Notes - Lecture 3

Total Page:16

File Type:pdf, Size:1020Kb

Notes - Lecture 3 NOTES - LECTURE 3 E. F. WOLD 1. Cartesian products (x5 in Munkres) 1.1. Indexed sets. Definition 1.1. Let A be a non-empty family of sets. An indexing function for A is a surjective function f : J !A from some set J to A; the set J is called the index set. If α 2 J we will let Aα denote the set f(α). Before we define product space, we use the notion of indexed sets to introduce a new notation for unions and intersections. [ Aα α2J will now be taken to mean what we have previously denoted by [α2AA; the union of all the sets in A, and \ Aα α2J will be taken to mean what we have previously denoted by \α2AA; the intersection of all the sets in A (recall that our standing assumption when dealing with intersections is that J be nonempty). If J = f1; 2; :::; ng we have that A consists of sets A1; :::; An, and in agreement with another previous notation we have [ \ Aα = A1 [···[ An and Aα = A1 \···\ An: α2J α2J Remark 1.2. Note that it is only assumed that the map f in the definition of an indexed set is surjective not injective. So for instant J could be Z+ and A = fRg, and f would be the constant map. Date: August 31, 2020. 2010 Mathematics Subject Classification. 32E20. 1 2 WOLD 1.2. Cartesian products. We may now redefine finite Cartesian products. Let A be a family of sets and suppose that f : J = f1; 2; :::; ng ! A is an indexing function. We may then form the union X = A1 [···[ An and consider functions x : f1; :::; ng ! X J such that x(j) = xj 2 Aj for each j. The Cartesian product A = A1 × · · · × An is defined to n be the set of all such x. Note that if all the Aj's are the same set A we usually write A instead of AJ . Now, nothing stops us from considering the larger set Z+ = f1; 2; 3; :::g. If we let fA1;A2;A3; :::g be a family of sets indexed by Z+ we may form the union [ X = An; n2Z+ and consider functions x : Z+ ! X such that xn 2 An for all n. The set of all such functions is the infinite Cartesian product Πn2Z+ An: ! If all the sets An are the same set A we denote this also by A . The reason for the above notation is that the set f0g [ Z+ is sometimes denotet by !, and there ! is a simple bijection f : ! ! Z+ given by f(n) = n + 1. So an alternative notation for A could be AZ+ . We could now go on for any two sets X and Y to define XY . 2. Finite sets (x6 in Munkres) Definition 2.1. A set A is said to be finite if there exists a bijection f : A ! f1; 2; :::; ng = Sn+1 for some n 2 N. Note that for n = 0 this set becomes S1 which by convention is the emptyset. We call n thee cardinality of A; in particular the emptyset has cardinality zero. We will now consider the following question: is the cardinality of a set uniquely determined? Stated in another way: could there be a bijection fn : A ! Sn and a bijection fm : A ! Sm if m 6= n? Since a composition of bijections is a bijection, this could be restated: could there exist a bijection h : Sn ! Sm for n 6= m. This seems of course completely unreasonable but we will never the less give a proof. We start by giving a lemma. Lemma 2.2. Let h : f0; 1g ! f1; 2; :::; ng be a function. Then there exists a function g : f1; 2; :::; ng ! f1; 2; :::; ng such that (i) g(h(0)) = h(1). (ii) g(h(1)) = h(0). (iii) g(j) = j if j2 = fh(0); h(1)g. 3 Proof. To be very pedantic, consider the set A = f1; 2; :::; ng × f1; 2; :::; ng, and construct the set (rule of assignment) using the axiom of specification r = f(j; gj) 2 A : gj = h(1) if j = h(0); gj = h(0) if j = h(1); otherwise gj = jg: Then we have that domain r = f1; 2; :::; ng = range r. Proposition 2.3. Assume that f : Sn ! Sm is a bijection. Then m = n. Proof. We will prove this by induction on n 2 Z+. Thus, we consider first the case n = 1. In that case Sn = S1 = ; and so clearly we cannot have m > 1, and we conclude that m = 1. So the proposition holds for n = 1. Assume then that the proposition holds for some n 2 Z+ with n ≥ 1; we will prove that it also holds for n + 1. So suppose f : Sn+1 ! Sm is a bijection. Then clearly m ≥ 2 since Sn+1 is now non-empty. Let h : f0; 1g ! Sm be the map determined by h(0) = m − 1 and h(1) = f(n + 1). Then the previous lemma furnishes a map g : Sm ! Sm such that setting f~ = g ◦ f we obtain a bijection f~ : Sn+1 ! Sm with f~(n) = m − 1. Thus, we may restrict f~ to get a bijection fb : Sn ! Sm−1. By the induction hypothesis we have that n = m − 1 from which it follows that n + 1 = m. This completes the proof. We will leave it as an exercise to prove the following proposition - similar in spirit. Proposition 2.4. There is no injection f : Sn ! Sm for m < n. Corollary 2.5. Z+ is not finite. Proof. If it were there would be a bijection f : Z+ ! Sn for some n 2 Z+. Taking the restriction ~ we would get an injection f : Sn+1 ! Sn. A contradiction. Another result that we will leave as an exercise to prove the following proposition. Proposition 2.6. Let A be a set, and let f : A ! Sn be an injection for some n 2 Z+. Then A is is finite. Corollary 2.7. Let A and B be finite sets. Then A × B is a finite set. Proof. Then A is in bijective correspondence with Sn, and B with Sm, for some n; m 2 Z+. It suffices to consider the set Sn × Sm. If either m or n equals 1 then A × B = ; which is finite, so we assume m; n ≥ 2. Define a map f : A = Sn × Sm ! Z+ by f(k; l) = 2k · 3l: Then clearly f(A) ⊂ S2n·3m+1, and by uniqueness of prime factorization we have that f is injective. E. F. Wold: Department of Mathematics, University of Oslo, Postboks 1053 Blindern, NO-0316 Oslo, Norway Email address: [email protected].
Recommended publications
  • On Properties of Families of Sets Lecture 2
    On properties of families of sets Lecture 2 Lajos Soukup Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences http://www.renyi.hu/∼soukup 7th Young Set Theory Workshop Recapitulation Recapitulation Definition: A family A⊂P(X) has property B iff χ(A)= 2, where the chromatic number of A is defined as follows: χ(A)=min{λ | ∃f : X → λ ∀A ∈ A |f [A]|≥ 2}. Recapitulation Definition: A family A⊂P(X) has property B iff χ(A)= 2, where the chromatic number of A is defined as follows: χ(A)=min{λ | ∃f : X → λ ∀A ∈ A |f [A]|≥ 2}. Theorem (E. W. Miller, 1937) ω There is an almost disjoint A⊂ ω with χ(A)= ω. Recapitulation Definition: A family A⊂P(X) has property B iff χ(A)= 2, where the chromatic number of A is defined as follows: χ(A)=min{λ | ∃f : X → λ ∀A ∈ A |f [A]|≥ 2}. Theorem (E. W. Miller, 1937) ω There is an almost disjoint A⊂ ω with χ(A)= ω. Theorem (Gy. Elekes, Gy Hoffman, 1973) ω For all infinite cardinal κ there is an almost disjoint A⊂ X with χ(A) ≥ κ. Recapitulation Definition: A family A⊂P(X) has property B iff χ(A)= 2, where the chromatic number of A is defined as follows: χ(A)=min{λ | ∃f : X → λ ∀A ∈ A |f [A]|≥ 2}. Theorem (E. W. Miller, 1937) ω There is an almost disjoint A⊂ ω with χ(A)= ω. Theorem (Gy. Elekes, Gy Hoffman, 1973) ω For all infinite cardinal κ there is an almost disjoint A⊂ X with χ(A) ≥ κ.
