1 EAGLE LAKE RAINBOW TROUT Oncorhynchus Mykiss Aquilarum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Native Trout Waters of California Details Six of the State’S Most Scenic, Diverse, and Significant Native Trout Fisheries
NATIVE TROUT WATERS OF CALIFORNIA Michael Carl The Ecological Angler www.ecoangler.com TABLE OF CONTENTS INTRODUTION – THE ORIGINAL SIX 4 ABOUT THE BOOK 4 CLAVEY RIVER 5 BACKGROUND 6 TROUT POPULATION DATA 6 STREAM POPULATIONS, REGULATIONS, AND ACCESS 7 DIRECTIONS TO REACH SEGMENT 3 AND 4 (E.G., BRIDGE CROSSING CLAVEY RIVER): 7 AREA MAP 8 CLAVEY RIVER FLOW STATISTICS 9 FISHING TECHNIQUES 9 EAGLE LAKE 10 BACKGROUND 11 BIG TROUT FOOD – TUI CHUBS 11 REGULATIONS AND ACCESS 11 DIRECTIONS TO EAGLE LAKE FROM RED BLUFF, CALIFORNIA: 11 AREA MAP 12 PRODUCTIVE TIMES AND ZONES TO FISH 13 FISHING TECHNIQUES 13 SPALDING TRACT – TOPO MAP 14 PIKES POINT – TOPO MAP 15 GOLDEN TROUT CREEK 16 OVERVIEW OF THE WATERSHED 17 ABUNDANCE OF CALIFORNIA GOLDEN TROUT 17 CALIFORNIA GOLDEN TROUT GENETIC DATA 17 STREAM POPULATIONS, REGULATIONS, AND ACCESS 18 DIRECTIONS TO COTTONWOOD PASS TRAILHEAD 18 AREA MAP 19 PHOTO JOURNAL – COTTONWOOD PASS TO TUNNEL MEADOW 20 FISHING TECHNIQUES 23 HEENAN LAKE 24 BACKGROUND 25 FLY ANGLER STATISTICS – 2007 SEASON (8/3/07 TO 10/28/07) 26 REGULATIONS AND ACCESS 27 AREA MAP 27 DIRECTIONS 27 PRODUCTIVE ZONES TO FISH 28 FISHING TECHNIQUES 28 UPPER KERN RIVER 29 BACKGROUND 30 KERN RIVER RAINBOWS 30 DISTRIBUTION OF KERN RIVER RAINBOWS 30 STREAM POPULATIONS, REGULATIONS AND ACCESS 31 MAP – LLOYD MEADOW ROAD TO FORKS OF THE KERN 32 SPOTLIGHT – FORKS OF THE KERN 33 DIRECTIONS AND TRAIL DESCRIPTION 33 RECOMMENDED FISHING GEAR 33 UPPER TRUCKEE RIVER 35 OVERVIEW OF THE WATERSHED 36 ABUNDANCE AND SIZE OF LAHONTAN CUTTHROAT 37 STREAM POPULATIONS, REGULATIONS, ACCESS & DISTANCE 37 DIRECTIONS TO REACH TRAILHEAD: 38 AREA MAP 39 TRAIL DESCRIPTION 40 FISHING TECHNIQUES 40 Introduction – The Original Six The Native Trout Waters of California details six of the state’s most scenic, diverse, and significant native trout fisheries. -
Bonneville Cutthroat Trout (Oncorhynchus Clarki Utah) Bonneville Cutthroat Trout Is One of Three Cutthroat Trout Subspecies Native to Utah
FISH Bonneville Cutthroat Trout (Oncorhynchus clarki utah) Bonneville cutthroat trout is one of three cutthroat trout subspecies native to Utah. Bonneville cutthroat trout historically occurred in the Pleistocene Lake Bonneville basin, which included portions of Idaho, Nevada, Utah, and Wyoming (Kershner 1995). The desiccation of Lake Bonneville into the smaller Great Salt Lake and fragmentation of other stream and lake habitats may have led to three slightly differentiated groups of Bonneville cutthroat trout. These groups are found in the Bonneville basin proper, the Bear River drainage, and the Snake Valley (Behnke 1992). There are five known populations of pure strain Bonneville cutthroat trout on the Fishlake National Forest inhabiting approximately 38 miles of stream habitat. There are several recently reintroduced populations, and several small potential remnant populations. Habitat for the Bonneville cutthroat trout is widely distributed and variable. It ranges from high elevation (3,500 m mean sea level) streams with coniferous and deciduous riparian trees to low elevation (1,000 m mean sea level) streams in sage-steppe grasslands containing herbaceous riparian zones. As such, Bonneville cutthroat trout have adapted to a broad spectrum of habitat conditions throughout their range (Kershner 1995). Sexual maturity is typically reached during the second year for males and the third year for females (May et al. 1978). Both the age at maturity and the annual timing of spawning vary geographically with elevation, temperature, and life history strategy. Lake resident trout may begin spawning at two years of age and usually continue throughout their lives, while adfluvial individuals may not spawn for several years. -
The Native Trouts of the Genus Salmo of Western North America
