopulations to mesopop- ulations and member local populations is fundamental to understanding the population dynamics of any species. Jellyfish by definition are planktonic and it would be assumed that connectivity would be high among local populations, and that populations would minimally vary in both ecological and genetic clade-level differences over broad spatial scales (i.e., hundreds to thousands of km). Although data exists on the connectivity of scyphozoan jellyfish, there are few data on cubozoans. Cubozoans are capable swimmers and have more complex and sophisticated visual abilities than scyphozoans. We predict, therefore, that cubozoans have the potential to have finer spatial scale differences in population structure than their relatives, the scyphozoans. Here we review the data available on the population structures of scyphozoans and what is known about cubozoans. The evidence from realized connectivity and estimates of potential connectivity for scyphozoans indicates the following. Some jellyfish taxa have a large metapopulation and very large stocks (>1000 s of km), while others have clade-level differences on the scale of tens of km. Data on distributions, genetics of medusa and Citation: Kingsford, M.J.; Schlaefer, polyps, statolith shape, elemental chemistry of statoliths and biophysical modelling of connectivity J.A.; Morrissey, S.J.
    [Show full text]
  • Whale Sharks of the Western Caribbean: an Overview of Current Research and Conservation Efforts and Future Needs for Effective Management of the Species
    Gulf and Caribbean Research Vol 19(2), 149–159, 2007 Manuscript received December 26, 2006; accepted May 11, 2007 WHALE SHARKS OF THE WESTERN CARIBBEAN: AN overview OF CURRENT RESEARCH AND conservation efforts AND FUTURE NEEDS FOR EFFECTIVE management OF THE SPECIES Rachel T. Graham Wildlife Conservation Society, PO Box 37, Punta Gorda, Belize, E-mail [email protected] ABSTRACT Whale sharks (Rhincodon typus) are seasonal visitors to four sites in the Western Caribbean, 3 of which are encompassed by the Mesoamerican Barrier Reef. Predictable encounters with the world’s largest fish have raised this species’ profile globally and led to several research and conservation efforts that aim to elucidate the need for information for the species management and balance the growing demand for highly lucrative encounter tour- ism. Tagging studies have demonstrated that the whale shark population is relatively small and likely forms a single population. Individuals move throughout the region between 3 of 4 known feeding sites and are capable of timing their movements to pulses of productivity. Whale shark tourism’s dramatic growth has led to a range of protective measures and scientific studies both precautionary and reactionary that require better harmonization throughout the region to be effective. This paper will provide an overview of the status of whale shark research and conservation efforts in the Western Caribbean and identify future management needs to minimize anthropogenic impacts and enable continued whale shark visitation at key feeding sites. RESUMEN Los tiburones ballenas son visitantes estaciónales a cuatro sitios en el Caribe occidental, tres de los cuales se ubican en el arrecife Mesoamericano.
    [Show full text]
  • Proceedings of the Twenty-Ninth Annual Symposium on Sea Turtle Biology and Conservation
    NOAA Technical Memorandum NMFS-SEFSC-630 PROCEEDINGS OF THE TWENTY-NINTH ANNUAL SYMPOSIUM ON SEA TURTLE BIOLOGY AND CONSERVATION 17 to 19 February 2009 Brisbane, Queensland, Australia Compiled by: Lisa Belskis, Mike Frick, Aliki Panagopoulou, ALan Rees, & Kris Williams U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration NOAA Fisheries Service Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, Florida 33149 May 2012 NOAA Technical Memorandum NMFS-SEFSC-630 PROCEEDINGS OF THE TWENTY-NINTH ANNUAL SYMPOSIUM ON SEA TURTLE BIOLOGY AND CONSERVATION 17 to 19 February 2009 Brisbane, Queensland, Australia Compiled by: Lisa Belskis, Mike Frick, Aliki Panagopoulou, ALan Rees, Kris Williams U.S. DEPARTMENT OF COMMERCE John Bryson, Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Dr. Jane Lubchenco, Under Secretary for Oceans and Atmosphere NATIONAL MARINE FISHERIES SERVICE Samuel Rauch III, Acting Assistant Administrator for Fisheries May 2012 This Technical Memorandum is used for documentation and timely communication of preliminary results, interim reports, or similar special-purpose information. Although the memoranda are not subject to complete formal review, editorial control or detailed editing, they are expected to reflect sound professional work. NOTICE The NOAA Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or material mentioned in this publication. No references shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends or endorses any proprietary product or material herein or which has as its purpose any intent to cause directly or indirectly the advertised product to be use or purchased because of NMFS promotion.