    [Show full text]
  • Some Intersection Theorems for Ordered Sets and Graphs
    IOURNAL OF COMBINATORIAL THEORY, Series A 43, 23-37 (1986) Some Intersection Theorems for Ordered Sets and Graphs F. R. K. CHUNG* AND R. L. GRAHAM AT&T Bell Laboratories, Murray Hill, New Jersey 07974 and *Bell Communications Research, Morristown, New Jersey P. FRANKL C.N.R.S., Paris, France AND J. B. SHEARER' Universify of California, Berkeley, California Communicated by the Managing Editors Received May 22, 1984 A classical topic in combinatorics is the study of problems of the following type: What are the maximum families F of subsets of a finite set with the property that the intersection of any two sets in the family satisfies some specified condition? Typical restrictions on the intersections F n F of any F and F’ in F are: (i) FnF’# 0, where all FEF have k elements (Erdos, Ko, and Rado (1961)). (ii) IFn F’I > j (Katona (1964)). In this paper, we consider the following general question: For a given family B of subsets of [n] = { 1, 2,..., n}, what is the largest family F of subsets of [n] satsifying F,F’EF-FnFzB for some BE B. Of particular interest are those B for which the maximum families consist of so- called “kernel systems,” i.e., the family of all supersets of some fixed set in B. For example, we show that the set of all (cyclic) translates of a block of consecutive integers in [n] is such a family. It turns out rather unexpectedly that many of the results we obtain here depend strongly on properties of the well-known entropy function (from information theory).
    [Show full text]
  • Families of Sets and Extended Operations Families of Sets
    Families of Sets and Extended Operations Families of Sets When dealing with sets whose elements are themselves sets it is fairly common practice to refer to them as families of sets, however this is not a definition. In fact, technically, a family of sets need not be a set, because we allow repeated elements, so a family is a multiset. However, we do require that when repeated elements appear they are distinguishable. F = {A , A , A , A } with A = {a,b,c}, A ={a}, A = {a,d} and 1 2 3 4 1 2 3 A = {a} is a family of sets. 4 Extended Union and Intersection Let F be a family of sets. Then we define: The union over F by: ∪ A={x :∃ A∈F x∈A}= {x :∃ A A∈F∧x∈A} A∈F and the intersection over F by: ∩ A = {x :∀ A∈F x∈A}= {x :∀ A A∈F ⇒ x∈A}. A∈F For example, with F = {A , A , A , A } where A = {a,b,c}, 1 2 3 4 1 A ={a}, A = {a,d} and A = {a} we have: 2 3 4 ∪ A = {a ,b , c , d } and ∩ A = {a}. A∈F A∈F Theorem 2.8 For each set B in a family F of sets, a) ∩ A ⊆ B A∈F b) B ⊆ ∪ A. A∈F Pf: a) Suppose x ∈ ∩ A, then ∀A ∈ F, x ∈ A. Since B ∈ F, we have x ∈ B. Thus, ∩ A ⊆ B. b) Now suppose y ∈ B. Since B ∈ F, y ∈ ∪ A. Thus, B ⊆ ∪ A. Caveat Care must be taken with the empty family F, i.e., the family containing no sets.
    [Show full text]
  • Families of Sets
    FORMALIZED MATHEMATICS Number 1, January 1990 Universit´eCatholique de Louvain Families of Sets Beata Padlewska1 Warsaw University Bia lystok Summary. The article contains definitions of the following concepts: family of sets, family of subsets of a set, the intersection of a family of sets. Functors ∪, ∩, and \ are redefined for families of subsets of a set. Some properties of these notions are presented. The terminology and notation used in this paper are introduced in the following papers: [1], [3], and [2]. For simplicity we adopt the following convention: X, Y , Z, Z1, D will denote objects of the type set; x, y will denote objects of the type Any. Let us consider X. The functor \ X, with values of the type set, is defined by for x holds x ∈ it iff for Y holds Y ∈ X implies x ∈ Y, if X 6= ∅, it = ∅, otherwise. The following propositions are true: (1) X 6= ∅ implies for x holds x ∈ \ X iff for Y st Y ∈ X holds x ∈ Y, (2) \ ∅ = ∅, (3) \ X ⊆ [ X, (4) Z ∈ X implies \ X ⊆ Z, (5) ∅∈ X implies \ X = ∅, (6) X 6= ∅ &(for Z1 st Z1 ∈ X holds Z ⊆ Z1) implies Z ⊆ \ X, 1Supported by RPBP.III-24.C1. cf 1990 Fondation Philippe le Hodey 147 ISSN 0777-4028 148 Beata Padlewska (7) X 6= ∅ & X ⊆ Y implies \ Y ⊆ \ X, (8) X ∈ Y & X ⊆ Z implies \ Y ⊆ Z, (9) X ∈ Y & X ∩ Z = ∅ implies \ Y ∩ Z = ∅, (10) X 6= ∅ & Y 6= ∅ implies \(X ∪ Y )= \ X ∩ \ Y, (11) \{x} = x, (12) \{X,Y } = X ∩ Y. Set-Family stands for set .
