Spinal Cord, Nerves, Plexuses and Dermatomes -2

Total Page:16

File Type:pdf, Size:1020Kb

Spinal Cord, Nerves, Plexuses and Dermatomes -2 SPINAL CORD, NERVES, PLEXUSES AND DERMATOMES -2 Dr. Sangeeta S Kotrannavar Assistant Professor Dept. of Anatomy USM-KLE IMP, Belagavi Objectives • Spinal nerves • Describe the organization of spinal nerves and their functional component • Define nerve plexus • State the different nerve plexuses • Dermatomes • Define & describe the dermatomes and map out the dermatomes of the body & applied anatomy of dermatomes Spinal cord Structure of typical spinal nerve Arise from spinal cord by 2 roots • Ventral root – contains motor fibers • Dorsal root – contains sensory fibers Both roots joined to form spinal nerve, which is mixed nerve Spinal nerve • Spinal nerve divides into ventral (ant.) & dorsal (post.) rami (branch) • Ventral ramus supplies body wall & viscera • Dorsal ramus supplies the intrinsic muscles of the back and the skin covering them. • Dorsal primary ramus divides into medial and lateral branches Motor Spinal nerve Sensory Sympathetic To skeletal M & skin of back To skeletal M. & skin of body wall & limbs To smooth M. & glands of visceral organs Ventral root-motor Dorsal root-sensory Spinal ganglion-(sensory ganglion / dorsal root ganglion)- Before joining, dorsal root shows ganglion which is seen in intervertebral foramen. Ganglion is made up of unipolar neurons. Two processes- 1) Peripheral 2) Central. Applied Anatomy • The dorsal nerve root ganglia (and the sensory ganglia of cranial nerves) can be infected with a virus condition called as herpes zoster. • Vesicles appear on the skin over the area of distribution of the nerve. • The condition is highly painful Exit of spinal nerves • Upper 7 cervical nerves leave the intervertebral foramen above the respective vertebra, • 8th cervical nerve below 7th cervical vertebra. • All thoracic, lumbar and sacral nerves emerge below respective vertebrae. Reflex arc Spinal Nerves “Nerves attached to spinal cord” • 31 pairs of spinal nerves • C1-C8 • T1-T12 • L1-L5 • S1-S5 • Co-1 Nerve Plexuses • Ventral rami (branches) of various spinal nerves blend together to form an interwoven network of nerves, called “nerve plexus” • Ventral primary rami are the only sources for the formation of all plexuses. • Plexuses: • Cervical • Brachial • Lumbar • Sacral • Coccygeal Cervical plexus • The cervical plexus is a network of nerve fibres that supplies innervation to some of the structures in the neck and trunk. • Location - in the posterior triangle of the neck, halfway up the sternocleidomastoid muscle, and within the prevertebral layer of cervical fascia. Cervical plexus …… • Formation - The plexus is formed by the ventral rami (divisions) of cervical spinal nerves C1-C4. • Communicates with accessory nerve and hypoglossal nerve. Muscular innervation of cervical plexus Cervical plexus Branches • Cutaneous branches • Muscular Branches • They supply some of the muscles of the neck • Ansa cervicalis (goose’s neck) is a loop of nerves, formed by nerve roots C1-C3. It supplies infrahyoid muscles (except thyrohyoid by C1+XII) • Phrenic nerve - arises from the anterior rami of C3-C5. It provides motor &sensory innervation to diaphragm. Cutaneous innervation of cervical plexus Branches of cervical plexus • Cutaneous (4 branches): • Lesser occipital nerve - innervates lateral part of occipital region (C2 ONLY) • Great auricular nerve - innervates skin near concha auricle and external acoustic meatus (C2&C3) • Transverse cervical nerve - innervates anterior region of neck (C2&C3) • Supraclavicular nerves - innervate region of supraspinatus, shoulder, and upper thoracic region (C3,C4) • Muscular • Ansa cervicalis (loop formed from C1-C3) – supplies sternothyroid, sternohyoid, omohyoid • Phrenic (C3-C5)-innervates diaphragm and pericardium • Scalene muscles • Sternocleidomastoid & trapezius muscle Brachial plexus • Formation: by ventral rami of C5,C6,C7,C8 and