CItiEt'SW XHPYTD: RSOTLAITYWUAS 4 Monograph of ha, TEMPI, AZ The Native Trouts of the Genus Salmo Of Western North America Robert J. Behnke "9! August 1979 z 141, ' 4,W \ " • ,1■\t 1,es. • . • • This_report was funded by USDA, Forest Service Fish and Wildlife Service , Bureau of Land Management FORE WARD This monograph was prepared by Dr. Robert J. Behnke under contract funded by the U.S. Fish and Wildlife Service, the Bureau of Land Management, and the U.S. Forest Service. Region 2 of the Forest Service was assigned the lead in coordinating this effort for the Forest Service. Each agency assumed the responsibility for reproducing and distributing the monograph according to their needs. Appreciation is extended to the Bureau of Land Management, Denver Service Center, for assistance in publication. Mr. Richard Moore, Region 2, served as Forest Service Coordinator. Inquiries about this publication should be directed to the Regional Forester, 11177 West 8th Avenue, P.O. Box 25127, Lakewood, Colorado 80225. Rocky Mountain Region September, 1980 Inquiries about this publication should be directed to the Regional Forester, 11177 West 8th Avenue, P.O. Box 25127, Lakewood, Colorado 80225. it TABLE OF CONTENTS Page Preface ..................................................................................................................................................................... Introduction .................................................................................................................................................................. -
Fish Stocking Plan
Draft Application for a New License Major Project – Existing Dam New Bullards Bar Reservoir Fish Stocking Plan Security Level: Public Yuba River Development Project FERC Project No. 2246 Draft – December 2013 ©2013, Yuba County Water Agency All Rights Reserved Yuba County Water Agency Yuba River Development Project FERC Project No. 2246 Table of Contents Section No. Description Page No. Glossary – Definitions of Terms, Acronyms and Abbreviations ........................................... GLO-1 1.0 Introduction ...................................................................................................................... 1-1 1.1 Background .......................................................................................................... 1-1 1.1.1 Yuba River Development Project ............................................................ 1-1 1.2 Purpose of the New Bullards Bar Reservoir Fish Stocking Plan ......................... 1-5 1.3 Objectives of the New Bullards Bar Reservoir Fish Stocking Plan..................... 1-5 1.4 Contents of the New Bullards Bar Reservoir Fish Stocking Plan ....................... 1-5 2.0 Regulatory Framework, Fish Assemblage, and Stocking History ................................... 2-1 2.1 Regulatory Framework for Fish Stocking in New Bullards Bar Reservoir ......... 2-1 2.1.1 Forest Service and Cal Fish and Wildlife – Memorandum of Understanding .......................................................................................... 2-1 2.1.2 California Fish and Wildlife Code .......................................................... -
Lake Trout Management Plan
LAKE TROUT MANAGEMENT PLAN DEPARTMENT OF INLAND FISHERIES AND WILDLIFE DIVISION OF FISHERIES AND HATCHERIES PREPARED BY PAUL JOHNSON REGIONAL FISHERIES BIOLOGIST REGION E MARCH 2001 LAKE TROUT LIFE HISTORY Description The lake trout (Salvelinus namaycush) lacks the distinctive coloration of its close relative, the eastern brook trout. Lake trout are usually either dark green or grayish brown in color, with white or pale yellow bean-shaped spots. In clear waters lake trout are often so silvery that the white spots are difficult to see. In stained waters they are very dark, almost black. Generally, a narrow border of white is present along the anterior margins of the pectoral, pelvic, and anal fins. This is most pronounced during spawning; however, at no time is this border as accentuated as it is on the fins of the brook trout. Lake trout fins are not orange or orange-red, like those of the brook trout. Distribution Lake trout are distributed throughout