    [Show full text]
  • Lecture 7 1 Overview 2 Sequences and Cartesian Products
    COMPSCI 230: Discrete Mathematics for Computer Science February 4, 2019 Lecture 7 Lecturer: Debmalya Panigrahi Scribe: Erin Taylor 1 Overview In this lecture, we introduce sequences and Cartesian products. We also define relations and study their properties. 2 Sequences and Cartesian Products Recall that two fundamental properties of sets are the following: 1. A set does not contain multiple copies of the same element. 2. The order of elements in a set does not matter. For example, if S = f1, 4, 3g then S is also equal to f4, 1, 3g and f1, 1, 3, 4, 3g. If we remove these two properties from a set, the result is known as a sequence. Definition 1. A sequence is an ordered collection of elements where an element may repeat multiple times. An example of a sequence with three elements is (1, 4, 3). This sequence, unlike the statement above for sets, is not equal to (4, 1, 3), nor is it equal to (1, 1, 3, 4, 3). Often the following shorthand notation is used to define a sequence: 1 s = 8i 2 N i 2i Here the sequence (s1, s2, ... ) is formed by plugging i = 1, 2, ... into the expression to find s1, s2, and so on. This sequence is (1/2, 1/4, 1/8, ... ). We now define a new set operator; the result of this operator is a set whose elements are two-element sequences. Definition 2. The Cartesian product of sets A and B, denoted by A × B, is a set defined as follows: A × B = f(a, b) : a 2 A, b 2 Bg.
    [Show full text]
  • Cartesian Powers
    Cartesian Powers sequences subsets functions exponential growth +, -, x, … Analogies between number and set operations Numbers Sets Addition Disjoint union Subtraction Complement Multiplication Cartesian product Exponents ? Cartesian Powers of a Set Cartesian product of a set with itself is a Cartesian power A2 = A x A Cartesian square An ≝ A x A x … x A n’th Cartesian power n X |An| = | A x A x … x A | = |A| x |A| x … x |A| = |A|n Practical and theoretical applications Applications California License Plates California Till 1904 no registration 1905-1912 various registration formats one-time $2 fee 1913 ≤6 digits 106 = 1 million If all OK Sam? 1956 263 x 103 ≈ 17.6 m 1969 263 x 104 ≈ 176 m Binary Strings {0,1}n = { length-n binary strings } n-bit strings 0 1 1 n Set Strings Size {0,1} 0 {0,1}0 Λ 1 00 01 1 {0,1}1 0, 1 2 {0,1}2 2 {0,1}2 00, 01, 10, 11 4 000, 001, 011, 010, 10 11 3 {0,1}3 8 100, 110, 101, 111 001 011 … … … … 010 {0,1}3 n {0,1}n 0…0, …, 1…1 2n 000 111 101 | {0,1}n | =|{0,1}|n = 2n 100 110 Subsets The power set of S, denoted ℙ(S), is the collection of all subsets of S ℙ( {a,b} ) = { {}, {a}, {b}, {a,b} } ℙ({a,b}) and {0,1}2 ℙ({a,b}) a b {0,1}2 Subsets Binary strings {} 00 |ℙ(S)| = ? of S of length |S| ❌ ❌ {b} ❌ ✅ 01 {a} ✅ ❌ 10 |S| 1-1 correspondence between ℙ(S) and {0,1} {a,b} ✅ ✅ 11 |ℙ(S)| = | {0,1}|S| | = 2|S| The size of the power set is the power of the set size Functions A function from A to B maps every element a ∈ A to an element f(a) ∈ B Define a function f: specify f(a) for every a ∈ A f from {1,2,3} to {p, u} specify
    [Show full text]
  • Course 221: Michaelmas Term 2006 Section 1: Sets, Functions and Countability
