Towards a Study of Low-Complexity Graphs*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Notes for Lecture 2
Notes on Complexity Theory Last updated: December, 2011 Lecture 2 Jonathan Katz 1 Review The running time of a Turing machine M on input x is the number of \steps" M takes before it halts. Machine M is said to run in time T (¢) if for every input x the running time of M(x) is at most T (jxj). (In particular, this means it halts on all inputs.) The space used by M on input x is the number of cells written to by M on all its work tapes1 (a cell that is written to multiple times is only counted once); M is said to use space T (¢) if for every input x the space used during the computation of M(x) is at most T (jxj). We remark that these time and space measures are worst-case notions; i.e., even if M runs in time T (n) for only a fraction of the inputs of length n (and uses less time for all other inputs of length n), the running time of M is still T . (Average-case notions of complexity have also been considered, but are somewhat more di±cult to reason about. We may cover this later in the semester; or see [1, Chap. 18].) Recall that a Turing machine M computes a function f : f0; 1g¤ ! f0; 1g¤ if M(x) = f(x) for all x. We will focus most of our attention on boolean functions, a context in which it is more convenient to phrase computation in terms of languages. A language is simply a subset of f0; 1g¤. -
The Multiplicative Weights Update Method: a Meta Algorithm and Applications
The Multiplicative Weights Update Method: a Meta Algorithm and Applications Sanjeev Arora∗ Elad Hazan Satyen Kale Abstract Algorithms in varied fields use the idea of maintaining a distribution over a certain set and use the multiplicative update rule to iteratively change these weights. Their analysis are usually very similar and rely on an exponential potential function. We present a simple meta algorithm that unifies these disparate algorithms and drives them as simple instantiations of the meta algo- rithm. 1 Introduction Algorithms in varied fields work as follows: a distribution is maintained on a certain set, and at each step the probability assigned to i is multi- plied or divided by (1 + C(i)) where C(i) is some kind of “payoff” for element i. (Rescaling may be needed to ensure that the new values form a distribution.) Some examples include: the Ada Boost algorithm in ma- chine learning [FS97]; algorithms for game playing studied in economics (see below), the Plotkin-Shmoys-Tardos algorithm for packing and covering LPs [PST91], and its improvements in the case of flow problems by Young, Garg-Konneman, and Fleischer [You95, GK98, Fle00]; Impagliazzo’s proof of the Yao XOR lemma [Imp95], etc. The analysis of the running time uses a potential function argument and the final running time is proportional to 1/2. It has been clear to most researchers that these results are very similar, see for instance, Khandekar’s PhD thesis [Kha04]. Here we point out that these are all instances of the same (more general) algorithm. This meta ∗This project supported by David and Lucile Packard Fellowship and NSF grant CCR- 0205594. -
The Complexity Zoo
The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/. -
When Subgraph Isomorphism Is Really Hard, and Why This Matters for Graph Databases Ciaran Mccreesh, Patrick Prosser, Christine Solnon, James Trimble
When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases Ciaran Mccreesh, Patrick Prosser, Christine Solnon, James Trimble To cite this version: Ciaran Mccreesh, Patrick Prosser, Christine Solnon, James Trimble. When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases. Journal of Artificial Intelligence Research, Association for the Advancement of Artificial Intelligence, 2018, 61, pp.723 - 759. 10.1613/jair.5768. hal-01741928 HAL Id: hal-01741928 https://hal.archives-ouvertes.fr/hal-01741928 Submitted on 26 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Artificial Intelligence Research 61 (2018) 723-759 Submitted 11/17; published 03/18 When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases Ciaran McCreesh [email protected] Patrick Prosser [email protected] University of Glasgow, Glasgow, Scotland Christine Solnon [email protected] INSA-Lyon, LIRIS, UMR5205, F-69621, France James Trimble [email protected] University of Glasgow, Glasgow, Scotland Abstract The subgraph isomorphism problem involves deciding whether a copy of a pattern graph occurs inside a larger target graph. -
Glossary of Complexity Classes
