Rapid Evolutionary Turnover Underlies Conserved Lncrna–Genome Interactions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Editor on Journal of Cell Science Michael Way (Editor-In-Chief)
© 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs229740. doi:10.1242/jcs.229740 EDITORIAL New Editor on Journal of Cell Science Michael Way (Editor-in-Chief) As someone who has worked on things related to the actin cytoskeleton my whole research career, the nucleus was not something I paid much attention to. Yes, there were scattered historical reports of actin in the nucleus long before I started my PhD, but no one believed actin was really there of course – it was all an artefact of fixation, you know. Nuclear actin was taboo and no one talked about it at the meetings I went to as a student and postdoc. How wrong we were – today nuclear actin is alive and kicking, although there are definitely more questions than answers concerning what it is actually doing there. We now appreciate that the nucleus contains a wide assortment of proteins associated with the cytoplasmic actin cytoskeleton including myosin motors and actin nucleators such as the Arp2/3 complex. In addition, it should not be forgotten that many chromatin-associated complexes including SWI/SNF and INO80/ SWR also contain multiple actin-related proteins, as well as actin itself. It strikes me that maybe we should all be paying more attention to the nucleus and not just because it contains my favourite proteins! Maybe that’s why, in recent years, we’ve been seeing more submissions to JCS that are focused on different aspects of the nucleus and that traditionally appeared in journals with ‘molecular’ in their titles. -
Temporal Flexibility of Gene Regulatory Network Underlies a Novel Wing Pattern in Flies
Temporal flexibility of gene regulatory network underlies a novel wing pattern in flies Héloïse D. Dufoura,b, Shigeyuki Koshikawa (越川滋行)a,b,1,2,3, and Cédric Fineta,b,3,4 aHoward Hughes Medical Institute, University of Wisconsin, Madison, WI 53706; and bLaboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706 Edited by Denis Duboule, University of Geneva, Geneva 4, Switzerland, and approved April 6, 2020 (received for review February 3, 2020) Organisms have evolved endless morphological, physiological, and Nevertheless, it does not explain how the new expression of behavioral novel traits during the course of evolution. Novel traits the coopted toolkit genes does not interfere with the develop- were proposed to evolve mainly by orchestration of preexisting ment of the tissue. Some authors have suggested that the reuse genes. Over the past two decades, biologists have shown that of toolkit genes might only happen during late development after cooption of gene regulatory networks (GRNs) indeed underlies completion of the early function of the redeployed genes (21, 22, numerous evolutionary novelties. However, very little is known 29). However, little is known about the properties of a GRN that about the actual GRN properties that allow such redeployment. allow the cooption of one or several of its components/genes Here we have investigated the generation and evolution of the without impairing the development of the tissue. complex wing pattern of the fly Samoaia leonensis. We show that In this study, we use the complex wing pigmentation pattern of the transcription factor Engrailed is recruited independently from the fly species Samoaia leonensis as a model to address how the the other players of the anterior–posterior specification network to generate a new wing pattern. -
Functional Genetic Approaches to Provide Evidence for the Role of Toolkit Genes in the Evolution of Complex Color Patterns in Drosophila Guttifera
Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2021 FUNCTIONAL GENETIC APPROACHES TO PROVIDE EVIDENCE FOR THE ROLE OF TOOLKIT GENES IN THE EVOLUTION OF COMPLEX COLOR PATTERNS IN DROSOPHILA GUTTIFERA Mujeeb Olushola Shittu Michigan Technological University, [email protected] Copyright 2021 Mujeeb Olushola Shittu Recommended Citation Shittu, Mujeeb Olushola, "FUNCTIONAL GENETIC APPROACHES TO PROVIDE EVIDENCE FOR THE ROLE OF TOOLKIT GENES IN THE EVOLUTION OF COMPLEX COLOR PATTERNS IN DROSOPHILA GUTTIFERA", Open Access Dissertation, Michigan Technological University, 2021. https://doi.org/10.37099/mtu.dc.etdr/1174 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Biology Commons, Developmental Biology Commons, Evolution Commons, Molecular Genetics Commons, and the Other Cell and Developmental Biology Commons FUNCTIONAL GENETIC APPROACHES TO PROVIDE EVIDENCE FOR THE ROLE OF TOOLKIT GENES IN THE EVOLUTION OF COMPLEX COLOR PATTERNS IN DROSOPHILA GUTTIFERA By Mujeeb Olushola Shittu A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Biochemistry and Molecular Biology MICHIGAN TECHNOLOGICAL UNIVERSITY 2021 ©2021 Mujeeb Olushola Shittu This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Biochemistry and Molecular Biology. Department of Biological Sciences Dissertation Advisor: Dr. Thomas Werner Committee Member: Dr. Chandrashekhar -