    Course 221: Michaelmas Term 2006 Section 1: Sets, Functions and Countability David R. Wilkins Copyright c David R. Wilkins 2006 Contents 1 Sets, Functions and Countability 2 1.1 Sets . 2 1.2 Cartesian Products of Sets . 5 1.3 Relations . 6 1.4 Equivalence Relations . 6 1.5 Functions . 8 1.6 The Graph of a Function . 9 1.7 Functions and the Empty Set . 10 1.8 Injective, Surjective and Bijective Functions . 11 1.9 Inverse Functions . 13 1.10 Preimages . 14 1.11 Finite and Infinite Sets . 16 1.12 Countability . 17 1.13 Cartesian Products and Unions of Countable Sets . 18 1.14 Uncountable Sets . 21 1.15 Power Sets . 21 1.16 The Cantor Set . 22 1 1 Sets, Functions and Countability 1.1 Sets A set is a collection of objects; these objects are known as elements of the set. If an element x belongs to a set X then we denote this fact by writing x ∈ X. Sets with small numbers of elements can be specified by listing the elements of the set enclosed within braces. For example {a, b, c, d} is the set consisting of the elements a, b, c and d. Two sets are equal if and only if they have the same elements. The empty set ∅ is the set with no elements. Standard notations N, Z, Q, R and C are adopted for the following sets: • the set N of positive integers; • the set Z of integers; • the set Q of rational numbers; • the set R of real numbers; • the set C of complex numbers.
    [Show full text]
  • Equivalents to the Axiom of Choice and Their Uses A
    EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper.
    [Show full text]
  • INTERSECTION PROPERTIES of FAMILIES CONTAINING SETS of NEARLY the SAME SIZE P. Erdős, R. Silverman and A. Stein Abstract a Fami
    INTERSECTION PROPERTIES OF FAMILIES CONTAINING SETS OF NEARLY THE SAME SIZE P . Erdős, R . Silverman and A . Stein Abstract A family F of sets has property B(s) if there exists a set S whose intersection with each set in F is non-empty but contains fewer than s elements . P . Erdős has asked whether there exists an absolute constant c such that every projective plane has property B(c) . In this paper, the authors, as a partial answer to this question, obtain the result that for n sufficiently large, every projective plane of order n has property B(c log n) . The result is a corollary of a theorem applicable to somewhat more general families of finite sets . A family F of sets has property B if there is a set S whose intersection with each set in the family is a proper subset of that set . Many algebraic and combinatorial problems may be restated in terms of property B . P . Erdős [1] proposed property B(s) as a stronger form of property B . A family F has property B(s) if there is a set S whose intersection with each set in the family is a proper subset of that set containing fewer than s elements . Property B(s) has been studied by, among others, Silverman, Levinson, Stein, Abbott and Erdos . Property B is an important combinatorial property, and the related literature includes, for example, a recent paper by D . Kleitman on Sperner families [4] . In this paper we consider 2 questions : 1) P . Erdős has asked whether there exists an absolute constant c such that every projective plane has property B(c) .