App endix A Glossary of Complexity Classes Summary This glossary includes selfcontained denitions of most complexity classes mentioned in the b o ok Needless to say the glossary oers a very minimal discussion of these classes and the reader is re ferred to the main text for further discussion The items are organized by topics rather than by alphab etic order Sp ecically the glossary is partitioned into two parts dealing separately with complexity classes that are dened in terms of algorithms and their resources ie time and space complexity of Turing machines and complexity classes de ned in terms of nonuniform circuits and referring to their size and depth The algorithmic classes include timecomplexity based classes such as P NP coNP BPP RP coRP PH E EXP and NEXP and the space complexity classes L NL RL and P S P AC E The non k uniform classes include the circuit classes P p oly as well as NC and k AC Denitions and basic results regarding many other complexity classes are available at the constantly evolving Complexity Zoo A Preliminaries Complexity classes are sets of computational problems where each class contains problems that can b e solved with sp ecic computational resources To dene a complexity class one sp ecies a mo del of computation a complexity measure like time or space which is always measured as a function of the input length and a b ound on the complexity of problems in the class We follow the tradition of fo cusing on decision problems but refer to these problems using the terminology of promise problems -
January 2011 Prizes and Awards
January 2011 Prizes and Awards 4:25 P.M., Friday, January 7, 2011 PROGRAM SUMMARY OF AWARDS OPENING REMARKS FOR AMS George E. Andrews, President BÔCHER MEMORIAL PRIZE: ASAF NAOR, GUNTHER UHLMANN American Mathematical Society FRANK NELSON COLE PRIZE IN NUMBER THEORY: CHANDRASHEKHAR KHARE AND DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY JEAN-PIERRE WINTENBERGER TEACHING OF MATHEMATICS LEVI L. CONANT PRIZE: DAVID VOGAN Mathematical Association of America JOSEPH L. DOOB PRIZE: PETER KRONHEIMER AND TOMASZ MROWKA EULER BOOK PRIZE LEONARD EISENBUD PRIZE FOR MATHEMATICS AND PHYSICS: HERBERT SPOHN Mathematical Association of America RUTH LYTTLE SATTER PRIZE IN MATHEMATICS: AMIE WILKINSON DAVID P. R OBBINS PRIZE LEROY P. S TEELE PRIZE FOR LIFETIME ACHIEVEMENT: JOHN WILLARD MILNOR Mathematical Association of America LEROY P. S TEELE PRIZE FOR MATHEMATICAL EXPOSITION: HENRYK IWANIEC BÔCHER MEMORIAL PRIZE LEROY P. S TEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH: INGRID DAUBECHIES American Mathematical Society FOR AMS-MAA-SIAM LEVI L. CONANT PRIZE American Mathematical Society FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY AN UNDERGRADUATE STUDENT: MARIA MONKS LEONARD EISENBUD PRIZE FOR MATHEMATICS AND OR PHYSICS F AWM American Mathematical Society LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION: PATRICIA CAMPBELL RUTH LYTTLE SATTER PRIZE IN MATHEMATICS M. GWENETH HUMPHREYS AWARD FOR MENTORSHIP OF UNDERGRADUATE WOMEN IN MATHEMATICS: American Mathematical Society RHONDA HUGHES ALICE T. S CHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN: LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION SHERRY GONG Association for Women in Mathematics ALICE T. S CHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN FOR JPBM Association for Women in Mathematics COMMUNICATIONS AWARD: NICOLAS FALACCI AND CHERYL HEUTON M. -
Group, Graphs, Algorithms: the Graph Isomorphism Problem
Proc. Int. Cong. of Math. – 2018 Rio de Janeiro, Vol. 3 (3303–3320) GROUP, GRAPHS, ALGORITHMS: THE GRAPH ISOMORPHISM PROBLEM László Babai Abstract Graph Isomorphism (GI) is one of a small number of natural algorithmic problems with unsettled complexity status in the P / NP theory: not expected to be NP-complete, yet not known to be solvable in polynomial time. Arguably, the GI problem boils down to filling the gap between symmetry and regularity, the former being defined in terms of automorphisms, the latter in terms of equations satisfied by numerical parameters. Recent progress on the complexity of GI relies on a combination of the asymptotic theory of permutation groups and asymptotic properties of highly regular combinato- rial structures called coherent configurations. Group theory provides the tools to infer either global symmetry or global irregularity from local information, eliminating the symmetry/regularity gap in the relevant scenario; the resulting global structure is the subject of combinatorial analysis. These structural studies are melded in a divide- and-conquer algorithmic framework pioneered in the GI context by Eugene M. Luks (1980). 1 Introduction We shall consider finite structures only; so the terms “graph” and “group” will refer to finite graphs and groups, respectively. 1.1 Graphs, isomorphism, NP-intermediate status. A graph is a set (the set of ver- tices) endowed with an irreflexive, symmetric binary relation called adjacency. Isomor- phisms are adjacency-preseving bijections between the sets of vertices. The Graph Iso- morphism (GI) problem asks to determine whether two given graphs are isomorphic. It is known that graphs are universal among explicit finite structures in the sense that the isomorphism problem for explicit structures can be reduced in polynomial time to GI (in the sense of Karp-reductions1) Hedrlı́n and Pultr [1966] and Miller [1979]. -