Cooperative and Antagonistic Contributions of Two Heterochromatin Proteins to Transcriptional Regulation of the Drosophila Sex Determination Decision
Cooperative and Antagonistic Contributions of Two Heterochromatin Proteins to Transcriptional Regulation of the Drosophila Sex Determination Decision Hui Li1, Janel Rodriguez2, Youngdong Yoo1, Momin Mohammed Shareef1, RamaKrishna Badugu1, Jamila I. Horabin2.*, Rebecca Kellum1.* 1 Department of Biology, University of Kentucky, Lexington, Kentucky, United States of America, 2 Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, United States of America Abstract Eukaryotic nuclei contain regions of differentially staining chromatin (heterochromatin), which remain condensed throughout the cell cycle and are largely transcriptionally silent. RNAi knockdown of the highly conserved heterochromatin protein HP1 in Drosophila was previously shown to preferentially reduce male viability. Here we report a similar phenotype for the telomeric partner of HP1, HOAP, and roles for both proteins in regulating the Drosophila sex determination pathway. Specifically, these proteins regulate the critical decision in this pathway, firing of the establishment promoter of the masterswitch gene, Sex-lethal (Sxl). Female-specific activation of this promoter, SxlPe, is essential to females, as it provides SXL protein to initiate the productive female-specific splicing of later Sxl transcripts, which are transcribed from the maintenance promoter (SxlPm) in both sexes. HOAP mutants show inappropriate SxlPe firing in males and the concomitant inappropriate splicing of SxlPm-derived transcripts, while females show premature firing of SxlPe. HP1 mutants, by contrast, display SxlPm splicing defects in both sexes. Chromatin immunoprecipitation assays show both proteins are associated with SxlPe sequences. In embryos from HP1 mutant mothers and Sxl mutant fathers, female viability and RNA polymerase II recruitment to SxlPe are severely compromised. Our genetic and biochemical assays indicate a repressing activity for HOAP and both activating and repressing roles for HP1 at SxlPe. -
A Combined RAD-Seq and WGS Approach Reveals the Genomic
www.nature.com/scientificreports OPEN A combined RAD‑Seq and WGS approach reveals the genomic basis of yellow color variation in bumble bee Bombus terrestris Sarthok Rasique Rahman1,2, Jonathan Cnaani3, Lisa N. Kinch4, Nick V. Grishin4 & Heather M. Hines1,5* Bumble bees exhibit exceptional diversity in their segmental body coloration largely as a result of mimicry. In this study we sought to discover genes involved in this variation through studying a lab‑generated mutant in bumble bee Bombus terrestris, in which the typical black coloration of the pleuron, scutellum, and frst metasomal tergite is replaced by yellow, a color variant also found in sister lineages to B. terrestris. Utilizing a combination of RAD‑Seq and whole‑genome re‑sequencing, we localized the color‑generating variant to a single SNP in the protein‑coding sequence of transcription factor cut. This mutation generates an amino acid change that modifes the conformation of a coiled‑coil structure outside DNA‑binding domains. We found that all sequenced Hymenoptera, including sister lineages, possess the non‑mutant allele, indicating diferent mechanisms are involved in the same color transition in nature. Cut is important for multiple facets of development, yet this mutation generated no noticeable external phenotypic efects outside of setal characteristics. Reproductive capacity was reduced, however, as queens were less likely to mate and produce female ofspring, exhibiting behavior similar to that of workers. Our research implicates a novel developmental player in pigmentation, and potentially caste, thus contributing to a better understanding of the evolution of diversity in both of these processes. Understanding the genetic architecture underlying phenotypic diversifcation has been a long-standing goal of evolutionary biology. -