Canada. In the United States their natural range was restricted to northern New England, the Great Lakes, New York, Pennsylvania, Michigan, Minnesota, Montana, Idaho, and Alaska. In Maine they were originally found in about 100 lakes throughout the State. However, lake trout have been successfully reared in hatcheries. Consequently, their range has been extended considerably in the United States. In Maine they have been introduced into waters from Aroostook County in the north, to York County in the south. Throughout their native range lake trout are known by a wide variety of common names. In Maine they are called togue, whereas in other parts of the country and Canada they are referred to as mackinaw, salmon trout, lakers, grey trout, namaycush, Great Falls char, or mountain trout. -
Redband Trout Sub-Sp. (Oncorhynchus Mykiss Sub-Species) Data: Trout and Salmon of North America, Behnke, 2002; Various State and Federal Documents Partners: CA, OR
Redband Trout Sub-Sp. (Oncorhynchus mykiss sub-species) Data: Trout and Salmon of North America, Behnke, 2002; Various state and federal documents Partners: CA, OR. WA, NV, ID, MT, FS, FWS, BLM, Tribes__________________ Status of the Redband Trout: Various forms Historic Distribution of Redband Trout of the Redband trout (RBT) were petitioned to (modified from Behnke, 1996) be listed as Threatened or Endangered in the late 1990’s, but the U.S. Fish and Wildlife Service determined that the sub-species, in the various drainages, did not need the protection of the Endangered Species Act. The various forms of Redband trout in California, Oregon, Washington, Nevada, Idaho and Montana are considered to be sensitive species or species of concern in all the states. The BLM also considers several populations of Redband Trout to be a “sensitive Species”. Sportfishing Status of Redband trout: Native populations of redband trout provide diverse and popular recreational angling opportunities. Their willingness to take a variety of fishing gear, impressive fighting ability when hooked, spectacular appearance and potential to reach large size all contribute to their popularity. Special regulations for waters possessing redband trout population are Although the current distribution is not used to balance angling opportunities with accurately described, regionally located surveys conservation needs. For example, in Nevada, do give some good information. For the recreational angling is allowed for redband purposes of this status assessment, distribution trout with harvest and possession limits ranging in four geographic population groups is from five to ten trout. Angler use on these described. They include 1) the upper redband trout streams and rivers has averaged Sacramento River Basin; 2) The upper interior approximately 7,000 angler use days per year Great Basin in Oregon and Nevada; 3) the since 1993. -
Lake Superior Food Web MENT of C
ATMOSPH ND ER A I C C I A N D A M E I C N O I S L T A R N A T O I I O T N A N U E .S C .D R E E PA M RT OM Lake Superior Food Web MENT OF C Sea Lamprey Walleye Burbot Lake Trout Chinook Salmon Brook Trout Rainbow Trout Lake Whitefish Bloater Yellow Perch Lake herring Rainbow Smelt Deepwater Sculpin Kiyi Ruffe Lake Sturgeon Mayfly nymphs Opossum Shrimp Raptorial waterflea Mollusks Amphipods Invasive waterflea Chironomids Zebra/Quagga mussels Native waterflea Calanoids Cyclopoids Diatoms Green algae Blue-green algae Flagellates Rotifers Foodweb based on “Impact of exotic invertebrate invaders on food web structure and function in the Great Lakes: NOAA, Great Lakes Environmental Research Laboratory, 4840 S. State Road, Ann Arbor, MI A network analysis approach” by Mason, Krause, and Ulanowicz, 2002 - Modifications for Lake Superior, 2009. 734-741-2235 - www.glerl.noaa.gov Lake Superior Food Web Sea Lamprey Macroinvertebrates Sea lamprey (Petromyzon marinus). An aggressive, non-native parasite that Chironomids/Oligochaetes. Larval insects and worms that live on the lake fastens onto its prey and rasps out a hole with its rough tongue. bottom. Feed on detritus. Species present are a good indicator of water quality. Piscivores (Fish Eaters) Amphipods (Diporeia). The most common species of amphipod found in fish diets that began declining in the late 1990’s. Chinook salmon (Oncorhynchus tshawytscha). Pacific salmon species stocked as a trophy fish and to control alewife. Opossum shrimp (Mysis relicta). An omnivore that feeds on algae and small cladocerans. -
