The Rise of the Knowledge Graph Toward Modern Data Integration and the Data Fabric Architecture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Realising the Potential of Algal Biomass Production Through Semantic Web and Linked Data
LEAPS: Realising the Potential of Algal Biomass Production through Semantic Web and Linked data ∗ Monika Solanki Johannes Skarka Craig Chapman KBE Lab Karlsruhe Institute of KBE Lab Birmingham City University Technology (ITAS) Birmingham City University [email protected] [email protected] [email protected] ABSTRACT In order to derive fuels from biomass, algal operation plant Recently algal biomass has been identified as a potential sites are setup that facilitate biomass cultivation and con- source of large scale production of biofuels. Governments, version of the biomass into end use products, some of which environmental research councils and special interests groups are biofuels. Microalgal biomass production in Europe is are funding several efforts that investigate renewable energy seen as a promising option for biofuels production regarding production opportunities in this sector. However so far there energy security and sustainability. Since microalgae can be has been no systematic study that analyses algal biomass cultivated in photobioreactors on non-arable land this tech- potential especially in North-Western Europe. In this paper nology could significantly reduce the food vs. fuel dilemma. we present a spatial data integration and analysis frame- However, until now there has been no systematic analysis work whereby rich datasets from the algal biomass domain of the algae biomass potential for North-Western Europe. that include data about algal operation sites and CO2 source In [20], the authors assessed the resource potential for mi- sites amongst others are semantically enriched with ontolo- croalgal biomass but excluded all areas not between 37◦N gies specifically designed for the domain and made available and 37◦S, thus most of Europe. -
One Knowledge Graph to Rule Them All? Analyzing the Differences Between Dbpedia, YAGO, Wikidata & Co
One Knowledge Graph to Rule them All? Analyzing the Differences between DBpedia, YAGO, Wikidata & co. Daniel Ringler and Heiko Paulheim University of Mannheim, Data and Web Science Group Abstract. Public Knowledge Graphs (KGs) on the Web are consid- ered a valuable asset for developing intelligent applications. They contain general knowledge which can be used, e.g., for improving data analyt- ics tools, text processing pipelines, or recommender systems. While the large players, e.g., DBpedia, YAGO, or Wikidata, are often considered similar in nature and coverage, there are, in fact, quite a few differences. In this paper, we quantify those differences, and identify the overlapping and the complementary parts of public KGs. From those considerations, we can conclude that the KGs are hardly interchangeable, and that each of them has its strenghts and weaknesses when it comes to applications in different domains. 1 Knowledge Graphs on the Web The term \Knowledge Graph" was coined by Google when they introduced their knowledge graph as a backbone of a new Web search strategy in 2012, i.e., moving from pure text processing to a more symbolic representation of knowledge, using the slogan \things, not strings"1. Various public knowledge graphs are available on the Web, including DB- pedia [3] and YAGO [9], both of which are created by extracting information from Wikipedia (the latter exploiting WordNet on top), the community edited Wikidata [10], which imports other datasets, e.g., from national libraries2, as well as from the discontinued Freebase [7], the expert curated OpenCyc [4], and NELL [1], which exploits pattern-based knowledge extraction from a large Web corpus. -
Wikipedia Knowledge Graph with Deepdive
The Workshops of the Tenth International AAAI Conference on Web and Social Media Wiki: Technical Report WS-16-17 Wikipedia Knowledge Graph with DeepDive Thomas Palomares Youssef Ahres [email protected] [email protected] Juhana Kangaspunta Christopher Re´ [email protected] [email protected] Abstract This paper is organized as follows: first, we review the related work and give a general overview of DeepDive. Sec- Despite the tremendous amount of information on Wikipedia, ond, starting from the data preprocessing, we detail the gen- only a very small amount is structured. Most of the informa- eral methodology used. Then, we detail two applications tion is embedded in unstructured text and extracting it is a non trivial challenge. In this paper, we propose a full pipeline that follow this pipeline along with their specific challenges built on top of DeepDive to successfully extract meaningful and solutions. Finally, we report the results of these applica- relations from the Wikipedia text corpus. We evaluated the tions and discuss the next steps to continue populating Wiki- system by extracting company-founders and family relations data and improve the current system to extract more relations from the text. As a result, we extracted more than 140,000 with a high precision. distinct relations with an average precision above 90%. Background & Related Work Introduction Until recently, populating the large knowledge bases relied on direct contributions from human volunteers as well With the perpetual growth of web usage, the amount as integration of existing repositories such as Wikipedia of unstructured data grows exponentially. Extract- info boxes. These methods are limited by the available ing facts and assertions to store them in a struc- structured data and by human power. -
