Transcriptome Sequencing of Essential Marine Brown and Red

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptome Sequencing of Essential Marine Brown and Red Acta Oceanol. Sin., 2014, Vol. 33, No. 2, P. 1–12 DOI: 10.1007/s13131-014-0435-4 http://www.hyxb.org.cn E-mail: [email protected] Transcriptome sequencing of essential marine brown and red algal species in China and its significance in algal biology and phylogeny WU Shuangxiu1,3†, SUN Jing1,3,4†, CHI Shan2†, WANG Liang1,3,4†, WANG Xumin1,3, LIU Cui2, LI Xingang1,3, YIN Jinlong1, LIU Tao2*, YU Jun1,3* 1 CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China 2 College of Marine Life Science, Ocean University of China, Qingdao 266003, China 3 Beijing Key Laboratory of Functional Genomics for Dao-di Herbs, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China 4 University of Chinese Academy of Sciences, Beijing 100049, China Received 3 April 2013; accepted 26 July 2013 ©The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2014 Abstract Most phaeophytes (brown algae) and rhodophytes (red algae) dwell exclusively in marine habitats and play important roles in marine ecology and biodiversity. Many of these brown and red algae are also important resources for industries such as food, medicine and materials due to their unique metabolisms and me- tabolites. However, many fundamental questions surrounding their origins, early diversification, taxonomy, and special metabolisms remain unsolved because of poor molecular bases in brown and red algal study. As part of the 1 000 Plant Project, the marine macroalgal transcriptomes of 19 Phaeophyceae species and 21 Rhodophyta species from China's coast were sequenced, covering a total of 2 phyla, 3 classes, 11 orders, and 19 families. An average of 2 Gb per sample and a total 87.3 Gb of RNA-seq raw data were generated. Approxi- mately 15 000 to 25 000 unigenes for each brown algal sample and 5 000 to 10 000 unigenes for each red algal sample were annotated and analyzed. The annotation results showed obvious differences in gene expres- sion and genome characteristics between red algae and brown algae; these differences could even be seen between multicellular and unicellular red algae. The results elucidate some fundamental questions about the phylogenetic taxonomy within phaeophytes and rhodophytes, and also reveal many novel metabolic pathways. These pathways include algal CO2 fixation and particular carbohydrate metabolisms, and related gene/gene family characteristics and evolution in brown and red algae. These findings build on known algal genetic information and significantly improve our understanding of algal biology, biodiversity, evolution, and potential utilization of these marine algae. Key words: Phaeophyceae, brown algae, Rhodophyta, red algae, marine macroalgae, transcriptome sequencing, secondary generation sequencing Citation: Wu Shuangxiu, Sun Jing, Chi Shan, Wang Liang, Wang Xumin, Liu Cui, Li Xingang, Yin Jinlong, Liu Tao, Yu Jun. 2014. Tran- scriptome sequencing of essential marine brown and red algal species in China and its significance in algal biology and phylogeny. Acta Oceanologica Sinica, 33(2): 1–12, doi: 10.1007/s13131-014-0435-4 1 Introduction multicellular (Grosberg and Strathmann, 2007). Algae are a highly diverse group of organisms that live in Both brown and red algae exhibit a range of different hap- a range of aquatic and terrestrial environments (Grossman, loid-diploid life cycles, house a variety of novel metabolic path- 2007). Dwelling exclusively in particular marine habitats, in- ways, and synthesize various unique chemical compounds of cluding some harsh environments, are the phaeophytes, known both ecological and commercial importance (Grossman, 2007). as brown algae belonging to Class Phaeophyceae of Phylum These marine algae serve as major carbon-fixation producers Ochrophyta, and rhodophytes, known as red algae of Phylum and play essential roles in stabilizing different marine ecosys- Rhodophyta. These organisms are morphologically diverse, tems, forming submerged forests or creating niches for a broad varying from unicells