    [Show full text]
  • JELLYFISH STINGS: COMPLICATIONS and MANAGEMENT by TOSSON A
    Journal of the Egyptian Society of Parasitology, Vol.50, No.2, August 2020 J. Egypt. Soc. Parasitol. (JESP), 50(2), 2020: 270 - 280 JELLYFISH STINGS: COMPLICATIONS AND MANAGEMENT By TOSSON A. MORSY1*, NAHLA M. SHOUKRY2** and MAHMOUD A. FOUAD3*** Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo 115661 Department of Zoology, Faculty of Science, Suez University, Suez2, Egypt, and Department of Medical Parasitology and Microbiology, Faculty of Medicine, King Abdulaziz University, Jeddah3, Saudi Arabia (Correspondence: *tossonmorsy@ med.asu.edu.eg or [email protected], orcid.org/0000-0003-2799-2049, **[email protected] & ***[email protected]) Abstract Jellyfish and sea jellies are the informal common names given to the medusa-phase of certain gelatinous members of subphylum Medusozoa, the majority of phylum Cnidaria. Jellyfish are mainly free-swimming marine animals with umbrella-shaped bells and trailing tentacles, alt- hough a few are not mobile, being anchored to the seabed by stalks. The bell can pulsate to give propulsion and highly efficient locomotion. Tentacles are armed with stinging cells and may be used to capture prey and defend against predators. Jellyfish have a complex life cycle; the medu- sa is normally the sexual phase, the planula larva can disperse widely and is followed by a sed- entary polyp phase. Jellyfish are found worldwide, from surface waters to the deep sea. Scyphozoans ("true jelly- fish") are exclusively marine, but some hydrozoans with a similar appearance live in freshwater. Large, often colorful, jellyfish are common in coastal zones worldwide. The medusae of most species are fast growing, mature within a few months and die soon after breeding, but the polyp stage, attached to the seabed, may be much more long-lived.
    [Show full text]
  • A Review of the Biology, Fisheries and Conservation of the Whale Shark
    Journal of Fish Biology (2012) 80,1019–1056 doi:10.1111/j.1095-8649.2012.03252.x, available online at wileyonlinelibrary.com A review of the biology, fisheries and conservation of the whale shark Rhincodon typus D. Rowat*† and K. S. Brooks*‡ *Marine Conservation Society Seychelles, P. O. Box 1299, Victoria, Mahe, Seychelles and ‡Environment Department, University of York, Heslington, York, YO10 5DD, U.K. Although the whale shark Rhincodon typus is the largest extant fish, it was not described until 1828 and by 1986 there were only 320 records of this species. Since then, growth in tourism and marine recreation globally has lead to a significant increase in the number of sightings and several areas with annual occurrences have been identified, spurring a surge of research on the species. Simultane- ously, there was a great expansion in targeted R. typus fisheries to supply the Asian restaurant trade, as well as a largely un-quantified by-catch of the species in purse-seine tuna fisheries. Currently R. typus is listed by the IUCN as vulnerable, due mainly to the effects of targeted fishing in two areas. Photo-identification has shown that R. typus form seasonal size and sex segregated feeding aggregations and that a large proportion of fish in these aggregations are philopatric in the broadest sense, tending to return to, or remain near, a particular site. Somewhat conversely, satellite tracking studies have shown that fish from these aggregations can migrate at ocean-basin scales and genetic studies have, to date, found little graphic differentiation globally. Conservation approaches are now informed by observational and environmental studies that have provided insight into the feeding habits of the species and its preferred habitats.
    [Show full text]
  • Nesseltierlarven-Dermatitis Seabather’S Eruption Kasuistik
    R. Kasten Nesseltierlarven-Dermatitis Seabather’s Eruption Kasuistik Zusammenfassung Abstract Die Seabather’s eruption ist eine pruriginöse, urtikarielle und pa- Seabather’s eruption is a pruritic urticarial and papular, self-lim- pulöse Hauterkrankung mit selbstlimitiertem Verlauf, die durch ited dermatitis, caused by contact with larvae of the cnidarians den Kontakt mit den Larven der Nesseltiere Edwardsiella lineata Linuche unguiculata and Edwardsiella lineata. Typically, the skin und Linuche unguiculata verursacht wird. Typischerweise zeigen lesions develop some hours after bathing in infested water on sich die Hautveränderungen einige Stunden nach dem Baden in the areas covered by the bathing suit. The larvae get trapped un- infestiertem Wasser an Stellen, die von der Badebekleidung be- derneath and discharge their toxins on a chemical or physical deckt waren. Dort verfangen sich die Larven und setzen auf che- stimulus, e.g. drying and rubbing the skin with a towel or show- mische oder physikalische Reize, wie Abtrocknen oder Abdu- ering with fresh water. Pathogenically, seabather’s eruption is schen mit Süßwasser, ihr Gift frei. Pathogenetisch liegt der Sea- predominantly an allergic reaction to cnidarian toxins. Sea- bather’s eruption am ehesten eine allergische Reaktion auf die bather’s eruption occurs on the coasts of Florida and the Caribbe- Nesseltierlarven-Toxine zugrunde. Die Erkrankung tritt an den an, where the larvae of the thimble jellyfish Linuche unguiculata Küsten Floridas und der Karibik auf, wo die Larven der Fingerhut- were identified as causative, whereas on the mid-Atlantic and qualle Linuche unguiculata als Auslöser identifiziert wurden. An northeast coast of the USA it is provoked by larvae of the sea 207 der mittelatlantischen und nordöstlichen Küste der USA wird anemone Edwardsiella lineata.