T1 (with contribution from C4 &T2) • Location: posterior triangle & axilla • Supplies upper limb (brachium) • Consists of roots, trunks, divisions and cords. Branches of brachial plexus Like tree L M L U Upper &lower L T R A M 4 U Ulnar Nerve Brachial plexus…… Brachial plexus summary…… Brachial plexus summary…… APPLIED ASPECT Erb’s paralysis • Site is UPPER TRUNK. • Cause-birth injury/fall on shoulder. • Deformity—Policeman’s tip. Klumpke’s paralysis • Site LOWER TRUNK • Deformity—Claw hand APPLIED ASPECT OF RADIAL NERVE Saturday night palsy • In spiral groove injury due to #/intramuscular injections. • Wrist drop—flexion at wrist. • Injury due to cruches pressure Lumbosacral plexus Lumbar plexus • Provides motor and sensory nerves for the anterior & medial compartment of thigh • Location: on posterior abdominal wall deep to psoas major, in front of transverse processes of lumbar vertebrae Lumbar plexus • Formation - by the ventral divisions of the first four lumbar nerves (L1-L4) & from contributions of subcostal nerve (T12) Lumbar plexus branches • Iliohypogastric nerve- supplies Transversus abdominis & abdominal internal oblique • Femoral nerve – supplies extensor comportment muscles • Obturator nerve - supplies adductor comportment muscles Lumbar plexus-summary Nerve Segment Innervated muscles Cutaneous branches Iliohypogastric T12-L1 • Anterior cutaneous ramus • Transversus abdominis • Lateral cutaneous ramus • Abdominal internal Ilioinguinal L1 • Anterior scrotal nerves in males oblique • Anterior labial nerves in females • Cremaster in males • Femoral ramus Genitofemoral L1, L2 labia major in female • Genital ramus Lateral femoral L2, L3 • Lateral femoral cutaneous cutaneous • Obturator externus • Adductor longus • Adductor brevis Obturator L2-L4 • Cutaneous ramus • Gracilis • Pectineus • Adductor magnus • Iliopsoas • Pectineus • Anterior cutaneous branches Femoral L2-L4 • Sartorius • Saphenous • Quadriceps femoris Sacral plexus • Provides motor and sensory nerves for the posterior thigh, most of the lower leg, the entire foot, and part of the pelvis. • Location - Lies in front of piriformis muscle deep to pelvic fascia and behind internal iliac vessels & ureter. Sacral plexus …. Formation – • lumbosacral trunk (L4&L5) • Ventral division of S 1- 3 nerves Sacral plexus branches • Sciatic nerve (L4-S3 both div.) which splits on the back of the thigh into tibial nerve & common fibular nerve – supplies post. compartment of thigh & leg • Pudendal nerve – (S2-3 ventral div.) supplies skin, external genital organs & muscles of perineum. Sacral plexus branches Nerves of the lower extremity Coccygeal plexus • Formation • ventral rami of S5-Co1 • Location • on plevic surface of coccygeus • Branches – • Anococcygeal nerve – supplies skin of coccygeal area Applied • Disc prolapse at cervical & lumbar regions is very common as it is leads to nerve root compression & irritation Dermatome • Areas of skin supplied by individual spinal nerves are called dermatomes. • To understand the arrangement of dermatomes it is necessary to know some facts about the development of the limbs. • C1-No dermatome. Development of limbs • Upper limbs (UL) undergoes 90 degrees lateral rotation, while lower limb (LL) turns medially • Pre-axial border lies along thumb & big toe • Post-axial border lies along little finger and toe • Ant.surface – Flexor surface in UL, while extensor in LL • Post. Surface - Extensor surface in UL, while flexor in LL Dermatomes of upper limb Dermatomes of upper limb Dermatomes of lower limb & thorax Applied • Testing of dermatomes able to identifying sensory impairment &level of spinal cord involvement in neurological disorder MTF •Regarding spinal nerves T A They form nerve plexus F B There are 33 pairs of spinal nerves F C Dorsal root contain efferent fibres T D Spinal nerves is mixed nerve T E Central canal contains CSF OSPE Practical • Identify external and internal features of spinal cord • Identify the spinal nerves .