Complexity, Part 2 —
EXPTIME-membership EXPTIME-hardness PSPACE-hardness harder Description Logics: a Nice Family of Logics — Complexity, Part 2 — Uli Sattler1 Thomas Schneider 2 1School of Computer Science, University of Manchester, UK 2Department of Computer Science, University of Bremen, Germany ESSLLI, 18 August 2016 Uli Sattler, Thomas Schneider DL: Complexity (2) 1 EXPTIME-membership EXPTIME-hardness PSPACE-hardness harder Goal for today Automated reasoning plays an important role for DLs. It allows the development of intelligent applications. The expressivity of DLs is strongly tailored towards this goal. Requirements for automated reasoning: Decidability of the relevant decision problems Low complexity if possible Algorithms that perform well in practice Yesterday & today: 1 & 3 Now: 2 Uli Sattler, Thomas Schneider DL: Complexity (2) 2 EXPTIME-membership EXPTIME-hardness PSPACE-hardness harder Plan for today 1 EXPTIME-membership 2 EXPTIME-hardness 3 PSPACE-hardness (not covered in the lecture) 4 Undecidability and a NEXPTIME lower bound ; Uli Thanks to Carsten Lutz for much of the material on these slides. Uli Sattler, Thomas Schneider DL: Complexity (2) 3 EXPTIME-membership EXPTIME-hardness PSPACE-hardness harder And now . 1 EXPTIME-membership 2 EXPTIME-hardness 3 PSPACE-hardness (not covered in the lecture) 4 Undecidability and a NEXPTIME lower bound ; Uli Uli Sattler, Thomas Schneider DL: Complexity (2) 4 EXPTIME-membership EXPTIME-hardness PSPACE-hardness harder EXPTIME-membership We start with an EXPTIME upper bound for concept satisfiability in ALC relative to TBoxes. Theorem The following problem is in EXPTIME. Input: an ALC concept C0 and an ALC TBox T I Question: is there a model I j= T with C0 6= ; ? We’ll use a technique known from modal logic: type elimination [Pratt 1978] The basis is a syntactic notion of a type. -
The Computational Complexity Column by V
The Computational Complexity Column by V. Arvind Institute of Mathematical Sciences, CIT Campus, Taramani Chennai 600113, India [email protected] http://www.imsc.res.in/~arvind The mid-1960’s to the early 1980’s marked the early epoch in the field of com- putational complexity. Several ideas and research directions which shaped the field at that time originated in recursive function theory. Some of these made a lasting impact and still have interesting open questions. The notion of lowness for complexity classes is a prominent example. Uwe Schöning was the first to study lowness for complexity classes and proved some striking results. The present article by Johannes Köbler and Jacobo Torán, written on the occasion of Uwe Schöning’s soon-to-come 60th birthday, is a nice introductory survey on this intriguing topic. It explains how lowness gives a unifying perspective on many complexity results, especially about problems that are of intermediate complexity. The survey also points to the several questions that still remain open. Lowness results: the next generation Johannes Köbler Humboldt Universität zu Berlin [email protected] Jacobo Torán Universität Ulm [email protected] Abstract Our colleague and friend Uwe Schöning, who has helped to shape the area of Complexity Theory in many decisive ways is turning 60 this year. As a little birthday present we survey in this column some of the newer results related with the concept of lowness, an idea that Uwe translated from the area of Recursion Theory in the early eighties. Originally this concept was applied to the complexity classes in the polynomial time hierarchy. -
Reduction of the Graph Isomorphism Problem to Equality Checking of N-Variables Polynomials and the Algorithms That Use the Reduction