about 1 µm in diameter, such as Cyanidi- range of other marine organisms (Cock et al., 2012). As a result, oschyzon merolae (Matsuzaki et al., 2004) and Galdieria sulphu- these environmental tolerance characteristics make brown and raria (Schönknecht et al., 2013), to complex multicellular forms red algae ideal candidates for mechanism study and novel gene reaching lengths of more than 30 m, such as Macrocystis Pyrif- discovery (Misumi et al., 2008). era (Tirichine and Bowler, 2011); though, most phaeophytes are In particular, special polysaccharides, such as alginates and Foundation item: The National Natural Science Foundation of China under contract Nos 31140070, 31271397 and 41206116; the algal transcrip- tome sequencing was supported by 1KP Project (www.onekp.com). *Corresponding author, E-mail: [email protected], [email protected] †Contributed equally. 2 WU Shuangxiu et al. Acta Oceanol. Sin., 2014, Vol. 33, No. 2, P. 1–12 fucoids in brown algae and agars in red algae, as well as their chiangii, which was nominated as Prionitis divaricata previous- numerous and various derivatives, are valuable resources in the ly, and genera Grateloupia and Gracilaria (Wang et al., 2001). production of antitumours, anticoagulants, solid matrices in Algal evolution study is complicated and difficult given cur- medicines, and additives for foods and cosmetics (Berteau and rently available genome data because of multiple methods of Mulloy, 2003; Drury et al., 2003; Matsubara, 2004; Grossman, gene acquisition by algae. Nuclear genomes are mosaics of 2007). Recently, red and brown algae have also attracted grow- genes acquired over long periods of time, not only by vertical ing interest as potential resources for biofuel production due to descent but also by endosymbiotic gene transfer (EGT) and their huge biomass storages (Bartsch et al., 2008). Therefore, the horizontal gene transfer (HGT) during both the primary and corresponding novel carbohydrate metabolism pathways have the secondary endosymbiosis processes (Green, 2011; Tirich- become long-term areas of focus in research. In addition, there ine and Bowler, 2011). Algal evolution study is further compli- is a long-standing debate on the existence of a C4 photosyn- cated by the dearth of existing sequenced red and brown algal thetic pathway during CO2-fixation in marine phytoplankton genomes. Within red algae, C. merolae and G. sulphuraria are (Falkowski and Raven, 1997). However, so far only a few carbo- the only unicellular species that have been sequenced, and Py- hydrate metabolism genes, such as the genes encoding GDP- ropia yezoensis and Chondrus crispus are the only multicellular mannose dehydrogenase of Ectocarpus silicuiosus (Tenhaken et species that have been sequenced. For brown algae, a compre- al., 2011) and mannuronan C-5-epimerase of Laminaria digita- hensive view of genetic characteristics was not available until ta (Nyvall et al., 2003) in the alginate biosynthesis pathway, and 2010, when the complete genome sequence of E. silicilosus, a one gene encoding the first enzyme, mannitol-1-phosphate de- small multicellular brown alga from the order Ectocarpales, hydrogenase in the mannitol biosynthesis pathway (Rousvoal was published (Cock et al., 2010). In addition, expressed se- et al., 2011), have been characterized by molecular biological quence tag (EST) libraries of G. sulphuraria (Weber et al., 2004) experiments. and RNA-seq data of Pyropia yezoensis of Rhodophyta (Liang The origin and evolution of phaeophytes and rhodophytes et al., 2010), Saccharina japonica (Deng et al., 2012), S. latis- is also a research hotspot. Rhodophytes are believed to have sima (Heinrich et al., 2012) and E. siliculosus (Dittami et al., originated from a non-photosynthetic unicellular eukaryote 2009) of Phaeophyceae were the only molecular data available engulfing a photosynthetic cyanobacterium 1.5–1.8 billion for studies in brown algae and red algae until now. Therefore, years ago (Gould et al., 2008; Kutschera and Niklas, 2005; Parker more genome information on more species is needed to solve et al., 2008). Termed the primary