Recommended publications
  • Intrapartum Lesions to the Lumbar Portion of the Lumbosacral Plexus: an Anatomical Review
    REVIEW Eur. J. Anat. 23 (2): 83-90 (2019) Intrapartum lesions to the lumbar portion of the lumbosacral plexus: an anatomical review Shanna E. Williams, Asa C. Black, Jr. Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, USA SUMMARY Key words: Plexopathy – Radiculopathy – Neu- The lumbosacral plexus is formed by the ventral ropathy – Pregnancy – Foot drop rami of L2-S3 and provides sensory and motor branches to the lower extremity. The spatial orien- INTRODUCTION tation of the lumbar portion of the plexus above the pelvic brim leaves it particularly susceptible to in- The lumbosacral plexus is formed by the ventral trapartum injury by the fetal head. Such lesions are rami of the L2-S3 segments, with some contribu- subdivided into two groups: upper lumbar plexus tions from L1 and S4 segments. It gives rise to six (L1-L4) and lumbosacral trunk (L4-L5). Given the sensory nerves of the thigh and leg, and six major root levels involved, upper lumbar plexus lesions sensorimotor nerves responsible for innervating 43 produce symptoms suggestive of iliohypogastric, muscles of the lower extremity (Van Alfen and ilioinguinal, genitofemoral, femoral, and obturator Malessy, 2013). As the name would suggest, it neuropathies or L4 radiculopathies. Alternatively, consists of two components, the lumbar plexus involvement of the lumbosacral trunk can imitate a and the sacral plexus, which are spatially separat- common fibular (peroneal) neuropathy or L5 ed. This anatomical separation results in a clinical radiculopathy. This symptomatic overlap with vari- division of lumbosacral plexus lesions into those ous neuropathies and radiculopathies, makes di- affecting the lumbar plexus and those affecting the agnosis of such lesions particularly challenging.
    [Show full text]
  • Ischaemic Lumbosacral Plexopathy in Acute Vascular Compromise:Case Report
    Parapkgia 29 (1991) 70-75 © 1991 International Medical Soci<ty of Paraplegia Paraplegia L-_________________________________________________ � Ischaemic Lumbosacral Plexopathy in Acute Vascular Compromise: Case Report D.X. Cifu, MD, K.D. Irani, MD Department of Physical Medicine, Baylor College of Medicine, Houston, Texas, USA. Summary Anterior spinal artery syndrome (ASAS) is a well reported cause of spinal cord injury (SCI) following thoracoabdominal aortic surgery. The resultant deficits are often incom­ plete, typically attributed to the variable nature of the vascular distribution. Our Physi­ cal Medicine and Rehabilitation (PM and Rehabilitation) service was consulted about a 36-year-old patient with generalised deconditioning, 3 months after a stab wound to the left ventricle. Physical examination revealed marked lower extremity weakness, hypo­ tonia, hyporeflexia, and a functioning bowel and bladder. Further questioning disclosed lower extremity dysesthesias. Nerve conduction studies showed slowed velocities, pro­ longed distal latencies and decreased amplitudes of all lower extremity nerves. Electro­ myography revealed denervation of all proximal and distal lower extremity musculature, with normal paraspinalis. Upper extremity studies were normal. Recently, 3 cases of ischaemic lumbosacral plexopathy, mimicking an incomplete SCI, have been reported. This distinction is particularly difficult in the poly trauma patient with multiple musculo­ skeletal injuries or prolonged recuperation time, in addition to a vascular insult, as in this patient. The involved anatomical considerations will be discussed. A review of the elec­ trodiagnostic data from 30 patients, with lower extremity weakness following acute ischaemia, revealed a 20% incidence of spinal cord compromise, but no evidence of a plexopathy. Key words: Ischaemia; Lumbosacral plexopathy; Electromyography. Recent advances in cardiovascular and trauma surgery have led to increased survi­ val of patients following cardiac and great vessel trauma or insult.