    [Show full text]
  • Worksheet: Cardinality, Countable and Uncountable Sets
    Math 347 Worksheet: Cardinality A.J. Hildebrand Worksheet: Cardinality, Countable and Uncountable Sets • Key Tool: Bijections. • Definition: Let A and B be sets. A bijection from A to B is a function f : A ! B that is both injective and surjective. • Properties of bijections: ∗ Compositions: The composition of bijections is a bijection. ∗ Inverse functions: The inverse function of a bijection is a bijection. ∗ Symmetry: The \bijection" relation is symmetric: If there is a bijection f from A to B, then there is also a bijection g from B to A, given by the inverse of f. • Key Definitions. • Cardinality: Two sets A and B are said to have the same cardinality if there exists a bijection from A to B. • Finite sets: A set is called finite if it is empty or has the same cardinality as the set f1; 2; : : : ; ng for some n 2 N; it is called infinite otherwise. • Countable sets: A set A is called countable (or countably infinite) if it has the same cardinality as N, i.e., if there exists a bijection between A and N. Equivalently, a set A is countable if it can be enumerated in a sequence, i.e., if all of its elements can be listed as an infinite sequence a1; a2;::: . NOTE: The above definition of \countable" is the one given in the text, and it is reserved for infinite sets. Thus finite sets are not countable according to this definition. • Uncountable sets: A set is called uncountable if it is infinite and not countable. • Two famous results with memorable proofs.
    [Show full text]
  • Advanced Calculus 1. Definition: the Cartesian Product a × B
    Advanced Calculus 1. Definition: The Cartesian product A × B of sets A and B is A × B = {(a, b)| a ∈ A, b ∈ B}. This generalizes in the obvious way to higher Cartesian products: A1 × · · · × An = {(a1, . , an)| a1 ∈ A1, . , an ∈ An}. 2. Example: The real line R, the plane R2 = R×R, the n-dimensional real vector space Rn, R × [0, T], Rn × [0, T] etc. 3. Definition: The dot product (or inner or scalar product) of vectors x = (x1, . , xn) n and y = (y1, . , yn) in R is n X x · y = xiyi. i=1 n 4. Definition: The magnitude (or 2-norm) of a vector x = (x1, . , xn) in R is 1 " n # 2 X 1 2 2 |x| = xi = (x · x) . i=1 5. Definition: We write f : A 7→ B if f is a function whose domain is a subset of A and whose range is a subset of B. Let x = (x1, . , xn) n n be a point in R . So, if f(x) = f(x1, . , xn) is a function that has its domain in R , we write f : Rn 7→ R. So, for example, if 2 2 f(x1, x2, x3, x4) = x2x4 sin (x1 + x3), then f : R4 7→ R. We say that f takes R4 to R. 6. This notion is easily generalized to functions from Rn to Rm. Let x ∈ Rn and n f1(x), . , fm(x) be functions taking R to R. Then we can define a function f : Rn 7→ Rm, by f(x) = (f1(x), . , fm(x)). 2 7.
    [Show full text]
  • Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Boise State University, [email protected]
    Boise State University ScholarWorks Mathematics Undergraduate Theses Department of Mathematics 5-2014 Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Boise State University, [email protected] Follow this and additional works at: http://scholarworks.boisestate.edu/ math_undergraduate_theses Part of the Set Theory Commons Recommended Citation Rahim, Farighon Abdul, "Axioms of Set Theory and Equivalents of Axiom of Choice" (2014). Mathematics Undergraduate Theses. Paper 1. Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Advisor: Samuel Coskey Boise State University May 2014 1 Introduction Sets are all around us. A bag of potato chips, for instance, is a set containing certain number of individual chip’s that are its elements. University is another example of a set with students as its elements. By elements, we mean members. But sets should not be confused as to what they really are. A daughter of a blacksmith is an element of a set that contains her mother, father, and her siblings. Then this set is an element of a set that contains all the other families that live in the nearby town. So a set itself can be an element of a bigger set. In mathematics, axiom is defined to be a rule or a statement that is accepted to be true regardless of having to prove it. In a sense, axioms are self evident. In set theory, we deal with sets. Each time we state an axiom, we will do so by considering sets. Example of the set containing the blacksmith family might make it seem as if sets are finite.
    [Show full text]