endosymbiosis, this event these questions. gave rise to the extant Plantae (or Archaeplastida), consisting In November 2009, a NESCent/iPlant-sponsored 1 000 Plant of three photosynthetic lineages: Glaucophyta, Rhodophyta (1KP) Analysis Workshop was held in Phoenix to initiate the 1 000 (red algae), and a collective group of Chlorophyta (green algae) Plant Transcriptome Sequencing Project (1KP Project, www. and land plants, whose chloroplasts have double layered mem- onekp.com). The project aimed to resolve relationships across branes (Simon et al., 2009). After the primary endosymbiosis, the green plant phylogeny and elucidate processes contributing a second heterotrophic eukaryote engulfed a unicellular green to diversification and biological innovations, including origins or red photosynthetic eukaryote, resulting in a variety of sec- of multicellularity, colonization of land, the evolution of vascu- ondary-endosymbiosis photosynthetic eukaryotes. These sec- lar systems, and the origins of seeds and flowers. The 1KP Proj- ondary-endosymbiosis photosynthetic eukaryotes have three ect will generate unparalleled plant sequence databases for in- or four membraned chloroplasts and include cryptophytes, vestigating the evolution of gene families, regulatory networks haptophytes,
Recommended publications
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Colpomenia Sinuosa (Mertens Ex Roth) Derbès & Solier, 1851
    Colpomenia sinuosa (Mertens ex Roth) Derbès & Solier, 1851 AphiaID: 145857 . Chromista (Reino) > Harosa (Subreino) > Heterokonta (Infrareino) > Ochrophyta (Filo) > Phaeista (Subfilo) > Limnista (Infrafilo) > Fucistia (Superclasse) > Phaeophyceae (Classe) > Ectocarpales (Ordem) > Scytosiphonaceae (Familia) © Vasco Ferreira Sinónimos Asperococcus sinuosus (Mertens ex Roth) Bory de Saint-Vincent, 1832 Asperococcus sinuosus (C.Agardh) Zanardini, 1841 Colpomenia sinuosa f. typica Setchell & N.L.Gardner, 1925 Encoelium sinuosum (Mertens ex Roth) C.Agardh, 1820 Encoelium vesicatum (Harvey) Kützing, 1849 1 Hydroclathrus sinuosus (Mertens) ex Roth) Zanardini, 1843 Soranthera leathesiformis P.Crouan & H.Crouan, 1865 Stilophora sinuosa (Mertens ex Roth) C.Agardh, 1827 Stilophora vesicata Harvey, 1834 Tremella cerina Clemente, 1807 Tremella rugosula Clemente, 1807 Ulva sinuosa Mertens ex Roth, 1806 Referências additional source Guiry, M.D. & Guiry, G.M. (2019). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. , available online at http://www.algaebase.org [details] basis of record Guiry, M.D. (2001). Macroalgae of Rhodophycota, Phaeophycota, Chlorophycota, and two genera of Xanthophycota, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels, 50: pp. 20-38[details] additional source Silva, P.C.; Basson, P.W.; Moe, R.L. (1996). Catalogue of the Benthic Marine Algae of the Indian Ocean. University of California Publications in Botany. 79, xiv+1259 pp. ISBN 0–520–09810–2., available online athttps://books.google.com/books?id=vuWEemVY8WEC&pg=PA5 [details] additional source Fredericq, S., T. O. Cho, S. A. Earle, C. F. Gurgel, D. M. Krayesky, L.
    [Show full text]
  • BROWN ALGAE [147 Species] (
    CHECKLIST of the SEAWEEDS OF IRELAND: BROWN ALGAE [147 species] (http://seaweed.ucg.ie/Ireland/Check-listPhIre.html) PHAEOPHYTA: PHAEOPHYCEAE ECTOCARPALES Ectocarpaceae Acinetospora Bornet Acinetospora crinita (Carmichael ex Harvey) Kornmann Dichosporangium Hauck Dichosporangium chordariae Wollny Ectocarpus Lyngbye Ectocarpus fasciculatus Harvey Ectocarpus siliculosus (Dillwyn) Lyngbye Feldmannia Hamel Feldmannia globifera (Kützing) Hamel Feldmannia simplex (P Crouan et H Crouan) Hamel Hincksia J E Gray - Formerly Giffordia; see Silva in Silva et al. (1987) Hincksia granulosa (J E Smith) P C Silva - Synonym: Giffordia granulosa (J E Smith) Hamel Hincksia hincksiae (Harvey) P C Silva - Synonym: Giffordia hincksiae (Harvey) Hamel Hincksia mitchelliae (Harvey) P C Silva - Synonym: Giffordia mitchelliae (Harvey) Hamel Hincksia ovata (Kjellman) P C Silva - Synonym: Giffordia ovata (Kjellman) Kylin - See Morton (1994, p.32) Hincksia sandriana (Zanardini) P C Silva - Synonym: Giffordia sandriana (Zanardini) Hamel - Only known from Co. Down; see Morton (1994, p.32) Hincksia secunda (Kützing) P C Silva - Synonym: Giffordia secunda (Kützing) Batters Herponema J Agardh Herponema solitarium (Sauvageau) Hamel Herponema velutinum (Greville) J Agardh Kuetzingiella Kornmann Kuetzingiella battersii (Bornet) Kornmann Kuetzingiella holmesii (Batters) Russell Laminariocolax Kylin Laminariocolax tomentosoides (Farlow) Kylin Mikrosyphar Kuckuck Mikrosyphar polysiphoniae Kuckuck Mikrosyphar porphyrae Kuckuck Phaeostroma Kuckuck Phaeostroma pustulosum Kuckuck