Long-Term Captive Breeding Does Not Necessarily Prevent Reestablishment: Lessons Learned from Eagle Lake Rainbow Trout
Rev Fish Biol Fisheries DOI 10.1007/s11160-011-9230-x RESEARCH PAPER Long-term captive breeding does not necessarily prevent reestablishment: lessons learned from Eagle Lake rainbow trout Gerard Carmona-Catot • Peter B. Moyle • Rachel E. Simmons Received: 7 March 2011 / Accepted: 18 July 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Captive breeding of animals is often cited recovering as habitat. With the exception of an as an important tool in conservation, especially for abundant alien brook trout (Salvelinus fontinalis) fishes, but there are few reports of long-term population in Pine Creek, the habitat factors that led (\50 years) success of captive breeding programs, to the presumed near-extinction of Eagle Lake rainbow even in salmonid fishes. Here we describe the captive trout in the early twentieth century have been amelio- breeding program for Eagle Lake rainbow trout, rated, although the final stages of reestablishment Oncorhynchus mykiss aquilarum, which is endemic (eradication of brook trout, unequivocal demonstration to the Eagle Lake watershed of northeastern Califor- of successful spawning migration) have still not been nia. The population in Eagle Lake has been dependent completed. The Eagle Lake rainbow trout story shows on captive breeding for more than 60 years and that long-term captive breeding of migratory salmonid supports a trophy fishery in the lake. Nevertheless, fishes does not necessarily prevent reestablishment of the basic life history, ecological, and genetic traits of wild populations, provided effort is made to counter the subspecies still seem to be mostly intact. Although the effects of hatchery selection and that natural management has apparently minimized negative habitats are restored for reintroduction. -
Additional Information for Lake Ontario Anglers
Additional Information for Anglers 2020 Lake Ontario Stocking Decision Q: How will this stocking reduction impact fishing in 2020? A: The reductions being implemented in 2020 will have little impact on fishing in the near term as the fish that anglers will catch next year have already been stocked in the system. In addition, about 50% of the adult Chinook salmon in Lake Ontario are naturally reproduced or “wild” fish. Q: How will this impact fishing in the future? A: If alewife abundance continues to decline, the size of Chinook may decline, but angler success (i.e. catch rate) may remain high as Chinook salmon become more vulnerable to angling. Q: Are other fish species slated for reductions? A: Not at this time. Q: What are the actual numbers of fish being stocked? A: Even with these reductions, lake-wide salmon and trout stocking in Lake Ontario in 2020 will exceed 3.6 million fish, including approximately 1.1 million Chinook salmon, 755,000 rainbow trout/steelhead, 556,000 brown trout, 601,000 lake trout, 325,000 coho salmon and 200,000 yearling Atlantic salmon. Q: Why isn’t the stocking of other species of trout and salmon being reduced? A: While other trout and salmon species eat alewife, Chinook salmon consume the largest amount in the shortest timespan. Reducing Chinook salmon numbers provides the greatest reduction of alewife consumption in the short-term. Further reducing lake trout stocking is intended to provide more long-term relief, since they grow slower and live longer than Chinook salmon. Lake Ontario’s diversity of trout and salmon supports a world-class fishery, and managers want to maintain that diversity to the extent possible. -
Market-Sized Cutthroat Trout Technical Report Western Regional Aquaculture Center