From Cataloguing Cards to Semantic Web 1
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scientific Open-access Literature Archive and Repository Archeologia e Calcolatori 20, 2009, 111-128 REPRESENTING KNOWLEDGE IN ARCHAEOLOGY: FROM CATALOGUING CARDS TO SEMANTIC WEB 1. Introduction Representing knowledge is the basis of any catalogue. The Italian Ca- talogue was based on very valuable ideas, developed in the late 1880s, with the basic concept of putting objects in their context. Initially cataloguing was done manually, with typewritten cards. The advent of computers led to some early experimentations, and subsequently to the de�nition of a more formalized representation schema. The web produced a cultural revolution, and made the need for technological and semantic interoperability more evi- dent. The Semantic Web scenario promises to allow a sharing of knowledge, which will make the knowledge that remained unexpressed in the traditional environments available to any user, and allow objects to be placed in their cultural context. In this paper we will brie�y recall the principles of cataloguing and lessons learned by early computer experiences. Subsequently we will descri- be the object model for archaeological items, discussing its strong and weak points. In section 5 we present the web scenario and approaches to represent knowledge. 2. Cataloguing: history and principles The Italian Catalogue of cultural heritage has its roots in the experiences and concepts, developed in the late 1880s and early 1900s, by the famous art historian Adolfo Venturi, who was probably one of the �rst scholars to think explicitly in terms of having a frame of reference to describe works of art, emphasizing as the main issue the context in which the work had been produced. -
Knowledge Graphs on the Web – an Overview Arxiv:2003.00719V3 [Cs
January 2020 Knowledge Graphs on the Web – an Overview Nicolas HEIST, Sven HERTLING, Daniel RINGLER, and Heiko PAULHEIM Data and Web Science Group, University of Mannheim, Germany Abstract. Knowledge Graphs are an emerging form of knowledge representation. While Google coined the term Knowledge Graph first and promoted it as a means to improve their search results, they are used in many applications today. In a knowl- edge graph, entities in the real world and/or a business domain (e.g., people, places, or events) are represented as nodes, which are connected by edges representing the relations between those entities. While companies such as Google, Microsoft, and Facebook have their own, non-public knowledge graphs, there is also a larger body of publicly available knowledge graphs, such as DBpedia or Wikidata. In this chap- ter, we provide an overview and comparison of those publicly available knowledge graphs, and give insights into their contents, size, coverage, and overlap. Keywords. Knowledge Graph, Linked Data, Semantic Web, Profiling 1. Introduction Knowledge Graphs are increasingly used as means to represent knowledge. Due to their versatile means of representation, they can be used to integrate different heterogeneous data sources, both within as well as across organizations. [8,9] Besides such domain-specific knowledge graphs which are typically developed for specific domains and/or use cases, there are also public, cross-domain knowledge graphs encoding common knowledge, such as DBpedia, Wikidata, or YAGO. [33] Such knowl- edge graphs may be used, e.g., for automatically enriching data with background knowl- arXiv:2003.00719v3 [cs.AI] 12 Mar 2020 edge to be used in knowledge-intensive downstream applications. -
Download Slides
a platform for all that we know savas parastatidis http://savas.me savasp transition from web to apps increasing focus on information (& knowledge) rise of personal digital assistants importance of near-real time processing http://aptito.com/blog/wp-content/uploads/2012/05/smartphone-apps.jpg today... storing computing computers are huge amounts great tools for of data managing indexing example google and microsoft both have copies of the entire web (and more) for indexing purposes tomorrow... storing computing computers are huge amounts great tools for of data managing indexing acquisition discovery aggregation organization we would like computers to of the world’s information also help with the automatic correlation analysis and knowledge interpretation inference data information knowledge intelligence wisdom expert systems watson freebase wolframalpha rdbms google now web indexing data is symbols (bits, numbers, characters) information adds meaning to data through the introduction of relationship - it answers questions such as “who”, “what”, “where”, and “when” knowledge is a description of how the world works - it’s the application of data and information in order to answer “how” questions G. Bellinger, D. Castro, and A. Mills, “Data, Information, Knowledge, and Wisdom,” Inform. pp. 1–4, 2004 web – the data platform web – the information platform web – the knowledge platform foundation for new experiences “wisdom is not a product of schooling but of the lifelong attempt to acquire it” representative examples wolframalpha watson source: -
Knowledge Extraction for Hybrid Question Answering