    [Show full text]
  • New Records of Benthic Brown Algae (Ochrophyta) from Hainan Island (1990 - 2016)
    Titlyanova TV et al. Ochrophyta from Hainan Data Paper New records of benthic brown algae (Ochrophyta) from Hainan Island (1990 - 2016) Tamara V. Titlyanova1, Eduard A. Titlyanov1, Li Xiubao2, Bangmei Xia3, Inka Bartsch4 1National Scientific Centre of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevskogo 17, Vladivostok, 690041, Russia; 2Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 3Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, PR China; 4Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany Corresponding author: E Titlyanov, e-mail: [email protected] Abstract This study reports on the intertidal and shallow subtidal brown algal flora from Hainan Island in the South China Sea, based on extensive sample collection conducted in 1990, 1992 and 2008−2016. The analysis revealed 27 new records of brown algae for Hainan Island, including 5 species which also constitute new records for China. 21 of these species are de- scribed with photographs and an annotated list of all species with information on life forms, habitat (localities and tidal zones) and their geographical distribution is provided. Keywords: Hainan Island, new records, seaweeds, brown algae Introduction et al. 1994; Hodgson & Yau 1997; Tadashi et al. 2008). Overall, algal species richness also changed. Hainan Island is located on the subtropical northern Partial inventory of the benthic flora of Hainan has periphery of the Pacific Ocean in the South China Sea already been carried out (Titlyanov et al. 2011a, 2015, 2016; (18˚10′-20˚9′ N, 108˚37′-111˚1′ E).
    [Show full text]
  • The Effects of Contemporary Selection and Dispersal Limitation on the Community Assembly of Acidophilic Microalgae1
    J. Phycol. 54, 720–733 (2018) © 2018 Phycological Society of America DOI: 10.1111/jpy.12771 THE EFFECTS OF CONTEMPORARY SELECTION AND DISPERSAL LIMITATION ON THE COMMUNITY ASSEMBLY OF ACIDOPHILIC MICROALGAE1 Chia-Jung Hsieh3 Department of Life Science, Tunghai University, Taichung 40704, Taiwan Shing Hei Zhan3 Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada Chen-Pan Liao3 Department of Life Science, Tunghai University, Taichung 40704, Taiwan Sen-Lin Tang Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan Liang-Chi Wang Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan Tsuyoshi Watanabe Tohoku National Fisheries Research Institute, Fisheries Research Agency, Miyagi 985-0001, Japan Paul John L. Geraldino Department of Biology, University of San Carlos, Cebu 6000, Philippines and Shao-Lun Liu 2 Department of Life Science, Tunghai University, Taichung 40704, Taiwan Extremophilic microalgae are primary producers partitioning revealed that dispersal limitation has a in acidic habitats, such as volcanic sites and acid greater influence on the community assembly of mine drainages, and play a central role in microalgae than contemporary selection. Consistent biogeochemical cycles. Yet, basic knowledge about with this finding, community similarity among the their species composition and community assembly sampled sites decayed more quickly over is lacking. Here, we begin to fill this knowledge gap geographical distance than differences in by performing the first large-scale survey of environmental factors. Our work paves the way for microalgal diversity in acidic geothermal sites across future studies to understand the ecology and the West Pacific Island Chain. We collected 72 biogeography of microalgae in extreme habitats.