Evolution of Gene Dosage on the Z-Chromosome of Schistosome
RESEARCH ARTICLE Evolution of gene dosage on the Z-chromosome of schistosome parasites Marion A L Picard1, Celine Cosseau2, Sabrina Ferre´ 3, Thomas Quack4, Christoph G Grevelding4, Yohann Coute´ 3, Beatriz Vicoso1* 1Institute of Science and Technology Austria, Klosterneuburg, Austria; 2University of Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University Montpellier, Perpignan, France; 3Universite´ Grenoble Alpes, CEA, Inserm, BIG-BGE, Grenoble, France; 4Institute for Parasitology, Biomedical Research Center Seltersberg, Justus- Liebig-University, Giessen, Germany Abstract XY systems usually show chromosome-wide compensation of X-linked genes, while in many ZW systems, compensation is restricted to a minority of dosage-sensitive genes. Why such differences arose is still unclear. Here, we combine comparative genomics, transcriptomics and proteomics to obtain a complete overview of the evolution of gene dosage on the Z-chromosome of Schistosoma parasites. We compare the Z-chromosome gene content of African (Schistosoma mansoni and S. haematobium) and Asian (S. japonicum) schistosomes and describe lineage-specific evolutionary strata. We use these to assess gene expression evolution following sex-linkage. The resulting patterns suggest a reduction in expression of Z-linked genes in females, combined with upregulation of the Z in both sexes, in line with the first step of Ohno’s classic model of dosage compensation evolution. Quantitative proteomics suggest that post-transcriptional mechanisms do not play a major role in balancing the expression of Z-linked genes. DOI: https://doi.org/10.7554/eLife.35684.001 *For correspondence: [email protected] Introduction In species with separate sexes, genetic sex determination is often present in the form of differenti- Competing interests: The ated sex chromosomes (Bachtrog et al., 2014). -
Max Planck Researchers Reveal How the DNA Is Made Accessible for Gene Transcription
Public relations Marcus Rockoff Tel: 0761 - 5108 - 368 [email protected] Press release Freiburg i.Br., Who keeps an eye on the house keeper? March 4, 2019 Max Planck researchers reveal how the DNA is made accessible for page 1 of 3 gene transcription It is essential for our cells that the genes on the chromosomes are expressed in the cor- rect dose in each cell type. This also applies to the so-called housekeeping genes, which are necessary for the maintenance of the basic functions of each cell. Researchers at the Max Planck Institute for Immunobiology and Epigenetics now have succeeded in show- ing how transcription is started, especially with household genes, and how the required level of gene dose can be maintained. The study appeared in the journal Genes and Development and uses the fruit fly Drosophila as an example to show how a highly con- served protein complex called NSL positions the nucleosomes in such a way that it is possible for the cell to start reading the genes and control the level of gene expression. In our bodies, there are more than 200 different cell types. Cells take on their identities by switching on distinct sets of genes. But specific genes have to be transcribed in every cell. Scientists refer to them as ‘housekeeping genes’ because their are required for supporting basic cellular function such as metabolism. However, as every organ and cell type is functionally unique, they need a different dose of each active gene to meet their individual requirements. Moreover, a deregulation of these processes can lead to severe health problems or cancer. -
Amanitin Resistance in Drosophila Melanogaster: a Genome-Wide Association Approach