KNOWLEDGEEXTRACTIONFORHYBRID QUESTIONANSWERING Von der Fakultät für Mathematik und Informatik der Universität Leipzig angenommene DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) im Fachgebiet Informatik vorgelegt von Ricardo Usbeck, M.Sc. geboren am 01.04.1988 in Halle (Saale), Deutschland Die Annahme der Dissertation wurde empfohlen von: 1. Professor Dr. Klaus-Peter Fähnrich (Leipzig) 2. Professor Dr. Philipp Cimiano (Bielefeld) Die Verleihung des akademischen Grades erfolgt mit Bestehen der Verteidigung am 17. Mai 2017 mit dem Gesamtprädikat magna cum laude. Leipzig, den 17. Mai 2017 bibliographic data title: Knowledge Extraction for Hybrid Question Answering author: Ricardo Usbeck statistical information: 10 chapters, 169 pages, 28 figures, 32 tables, 8 listings, 5 algorithms, 178 literature references, 1 appendix part supervisors: Prof. Dr.-Ing. habil. Klaus-Peter Fähnrich Dr. Axel-Cyrille Ngonga Ngomo institution: Leipzig University, Faculty for Mathematics and Computer Science time frame: January 2013 - March 2016 ABSTRACT Over the last decades, several billion Web pages have been made available on the Web. The growing amount of Web data provides the world’s largest collection of knowledge.1 Most of this full-text data like blogs, news or encyclopaedic informa- tion is textual in nature. However, the increasing amount of structured respectively semantic data2 available on the Web fosters new search paradigms. These novel paradigms ease the development of natural language interfaces which enable end- users to easily access and benefit from large amounts of data without the need to understand the underlying structures or algorithms. Building a natural language Question Answering (QA) system over heteroge- neous, Web-based knowledge sources requires various building blocks. -
Datatone: Managing Ambiguity in Natural Language Interfaces for Data Visualization Tong Gao1, Mira Dontcheva2, Eytan Adar1, Zhicheng Liu2, Karrie Karahalios3
DataTone: Managing Ambiguity in Natural Language Interfaces for Data Visualization Tong Gao1, Mira Dontcheva2, Eytan Adar1, Zhicheng Liu2, Karrie Karahalios3 1University of Michigan, 2Adobe Research 3University of Illinois, Ann Arbor, MI San Francisco, CA Urbana Champaign, IL fgaotong,[email protected] fmirad,[email protected] [email protected] ABSTRACT to be both flexible and easy to use. General purpose spread- Answering questions with data is a difficult and time- sheet tools, such as Microsoft Excel, focus largely on offer- consuming process. Visual dashboards and templates make ing rich data transformation operations. Visualizations are it easy to get started, but asking more sophisticated questions merely output to the calculations in the spreadsheet. Asking often requires learning a tool designed for expert analysts. a “visual question” requires users to translate their questions Natural language interaction allows users to ask questions di- into operations on the spreadsheet rather than operations on rectly in complex programs without having to learn how to the visualization. In contrast, visual analysis tools, such as use an interface. However, natural language is often ambigu- Tableau,1 creates visualizations automatically based on vari- ous. In this work we propose a mixed-initiative approach to ables of interest, allowing users to ask questions interactively managing ambiguity in natural language interfaces for data through the visualizations. However, because these tools are visualization. We model ambiguity throughout the process of often intended for domain specialists, they have complex in- turning a natural language query into a visualization and use terfaces and a steep learning curve. algorithmic disambiguation coupled with interactive ambigu- Natural language interaction offers a compelling complement ity widgets. -
Directions in AI Research and Applications at Siemens Corporate
AI Magazine Volume 11 Number 1 (1991)(1990) (© AAAI) Research in Progress of linguistic phenomena. The com- Directions in AI Research putational work concerns questions of adequate processing models and algorithms, as embodied in the and Applications at actual interfaces being developed. These topics are explored in the Siemens Corporate Research framework of three projects: The nat- ural language consulting dialogue and Development project (Wisber) takes up research- oriented topics (descriptive grammar formalisms and linguistically adequate grammar specification, handling of Wolfram Buettner, Klaus Estenfeld, discourse, and so on), the data-access Hans Haugeneder, and Peter Struss project (Sepp) focuses on the practi- cal application of state-of-the-art technology, and the work on gram- mar-development environments ■ Many barriers exist today that prevent particular, Prolog extensions; and (4) (Ape) centers on the problem of ade- effective industrial exploitation of current design and analysis of neural networks. quate tools for specifying linguistic and future AI research. These barriers can The lab’s 26 researchers are orga- knowledge sources and efficient pro- only be removed by people who are work- nized into four groups corresponding cessing methods. ing at the scientific forefront in AI and to these areas. Together, they provide Wisber is jointly funded by the know potential industrial needs. Siemens with innovative software The Knowledge Processing Laboratory’s German government and several research and development concentrates in technologies, appropriate applications, industrial and academic partners. the following areas: (1) natural language prototypical implementations of AI The goal of the project is to develop interfaces to knowledge-based systems and systems, and evaluations of new a knowledge-based advice-giving databases; (2) theoretical and experimen- techniques and trends. -