    [Show full text]
  • Clinical Presentations of Lumbar Disc Degeneration and Lumbosacral Nerve Lesions
    Hindawi International Journal of Rheumatology Volume 2020, Article ID 2919625, 13 pages https://doi.org/10.1155/2020/2919625 Review Article Clinical Presentations of Lumbar Disc Degeneration and Lumbosacral Nerve Lesions Worku Abie Liyew Biomedical Science Department, School of Medicine, Debre Markos University, Debre Markos, Ethiopia Correspondence should be addressed to Worku Abie Liyew; [email protected] Received 25 April 2020; Revised 26 June 2020; Accepted 13 July 2020; Published 29 August 2020 Academic Editor: Bruce M. Rothschild Copyright © 2020 Worku Abie Liyew. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Lumbar disc degeneration is defined as the wear and tear of lumbar intervertebral disc, and it is mainly occurring at L3-L4 and L4-S1 vertebrae. Lumbar disc degeneration may lead to disc bulging, osteophytes, loss of disc space, and compression and irritation of the adjacent nerve root. Clinical presentations associated with lumbar disc degeneration and lumbosacral nerve lesion are discogenic pain, radical pain, muscular weakness, and cutaneous. Discogenic pain is usually felt in the lumbar region, or sometimes, it may feel in the buttocks, down to the upper thighs, and it is typically presented with sudden forced flexion and/or rotational moment. Radical pain, muscular weakness, and sensory defects associated with lumbosacral nerve lesions are distributed on
    [Show full text]
  • 4-Brachial Plexus and Lumbosacral Plexus (Edited).Pdf
    Color Code Brachial Plexus and Lumbosacral Important Doctors Notes Plexus Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of this lecture, the students should be able to : Describe the formation of brachial plexus (site, roots) List the main branches of brachial plexus Describe the formation of lumbosacral plexus (site, roots) List the main branches of lumbosacral plexus Describe the important Applied Anatomy related to the brachial & lumbosacral plexuses. Brachial Plexus Formation Playlist o It is formed in the posterior triangle of the neck. o It is the union of the anterior rami (or ventral) of the 5th ,6th ,7th ,8th cervical and the 1st thoracic spinal nerves. o The plexus is divided into 5 stages: • Roots • Trunks • Divisions • Cords • Terminal branches Really Tired? Drink Coffee! Brachial Plexus A P A P P A Brachial Plexus Trunks Divisions Cords o Upper (superior) trunk o o Union of the roots of Each trunk divides into Posterior cord: C5 & C6 anterior and posterior From the 3 posterior division divisions of the 3 trunks o o Middle trunk Lateral cord: From the anterior Continuation of the divisions of the upper root of C7 Branches and middle trunks o All three cords will give o Medial cord: o Lower (inferior) trunk branches in the axilla, It is the continuation of Union of the roots of the anterior division of C8 & T1 those will supply their respective regions. the lower trunk The Brachial Plexus Long Thoracic (C5,6,7) Anterior divisions Nerve to Subclavius(C5,6) Posterior divisions Dorsal Scapular(C5) Suprascapular(C5,6) upper C5 trunk Lateral Cord C6 middle (2LM) trunk C7 lower C8 trunk T1 Posterior Cord (ULTRA) Medial Cord (4MU) In the PowerPoint presentation this slide is animated.
    [Show full text]
  • Bone Grafts and Implants in Spine Surgery
    CHAPTER 39 BONE GRAFTS AND IMPLANTS IN SPINE SURGERY Ken Hsu James F. Zucherman Arthur H. White Recent advances in both fusion tech of scaffolds, bridges, spacers, fillers of J • niques and instrumentation have defects, and replacements of bone lost. markedly facilitated the treatment of Immobilization of multiple motion seg spinaldisorders. Yet asignificantnumber ments is frequently necessary in the spine; of patients exist who continue to have great demands arc made on bone grafts. pseudarthroses. Despite the surgical ad In the lumbosacral spine, body weight vances the essentials ofa successful spinal and muscular forcesimpart loads equal to fusion still appear to be the effective ap three or four times body weight. It is plication of sound bone grafting princi not surprising that the highest rate of ples. These principles, along with the bone graft failure is seen in the lumbo techniques, problems, and complications sacral spine. Hence, the following is a associated with bone grafting, arc re discussion of technical problems, bio- viewed in this chapter. mechanical and physiologic character The loss ofbone in the spine often pre istics of bone grafts, and implants. sents serious difficulties not seen in other areas. The most favorable replacement THE AUTOGRAFT would still be a bone graft that fills the Autograft, or bone graft transplanted defect and becomes incorporated into the from one site to another in the same indi spine. However, the availability of ap vidual, is considered to be the most bio propriate bone to replace the loss is a logically suitable. Its advantages include: significant problem. Alternatives to bone 1.