RESEARCH ARTICLE α-amanitin resistance in Drosophila melanogaster: A genome-wide association approach Chelsea L. Mitchell1, Catrina E. Latuszek1, Kara R. Vogel2, Ian M. Greenlund1, Rebecca E. Hobmeier1, Olivia K. Ingram1, Shannon R. Dufek1, Jared L. Pecore1, Felicia R. Nip3, Zachary J. Johnson4, Xiaohui Ji5, Hairong Wei5, Oliver Gailing5, Thomas Werner1* 1 Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America, 2 Department of Neurology, University of Wisconsin School of Medicine and Public Health, 1300 University Ave., Madison, WI, United States of America, 3 College of Human Medicine, a1111111111 Michigan State University, Clinical Center, East Lansing, MI, United States of America, 4 U.S. Forest Service, a1111111111 Salt Lake Ranger District 6944 S, 3000 E, Salt Lake City, UT, United States of America, 5 School of Forest a1111111111 Resources and Environmental Sciences, Michigan Technological University, 1400 Townsend Dr., Houghton, MI, United States of America a1111111111 a1111111111 * [email protected] Abstract OPEN ACCESS We investigated the mechanisms of mushroom toxin resistance in the Drosophila Genetic Citation: Mitchell CL, Latuszek CE, Vogel KR, Reference Panel (DGRP) fly lines, using genome-wide association studies (GWAS). While Greenlund IM, Hobmeier RE, Ingram OK, et al. (2017) α-amanitin resistance in Drosophila Drosophila melanogaster avoids mushrooms in nature, some lines are surprisingly resistant melanogaster: A genome-wide association to α-amanitinÐa toxin found solely in mushrooms. This resistance may represent a pre- approach. PLoS ONE 12(2): e0173162. adaptation, which might enable this species to invade the mushroom niche in the future. doi:10.1371/journal.pone.0173162 Although our previous microarray study had strongly suggested that pesticide-metabolizing Editor: Gregg Roman, University of Mississippi, detoxification genes confer α-amanitin resistance in a Taiwanese D. -
Gain of Cis-Regulatory Activities Underlies Novel Domains of Wingless Gene Expression in Drosophila
Gain of cis-regulatory activities underlies novel domains of wingless gene expression in Drosophila Shigeyuki Koshikawaa,b,c, Matt W. Giorgiannia,b, Kathy Vaccaroa,b, Victoria A. Kassnera,b, John H. Yoderd, Thomas Wernere, and Sean B. Carrolla,b,1 aLaboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706; bHoward Hughes Medical Institute, University of Wisconsin, Madison, WI 53706; cThe Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; dDepartment of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487; and eDepartment of Biological Sciences, Michigan Technological University, Houghton, MI 49931 Contributed by Sean B. Carroll, May 10, 2015 (sent for review April 2, 2015; reviewed by Michael Eisen and Gregory A. Wray) Changes in gene expression during animal development are largely In this case, the Dll protein is said to have been co-opted in the responsible for the evolution of morphological diversity. However, evolution of a new morphological trait. the genetic and molecular mechanisms responsible for the origins However, the mechanism underlying the co-option of Dll is of new gene-expression domains have been difficult to elucidate. not known in this case, nor for any other instances of the co- Here, we sought to identify molecular events underlying the origins option of regulatory genes. It is not known, for example, whether of three novel features of wingless (wg) gene expression that new features of gene expression evolve via the de novo origin of are associated with distinct pigmentation patterns in Drosophila enhancers or through the transposition or modification of existing guttifera. -
Stable Structural Color Patterns Displayed on Transparent Insect Wings
Stable structural color patterns displayed on transparent insect wings Ekaterina Shevtsovaa,1, Christer Hanssona,b,1, Daniel H. Janzenc,1, and Jostein Kjærandsend,1 aDepartment of Biology, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden; bScientific Associate of the Entomology Department, Natural History Museum, London SW7 5BD, United Kingdom; cDepartment of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018; and dDepartment of Biology, Museum of Zoology, Lund University, Helgonavägen 3, SE-22362 Lund, Sweden Contributed by Daniel H. Janzen, November 24, 2010 (sent for review October 5, 2010) Color patterns play central roles in the behavior of insects, and are and F). In laboratory conditions most wings are studied against a important traits for taxonomic studies. Here we report striking and white background (Fig. 1 G, H, and J), or the wings are embedded stable structural color patterns—wing interference patterns (WIPs) in a medium with a refractive index close to that of chitin (e.g., —in the transparent wings of small Hymenoptera and Diptera, ref. 19). In both cases the color reflections will be faint or in- patterns that have been largely overlooked by biologists. These