Knowledge Graph Identification
Knowledge Graph Identification Jay Pujara1, Hui Miao1, Lise Getoor1, and William Cohen2 1 Dept of Computer Science, University of Maryland, College Park, MD 20742 fjay,hui,[email protected] 2 Machine Learning Dept, Carnegie Mellon University, Pittsburgh, PA 15213 [email protected] Abstract. Large-scale information processing systems are able to ex- tract massive collections of interrelated facts, but unfortunately trans- forming these candidate facts into useful knowledge is a formidable chal- lenge. In this paper, we show how uncertain extractions about entities and their relations can be transformed into a knowledge graph. The ex- tractions form an extraction graph and we refer to the task of removing noise, inferring missing information, and determining which candidate facts should be included into a knowledge graph as knowledge graph identification. In order to perform this task, we must reason jointly about candidate facts and their associated extraction confidences, identify co- referent entities, and incorporate ontological constraints. Our proposed approach uses probabilistic soft logic (PSL), a recently introduced prob- abilistic modeling framework which easily scales to millions of facts. We demonstrate the power of our method on a synthetic Linked Data corpus derived from the MusicBrainz music community and a real-world set of extractions from the NELL project containing over 1M extractions and 70K ontological relations. We show that compared to existing methods, our approach is able to achieve improved AUC and F1 with significantly lower running time. 1 Introduction The web is a vast repository of knowledge, but automatically extracting that knowledge at scale has proven to be a formidable challenge. -
Google Knowledge Graph, Bing Satori and Wolfram Alpha * Farouk Musa Aliyu and Yusuf Isah Yahaya
International Journal of Scientific & Engineering Research Volume 12, Issue 1, January-2021 11 ISSN 2229-5518 An Investigation of the Accuracy of Knowledge Graph-base Search Engines: Google knowledge Graph, Bing Satori and Wolfram Alpha * Farouk Musa Aliyu and Yusuf Isah Yahaya Abstract— In this paper, we carried out an investigation on the accuracy of two knowledge graph driven search engines (Google knowledge Graph and Bing’s Satori) and a computational knowledge system (Wolfram Alpha). We used a dataset consisting of list of books and their correct authors and constructed queries that will retrieve the author(s) of a book given the book’s name. We evaluate the result from each search engine and measure their precision, recall and F1 score. We also compared the result of these two search engines to the result from the computation knowledge engine (Wolfram Alpha). Our result shows that Google performs better than Bing. While both Google and Bing performs better than Wolfram Alpha. Keywords — Knowledge Graphs, Evaluation, Information Retrieval, Semantic Search Engines.. —————————— —————————— 1 INTRODUCTION earch engines have played a significant role in helping leveraging knowledge graphs or how reliable are the result S web users find their search needs. Most traditional outputted by the semantic search engines? search engines answer their users by presenting a list 2. How are the accuracies of semantic search engines as of ranked documents which they believe are the most relevant compare with computational knowledge engines? to their -
Towards a Knowledge Graph for Science
Towards a Knowledge Graph for Science Invited Article∗ Sören Auer Viktor Kovtun Manuel Prinz TIB Leibniz Information Centre for L3S Research Centre, Leibniz TIB Leibniz Information Centre for Science and Technology and L3S University of Hannover Science and Technology Research Centre at University of Hannover, Germany Hannover, Germany Hannover [email protected] [email protected] Hannover, Germany [email protected] Anna Kasprzik Markus Stocker TIB Leibniz Information Centre for TIB Leibniz Information Centre for Science and Technology Science and Technology Hannover, Germany Hannover, Germany [email protected] [email protected] ABSTRACT KEYWORDS The document-centric workflows in science have reached (or al- Knowledge Graph, Science and Technology, Research Infrastructure, ready exceeded) the limits of adequacy. This is emphasized by Libraries, Information Science recent discussions on the increasing proliferation of scientific lit- ACM Reference Format: erature and the reproducibility crisis. This presents an opportu- Sören Auer, Viktor Kovtun, Manuel Prinz, Anna Kasprzik, and Markus nity to rethink the dominant paradigm of document-centric schol- Stocker. 2018. Towards a Knowledge Graph for Science: Invited Article. arly information communication and transform it into knowledge- In WIMS ’18: 8th International Conference on Web Intelligence, Mining and based information flows by representing and expressing informa- Semantics, June 25–27, 2018, Novi Sad, Serbia. ACM, New York, NY, USA, tion through semantically rich, interlinked knowledge graphs. At 6 pages. https://doi.org/10.1145/3227609.3227689 the core of knowledge-based information flows is the creation and evolution of information models that establish a common under- 1 INTRODUCTION standing of information communicated between stakeholders as The communication of scholarly information is document-centric.