Feeds for Production of Market-sized Cutthroat Trout Technical Report WESTERN REGIONAL AQUACULTURE CENTER Gary Fornshell, University of Idaho Christopher Myrick, Colorado State University Madison Powell, University of Idaho Wendy Sealey, United States Fish and Wildlife Service United States Department of Agriculture National Institute of Food and Agriculture 1 PROJECT PARTICIPANTS Christopher Myrick, Colorado State University Cheyenne Owens, Colorado State University Biswamitra Patro, University of Idaho Madison Powell, University of Idaho Pat Blaufuss, University of Idaho Tracy Kennedy, University of Idaho Wendy Sealey, United States Fish and Wildlife Service Brian Ham, United States Fish and Wildlife Service Gary Fornshell, University of Idaho Jeremy Liley, Liley Fisheries, Inc. David Brock, Rangen, Inc. Jackie Zimmerman, Skretting USA Rick Barrows, Aquatic Feed Technologies, LLC Photo credits: Cover: Gary Fornshell Above: iStock.com/KaraGrubis 2 Table of Contents Introduction: Why Consider Cutthroat Trout? 1 Snake River Cutthroat Trout—A Culturable Cutthroat 2 Is Raising Fish for the Recreational Market Worthwhile? 3 Overcoming Challenges to Raising Cutthroat Trout 3 Fish Nutrition 101—A Primer on Feed Formulation 3 Feed Pellet Texture Matters 5 Cutthroat Trout Growth—Does It Match Rainbow Trout? 5 Thermal Growth Coefficient 5 Comparing Rainbow and Cutthroat Trout Performance 6 Suggested Readings 10 Acknowledgments 11 Figures 1. Snake River cutthroat trout. 1 2. Map showing the distribution of extant cutthroat trout 2 subspecies in the western United States. 3. Juvenile Snake River cutthroat trout ready for stocking. 3 4. Classic bell-shaped growth-temperature curve. 6 5. Sigmoid growth curve. Based on Fish Hatchery Management, Second Edition, Gary Wedemeyer, editor 7 6. -
Evaluating the Importance of Zoonotic Bacteria
EVALUATING THE IMPORTANCE OF ZOONOTIC BACTERIA, ANTIMICROBIAL USE AND RESISTANCE IN AQUACULTURE AND SEAFOOD A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by NATASA TUSEVLJAK In partial fulfillment of requirements for the degree of Master of Science April, 2011 © Natasa Tusevljak, 2011 Library and Archives Biblioth6que et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'^dition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre r6f6rence ISBN: 978-0-494-80085-0 Our file Notre r^f6rence ISBN: 978-0-494-80085-0 NOTICE; AVIS; The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. -
LAKE TROUT (Salvelinus Namaycush)
LAKE TROUT (Salvelinus namaycush) Common Names: Lake trout, laker, grey trout, Mackinaw, Great Lakes trout Lake Michigan Sport Catch in Wisconsi n : 100,000 per year Preferred Temperature Range: 48‐52 ºF, 9‐11 ºC Predators for Adults – Sea Lamprey, humans for Juveniles – Larger carnivorous fish Eggs – Whitefish, burbot, and sculpin Length: 17‐36 inches Weight: 3‐30 pounds State Record: 9/9/46; 47 pounds, from Lake Superior State Record (Inland): 6/1/57; 35 pounds, 4 ounces, from Big Green Lake, Green Lake County Wisconsin Department of Natural Resources Bureau of Fisheries Management PUBL‐FM‐101 08 April 2008 Identification: Lake trout are distinguished by Wisconsin waters of Lake Michigan. Unfortunately, having a deeply forked tail, the inside of their successful natural reproduction of the lake trout has mouth white, and 10‐11 rays in their anal fin. The not taken place, even with many millions of fish color of the lake trout varies from light green or planted. Stocking, therefore, remains essential to grey to dark green or almost black with light spots sustain the lake trout population in Lake Michigan. and worm‐like markings on their back and sides. Eggs for the hatchery program are collected Distribution: Lake trout are native to New from mature lake trout held in hatcheries in October England, the Great Lakes area, and Canada. In the and November. The eggs incubate about 90 days Lake Michigan waters of Wisconsin, they can be before hatching. After being reared in the hatchery found in the outer half of Green Bay and along the for a year, they are stocked the following spring from entire Lake Michigan shoreline.