    [Show full text]
  • 2004 University of Connecticut Storrs, CT
    Welcome Note and Information from the Co-Conveners We hope you will enjoy the NEAS 2004 meeting at the scenic Avery Point Campus of the University of Connecticut in Groton, CT. The last time that we assembled at The University of Connecticut was during the formative years of NEAS (12th Northeast Algal Symposium in 1973). Both NEAS and The University have come along way. These meetings will offer oral and poster presentations by students and faculty on a wide variety of phycological topics, as well as student poster and paper awards. We extend a warm welcome to all of our student members. The Executive Committee of NEAS has extended dormitory lodging at Project Oceanology gratis to all student members of the Society. We believe this shows NEAS members’ pride in and our commitment to our student members. This year we will be honoring Professor Arthur C. Mathieson as the Honorary Chair of the 43rd Northeast Algal Symposium. Art arrived with his wife, Myla, at the University of New Hampshire in 1965 from California. Art is a Professor of Botany and a Faculty in Residence at the Jackson Estuarine Laboratory of the University of New Hampshire. He received his Bachelor of Science and Master’s Degrees at the University of California, Los Angeles. In 1965 he received his doctoral degree from the University of British Columbia, Vancouver, Canada. Over a 43-year career Art has supervised many undergraduate and graduate students studying the ecology, systematics and mariculture of benthic marine algae. He has been an aquanaut-scientist for the Tektite II and also for the FLARE submersible programs.
    [Show full text]
  • Algae-2019-34-3-217-Suppl2.Pdf
    Algae July 22, 2019 [Epub ahead of print] Supplementary Table S2. Mitochondrial cox3 and atp6 sequences retrieved from GenBank in this study Accession No. Species name Reference cox3 atp6 Colpomenia bullosa JQ918798 - Lee et al. (2012) JQ918799 - C. claytoniae HQ833813 - Boo et al. (2011) HQ833814 - C. ecuticulata HQ833775 - Boo et al. (2011) HQ833776 - C. expansa HQ833780 - Boo et al. (2011) HQ833781 - C. durvillei JQ918811 - Lee et al. (2012) JQ918812 - C. peregrina JX027338 JX027298 JX027362 JX027330 Lee et al. (2014a) JX027370 JX027336 JX027375 JX027337 C. phaeodactyla JQ918814 - Lee et al. (2012) JQ918815 - C. ramosa JQ918789 - Lee et al. (2012) C. sinuosa HQ833777 - Boo et al. (2011) HQ833778 - JX944760 - Lee et al. (2013) JX944761 - C. tuberculata HQ833773 - Boo et al. (2011) HQ833774 - Ectocarpus siliculosus NC030223 NC030223 Cock et al. (2010) Scytosiphon lomentaria NC025240 NC025240 Liu et al. (2016) -, no sequences found in GenBank. REFERENCES M., Tonon, T., Tregear, J. W., Valentin, K., von Dassow, P., Yamagishi, T., Van de Peer, Y. & Wincker, P. 2010. The Boo, S. M., Lee, K. M., Cho, G. Y. & Nelson, W. 2011. Colpome- Ectocarpus genome and the independent evolution of nia claytonii sp. nov. (Scytosiphonaceae, Phaeophyceae) multicellularity in brown algae. Nature 465:617-621. based on morphology and mitochondrial cox3 sequenc- Lee, K. M., Boo, G. H., Coyer, J. A., Nelson, W. W., Miller, K. A. & es. Bot. Mar. 54:159-167. Boo, S. M. 2014a. Distribution patterns and introduction Cock, J. M., Sterck, L., Rouzé, P., Scornet, D., Allen, A. E., pathways of the cosmopolitan brown alga Colpomenia Amoutzias, G., Anthouard, V., Artiguenave, F., Aury, J.
    [Show full text]
  • Gloiosiphoniaceae, Rhodophyta) 1
    Pacific Science (1984), vol. 38, no. 4 © 1985 by the University of Hawaii Press. All rights reserved Peleophycus multiprocarpium gen. et sp. nov. (Gloiosiphoniaceae, Rhodophyta) 1 ISABELLA A. ABBorr2 ABSTRACT: Peleophycus multiprocarpium is described as a genus and species new to the red algal family Gloiosiphoniaceae (Cryptonemiales), in which a given supporting cell may bear one or more carpogonial branches and one to several auxiliary cell branches. Though several gonimoblasts could thus be formed on the same supporting cell, this condition has not been observed. Nonetheless it suggests a possible phylogeneticpathway from less complicated to more complex relationships of reproductive branches. In its structure of reproductive organs, Peleophycus seems most closely related to Gloeophycus, described from Korea and northwestern Japan. Peleophycus is one of several new genera and species that occurred in an unexpected subtidal (ca. 10-12 m depth) spring marine flora in the subtropics off Hawaii. THOUGH THE DETAILS OF postfertilization ev­ filament. This filament is in addition to an ents in many Florideophyceae are essentially already established pattern of vegetative in the same state ofknowledge as described by branching. This is the meaning of " auxiliary Kylin (1956), information on others, parti­ cell in an accessory or specialized filament" cularly members of the Ceramiales (Wollas­ (translated from Kylin 1930, 1956). In the ton 1968, Gordon 1972) and the austral Gig­ Kallymeniaceae (Norris 1957), a nearly com­ artinales (Kraft 1975, 1977a,-1977b, 1978), has .plete evolutionary series is exhibited by vari­ added dimension to our knowledge as well as ous species: from auxiliary cells and carpo­ substantiated the major lines of the classifi­ gonial branches on different and separated cation of Kylin (1956).