    [Show full text]
  • Symbionts of Marine Medusae and Ctenophores
    Plankton Benthos Res 4(1): 1–13, 2009 Plankton & Benthos Research © The Plankton Society of Japan Review Symbionts of marine medusae and ctenophores SUSUMU OHTSUKA1*, KAZUHIKO KOIKE2, DHUGAL LINDSAY3, JUN NISHIKAWA4, HIROSHI MIYAKE5, MASATO KAWAHARA2, MULYADI6, NOVA MUJIONO6, JURO HIROMI7 & HIRONORI KOMATSU8 1 Takeahara Marine Science Station, Setouchi Field Science Center, Graduate School of Biosphere Science, Hiroshima University, 5–8–1 Minato-machi, Takehara, Hiroshima 725–0024, Japan 2 Graduate School of Biosphere Science, Hiroshima University, 1–4–4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8528, Japan 3 Japan Agency for Marine-Earth-Science and Technology, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0661, Japan 4 Ocean Research Institute, The University of Tokyo, 1–15–1 Minamidai, Nakano, Tokyo 164–8639, Japan 5 School of Marine Biosciences, Kitasato University, 160–4 Azaudou, Okirai, Sanriku-cho, Ohunato, Iwate 022–0101, Japan 6 Division of Zoology, Research Center for Biology, LIPI, Gedung Widyasatwaloka, Jl Raya, Jakarta-Bogor Km 46, Cibinong, 16911, Indonesia 7 College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252–8510, Japan 8 Department of Zoology, National Museum of Nature and Science, 3–23–1 Hyakunin-cho, Shinjuku, Tokyo 169–0073, Japan Received 3 September 2008; Accepted 26 November 2008 Abstract: Since marine medusae and ctenophores harbor a wide variety of symbionts, from protists to fish, they con- stitute a unique community in pelagic ecosystems. Their symbiotic relationships broadly range from simple, facultative phoresy through parasitisim to complex mutualism, although it is sometimes difficult to define these associations strictly. Phoresy and/or commensalism are found in symbionts such as pycnogonids, decapod larvae and fish juveniles.
    [Show full text]
  • FIELD GUIDE to the JELLYFISH of WESTERN PACIFIC
    EDITORS AUTHORS Aileen Tan Shau Hwai B. A. Venmathi Maran Sim Yee Kwang Charatsee Aungtonya Hiroshi Miyake Chuan Chee Hoe Ephrime B. Metillo Hiroshi Miyake Iffah Iesa Isara Arsiranant Krishan D. Karunarathne Libertine Agatha F. Densing FIELD GUIDE to the M. D. S. T. de Croos Mohammed Rizman-Idid Nicholas Wei Liang Yap Nithiyaa Nilamani JELLYFISH Oksto Ridho Sianturi Purinat Rungraung Sim Yee Kwang of WESTERN PACIFIC S.M. Sharifuzzaman • Bangladesh • IndonesIa • MalaysIa Widiastuti • PhIlIPPInes • sIngaPore • srI lanka • ThaIland Yean Das FIELD GUIDE to the JELLYFISH of WESTERN PACIFIC • BANGLADESH • INDONESIA • MALAYSIA • PHILIPPINES • SINGAPORE • SRI LANKA • THAILAND Centre for Marine and Coastal Studies (CEMACS) Universiti Sains Malaysia (USM) 11800 Penang, Malaysia FIELD GUIDE to the JELLYFISH of WESTERN PACIFIC The designation of geographical entities in this book, and the presentation of the materials, do not imply the impression of any opinion whatsoever on the part of IOC Sub-Commission for the Western Pacific (WESTPAC), Japan Society for the Promotion of Science (JSPS) and Universiti Sains Malaysia (USM) or other participating organizations concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitations of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IOC Sub-Commission for the Western Pacific (WESTPAC), Japan Society for the Promotion of Science (JSPS), Centre for Marine and Coastal Studies (CEMACS) or other participating organizations. This publication has been made possible in part by funding from Japan Society for the Promotion of Science (JSPS) and IOC Sub-Commission for the Western Pacific (WESTPAC) project.