ex- visible. tremely thin wings reflect vivid color patterns caused by thin film Insects are an exceedingly diverse and ancient group and interference. The visibility of these patterns is affected by the way their signal-receiver architecture of thin membranous wings the insects display their wings against various backgrounds with and color vision was apparently in place before their huge radia- different light properties. The specific color sequence displayed tion (20–22). The evolution of functional wings (Pterygota) that lacks pure red and matches the color vision of most insects, strongly can be freely operated in multidirections (Neoptera), coupled suggesting that the biological significance of WIPs lies in visual with small body size, has long been viewed as associated with their signaling. -
The Modular Expression Patterns of Three Pigmentation Genes Prefigure Unique Abdominal Morphologies Seen Among Three Drosophila Species
Michigan Technological University Digital Commons @ Michigan Tech Michigan Tech Publications 12-1-2020 The modular expression patterns of three pigmentation genes prefigure unique abdominal morphologies seen among three Drosophila species William A. Dion Michigan Technological University, [email protected] Mujeeb O. Shittu Michigan Technological University, [email protected] Tessa Steenwinkel Michigan Technological University, [email protected] Komal K.B. Raja Michigan Technological University Prajakta P. Kokate Michigan Technological University, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Biology Commons Recommended Citation Dion, W. A., Shittu, M., Steenwinkel, T., Raja, K., Kokate, P., & Werner, T. (2020). The modular expression patterns of three pigmentation genes prefigure unique abdominal morphologies seen among three Drosophila species. Gene Expression Patterns, 38. http://doi.org/10.1016/j.gep.2020.119132 Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/2618 Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Biology Commons Authors William A. Dion, Mujeeb O. Shittu, Tessa Steenwinkel, Komal K.B. Raja, Prajakta P. Kokate, and Thomas Werner This article is available at Digital Commons @ Michigan Tech: https://digitalcommons.mtu.edu/michigantech-p/2618 Gene Expression Patterns 38 (2020) 119132 Contents lists available at ScienceDirect Gene Expression Patterns journal homepage: -
Cis-Regulatory Evolution and the Origin of Pigment Patterns in Drosophila
articles Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila Nicolas Gompel*†, Benjamin Prud’homme*, Patricia J. Wittkopp†, Victoria A. Kassner & Sean B. Carroll 1Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, 1525 Linden Drive, Madison, Wisconsin 53706, USA * These authors contributed equally to this work † Present addresses: Department of Zoology, Cambridge University, Downing Street, Cambridge CB2 3EJ, UK (N.G.); Department of Molecular Biology and Genetics, 227 Biotechnology Building, Cornell University, Ithaca, New York 14853, USA (P.J.W.) ........................................................................................................................................................................................................................... The gain, loss or modification of morphological traits is generally associated with changes in gene regulation during development. However, the molecular bases underlying these evolutionary changes have remained elusive. Here we identify one of the molecular mechanisms that contributes to the evolutionary gain of a male-specific wing pigmentation spot in Drosophila biarmipes,a species closely related to Drosophila melanogaster. We show that the evolution of this spot involved modifications of an ancestral cis-regulatory element of the yellow pigmentation gene. This element has gained multiple binding sites for transcription factors that are deeply conserved components of the regulatory landscape controlling wing development, including the selector protein Engrailed. The evolutionary stability of components of regulatory landscapes, which can be co-opted by chance mutations in cis-regulatory elements, might explain the repeated evolution of similar morphological patterns, such as wing pigmentation patterns in flies. The evolution of new morphological features is due predominantly at specific positions along the wing, wherever converting proteins to modifications of spatial patterns of gene expression.