    [Show full text]
  • Caracterização Da Diversidade De Eucariotas Fototróficos Provenientes De Águas Ácidas De Mina
    Universidade do Algarve Faculdade de Ciências e Tecnologia Caracterização da Diversidade de Eucariotas Fototróficos Provenientes de Águas Ácidas de Mina Telma Cristina Teixeira Valente Mestrado em Biologia Molecular e Microbiana Faro 2012 Universidade do Algarve Faculdade de Ciências e Tecnologia Telma Cristina Teixeira Valente (Licenciada em Bioquímica) Mestrado em Biologia Molecular e Microbiana Orientada por: Prof.ª Doutora Margarida P. Reis Prof.ª Doutora Filomena Fonseca CIMA – Laboratório de Ecologia Molecular e Microbiana Faro 2012 After a while you learn the subtle difference between holding a hand and chaining a soul and you learn that love doesn't mean leaning and company doesn't always mean security. And you begin to learn that kisses aren't contracts and presents aren't promises and you begin to accept your defeats with your head up and your eyes ahead with the grace of woman, not the grief of a child and you learn to build all your roads on today because tomorrow's ground is too uncertain for plans and futures have a way of falling down in mid-flight. After a while you learn that even sunshine burns if you get too much so you plant your own garden and decorate your own soul instead of waiting for someone to bring you flowers. And you learn that you really can endure you really are strong you really do have worth and you learn and you learn with every goodbye, you learn... Veronica Shoffstall 1971 Este trabalho é da exclusiva responsabilidade de: ____________________________________ Telma Valente Agradecimentos A realização deste trabalho não teria acontecido sem a boa influência de algumas pessoas que foram fundamentais.
    [Show full text]
  • New Records of Marine Algae from the 1974 R /V Dobbin Cruise to the Gulf of California
    SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 34 New Records of Marine Algae from the 1974 R /V Dobbin Cruise to the Gulf of California James N. Norris and Xatina E. Bucher SMITHSONIAN INSTITUTION PRESS City of Washington 1976 ABSTRACT Norris, J. N., and K. E. Bucher. New Records of Marine Algae from the 1974 R/V Dolphin Cruise to the Gulf of California. Smithsonian Contributions to Botany, number 34, 22 pages, 13 figures, 1976.-Six species of benthic marine algae (one Chlorophyta, two Phaeophyta, and three Rhodophyta) are newly reported from the Gulf of California, hfexico. Species of Halicystis, Sporochnus, Bonnemaisonia, Dudresnnya, and Sebdenia represent genera new to the Gulf, with the last being new to North America. The distribu~ionof twelve other species is extended. Two new nomenclatural combinations, Dasya bailloziviana var. nudicaulus and Dasya baillouviana var, stanfordiana, are proposed. The morphological variation of some species is discussed. Spermatangia of Dudresnnya colombiana, and tetrasporangia and spermatangia of Kallymenia pertusa are re- ported and described for the first time. OFFICIALPUBLICATION DATE is handstam ed in a limited number of initial copies and is recorded in the Institution's annual report, Srnit!sonian Year. SERIESCOVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllum japonicum Siebold and Zuccarini. Library of Congress Cataloging in Publication Data Norris, James N. New records of marine algae from the 1974 R/V Dolphin cruise to the Gulf of California. (Smithsonian contributions to botany ; no. 34) Bibliography: p. 1. Marine algae-California, Gulf of. 2. R/V Dolphin (Ship) I. Bucher, Katina E., joint author. 11. Title 111.
    [Show full text]
  • SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
    PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.
    [Show full text]