Reduction of the Graph Isomorphism Problem to Equality Checking of n-variables Polynomials and the Algorithms that use the Reduction Alexander Prolubnikov Omsk State University, Omsk, Russian Federation [email protected] Abstract. The graph isomorphism problem is considered. We assign modified characteristic polynomials for graphs and reduce the graph isomorphism prob- lem to the following one. It is required to find out, is there such an enumeration of the graphs vertices that the polynomials of the graphs are equal. We present algorithms that use the redution and we show that we may check equality of the graphs polynomials values at specified points without direct evaluation of the values. We give justification of the algorithms and give the scheme of its numerical realization. The example of the approach implementation and the results of computational experiments are presented. Keywords: graph isomorphism, complete invariant, computational complexity 1 The graph isomorphism problem In the graph isomorphism problem (GI), we have two simple graphs G and H. Let V (G) and V (H) denote the sets of vertices of the graphs and let E(G) and E(H) denote the sets of their edges. V (G) = V (H) = [n]. An isomorphism of the graphs G and H is a bijection ' : V (G) ! V (H) such that for all i; j 2V (G) (i; j) 2 E(G) , ('(i);'(j)) 2 V (H): If such a bijection exists, then the graphs G and H are isomorphic (we shall denote it as G'H), else the graphs are not isomorphic. In the problem, it is required to present the bijection that is an isomorphism or we must show non-existence of such a bijection. -
PSPACE-Completeness & Savitch's Theorem 1 Recap
CSE 200 Computability and Complexity Wednesday, April 24, 2013 Lecture 8: PSPACE-Completeness & Savitch's Theorem Instructor: Professor Shachar Lovett Scribe: Dongcai Shen 1 Recap: Space Complexity Recall the following definitions on space complexity we learned in the last class: SPACE(S(n))def= \languages computable by a TM where input tape is readonly and work tape size S(n)" LOGSPACEdef= SPACE(O(log n)) def c PSPACE = [c≥1 SPACE(n ) For example, nowadays, people are interested in streaming algorithms, whose space requirements are low. So researching on space complexity can have real-world influence, especially in instructing people the way an algorithm should be designed and directing people away from some impossible attempts. Definition 1 (Nondeterministic Space NSPACE) The nondeterministic space NSPACE(S(n))def= • Input tape, read-only. • Proof tape, read-only & read-once. • Work tape size S(n). So, we can define • NLdef= NSPACE(O(log n)). def c • NPSPACE = [c≥1 NSPACE(n ). def Theorem 2 PATH = f(G; s; t): G directed graph, s; t vertices, there is a path s t in Gg is NL-complete un- der logspace reduction. Corollary 3 If we could find a deterministic algorithm for PATH in SPACE(O(log n)), then NL = L. Remark. Nondeterminism is pretty useless w.r.t. space. We don't know whether NL = L yet. 2 Outline of Today Definition 4 (Quantified Boolean formula) A quantified Boolean formula is 8x19x28x39x4 ··· φ(x1; ··· ; xn) def where φ is a CNF. Let TQBF = fA true QBFg. Theorem 5 TQBF is PSPACE-complete under poly-time reduction (and actually under logspace reductions). -
On Differentially Private Graph Sparsification and Applications
On Differentially Private Graph Sparsification and Applications Raman Arora Jalaj Upadhyay Johns Hopkins University Rutgers University [email protected] [email protected] Abstract In this paper, we study private sparsification of graphs. In particular, we give an algorithm that given an input graph, returns a sparse graph which approximates the spectrum of the input graph while ensuring differential privacy. This allows one to solve many graph problems privately yet efficiently and accurately. This is exemplified with application of the proposed meta-algorithm to graph algorithms for privately answering cut-queries, as well as practical algorithms for computing MAX-CUT and SPARSEST-CUT with better accuracy than previously known. We also give an efficient private algorithm to learn Laplacian eigenmap on a graph. 1 Introduction Data from social and communication networks have become a rich source to gain useful insights into the social, behavioral, and information sciences. Such data is naturally modeled as observations on a graph, and encodes rich, fine-grained, and structured information. At the same time, due to the seamless nature of data acquisition, often collected through personal devices, the individual information content in network data is often highly sensitive. This raises valid privacy concerns pertaining the analysis and release of such data. We address these concerns in this paper by presenting a novel algorithm that can be used to publish a succinct differentially private representation of network data with minimal degradation in accuracy for various graph related tasks. There are several notions of differential privacy one can consider in the setting described above. Depending on privacy requirements, one can consider edge level privacy that renders two graphs that differ in a single edge as in-distinguishable based on the algorithm’s output; this is the setting studied in many recent works [9, 19, 25, 54].