    [Show full text]
  • Whale Sharks of the Western Caribbean: an Overview of Current Research and Conservation Efforts and Future Needs for Effective Management of the Species
    Gulf and Caribbean Research Volume 19 Issue 2 January 2007 Whale Sharks of the Western Caribbean: An Overview of Current Research and Conservation Efforts and Future Needs for Effective Management of the Species Rachel T. Graham Wildlife Conservation Society, Belize Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Graham, R. T. 2007. Whale Sharks of the Western Caribbean: An Overview of Current Research and Conservation Efforts and Future Needs for Effective Management of the Species. Gulf and Caribbean Research 19 (2): 149-159. Retrieved from https://aquila.usm.edu/gcr/vol19/iss2/18 DOI: https://doi.org/10.18785/gcr.1902.18 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf and Caribbean Research VoI19(2), 149-159,2007 Manuscript received December 26, 2006; accepted May II, 2007 WHALE SHARKS OF THE WESTERN CARIBBEAN: AN OVERVIEW OF CURRENT RESEARCH AND CONSERVATION EFFORTS AND FUTURE NEEDS FOR EFFECTIVE MANAGEMENT OF THE SPECIES Rachel T. Graham Wildlife Conservation Society. PO Box 37, Punta Gorda. Belize, E-mail [email protected] ABSTRACTWhale sharks (Rhincodon typus) are seasonal visitors to four sites in the Western Caribbean, 3 of which are encompassed by the Mesoamerican Barrier Reef. Predictable encounters with the world's largest fish have raised this species' profile globally and led to several research and conservation efforts that aim to elucidate the need for information for the species management and balance the growing demand for highly lucrative encounter tour­ ism.
    [Show full text]
  • Marine Hazards
    Marine Hazards Traveler Summary Key Points Coastal waters around the world present various risks: drowning, injury from animals or plants, and envenomation from animals. Cutaneous larva migrans, caused by hookworm larvae that penetrate the skin, is acquired on warm, moist, sandy beaches where dogs and cats roam and presents with a migratory, itchy rash. Avoid direct contact with sand and soil (e.g., by wearing appropriate footwear and using a chair or blanket). Jellyfish can cause stings and tissue damage that range from painful to deadly, depending on the species. If stung, douse affected skin with vinegar, and seek urgent medical care when in areas with known highly poisonous species. The bell of the jellyfish may be seen but the transparent, long tentacles may not be seen and can wrap around a limb with resulting envenomation. Do not touch jellyfish that have been washed ashore. Corals can cause cuts or skin irritation, even with light contact while swimming; some species contain venom. Avoid touching all corals and respect local regulations to protect them. Sea urchins resemble balls with a hard shell covered in long, fine, sharp spines that even wet suits may not protect against. They can be present in shallow water and rocky shorelines. Injuries after touching or stepping on an urchin can cause local infection; medical care may be needed to extract all the spines. Stingrays do not intentionally attack swimmers, but when disturbed or stepped on, they can react by swatting with their barbed tail, causing deep stab wounds and subsequent tissue tearing on retraction of the spine.
    [Show full text]
  • Harmful Jellyfish Country Report in Western Pacific
    Harmful Jellyfish Country Report in Western Pacific Technical Editors Aileen Tan Shau Hwai Cherrie Teh Chiew Peng Nithiyaa Nilamani Zulfigar Yasin Centre for Marine and Coastal Studies (CEMACS) Universiti Sains Malaysia 11800 Penang, Malaysia 2019 The designation of geographical entities in this book, and the presentation of the material, do not imply the impression of any opinion whatsoever on the part of IOC Sub-Commission for the Western Pacific (WESTPAC) and Universiti Sains Malaysia (USM) or other participating organizations concerning the legal status of any country, territory, or area, or its authorities, or concerning the deliminations of its frontiers or boundaries. The views expressed in this publication do not necessary reflect those of IOC Sub-Commission for the Western Pacific (WESTPAC), CEMACS, or other participating organizations. This publication has been made possible in part by funding from IOC Sub-Commission for the Western Pacific (WESTPAC) project. Published by: Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia and IOC Sub-Commission for the Western Pacific (WESTPAC). Copyright: ©2019 Centre for Marine & Coastal Studies, Universiti Sains Malaysia Reproduction of this publication for educational or other non-commercial purpose is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purpose is prohibited without prior written permission of the copyright holder. Citations: Harmful Jellyfish Country Report in Western Pacific. 2019. Centre for Marine and Coastal Studies, Universiti Sains Malaysia, Penang, Malaysia. ISBN: 978-983-42850-8-1 Produced by: Universiti Sains Malaysia (USM) for IOC Sub-Commission for the Western Pacific (WESTPAC).
    [Show full text]