    [Show full text]
  • Netter's Anatomy Flash Cards – Section 7 – List 4Th Edition
    Netter's Anatomy Flash Cards – Section 7 – List 4th Edition https://www.memrise.com/course/1577594/ Section 7 Lower Limb (72 cards) Plate 7-1 Hip (Coxal) Bone: Lateral View 1.1 Posterior superior iliac spine 1.2 Posterior inferior iliac spine 1.3 Greater sciatic notch 1.4 Body of ilium 1.5 Body of ischium 1.6 Ischial tuberosity 1.7 Pubic tubercle 1.8 Acetabulum 1.9 Iliac crest Plate 7-2 Hip (Coxal) Bone: Medial View 2.1 Wing (ala) of ilium (iliac fossa) 2.2 Pecten pubis (pectineal line) 2.3 Ramus of ischium 2.4 Lesser sciatic notch 2.5 Ischial spine 2.6 Articular surface (for sacrum) 2.7 Iliac tuberosity Plate 7-3 Hip Joint: Lateral View 3.1 Lunate (articular) surface of acetabulum 3.2 Articular cartilage 3.3 Head of femur 3.4 Ligament of head of femur (cut) 3.5 Obturator membrane 3.6 Acetabular labrum (fibrocartilaginous) Plate 7-4 Hip Joint: Anterior and Posterior Views 4.1 Iliofemoral ligament (Y ligament of Bigelow) 4.2 Pubofemoral ligament 4.3 Iliofemoral ligament 4.4 Ischiofemoral ligament Plate 7-5 Femur 5.1 Greater trochanter 5.2 Shaft (body) 5.3 Lateral epicondyle 5.4 Lateral condyle 5.5 Medial condyle 5.6 Medial epicondyle 5.7 Adductor tubercle 5.8 Linea aspera (Medial lip; Lateral lip) 5.9 Lesser trochanter 5.10 Intertrochanteric crest 5.11 Neck 5.12 Head Plate 7-6 Tibia and Fibula 6.1 Lateral condyle 6.2 Apex, Head, and Neck of fibula 6.3 Fibula 6.4 Lateral malleolus 6.5 Medial malleolus 6.6 Tibia 6.7 Tibial tuberosity 6.8 Medial condyle 6.9 Superior articular surfaces (medial and lateral facets) 6.10 Malleolar fossa of lateral
    [Show full text]
  • Superficial (And Intermediate) Cervical Plexus Block
    Superficial (and Intermediate) Cervical Plexus Block Indications: -Tympanomastoid surgery. When combined with the auricular branch of the vagus (‘nerve of arnold’) by infiltrating subcutaneously into the medial side of the tragus), obviates the need for opiates. -Pinnaplasty or Otoplasty -Lymph node excision (within the anterior and posterior triangles of the neck) -Clavicular surgery or fractures (may require intermediate cervical plexus block and its combination with interscalene block, see below) -Central Venous Catheters: Renal replacement therapy central venous catheters, tunnelled central venous catheters and portacaths inserted into the subclavian or jugular veins (may require combination with ‘Pecs 1’ block for component of pain below the clavicle) -Tracheostomy (see below discussion on safety profile of performing bilateral blocks and risks of respiratory distress due to phrenic nerve or recurrent largyngeal nerve block) -More commonly in adults: thyroid (again, bilateral) and carotid surgery Contraindications: -local sepsis or rash Anatomy: The cervical plexus arises from C1-C4 mixed spinal nerves (fig. 1): Somatic sensory branches: -arise from C2-C4 as the mixed spinal nerves leave the sulcus between the anterior and posterior tubercles of the transverse process (note C7 does not have an anterior tubercle or bifid spinous process): -pass between longus capitis and middle scalene perforating the prevertebral fascia. Note at C4 level the anterior scalene has largely disappeared having taken the bulk of its vertebral bony origin lower down. The bulkiest of the scalene muscles is the middle scalene and remains in view at this level: -then pass behind the internal jugular vein out into the potential space between the investing layer of deep fascia ensheathing the sternocleidomastoid, and the prevertebral layer of deep fascia covering levator scapulae (fig.
    [Show full text]
  • 33. Spinal Nerves. Cervical Plexus
    GUIDELINES Students’ independent work during preparation to practical lesson Academic discipline HUMAN ANATOMY Topic SPINAL NERVES. CERVICAL PLEXUS. 1. Relevance of the topic: The knowledge of structures of the peripheral nervous system, particularly cervical plexus and its branches is the base of clinical thinking in terms of differential diagnosis for the doctor of any specialty, but above all a neurologist, vertebroneurologist, traumatologist, dermatologist, general practitioner. 2. Specific objectives of practical lesson - Analyse the composition of fibres of anterior and posterior roots of spinal nerves. - Explain the formation of spinal nerve. - Suggest the definition of spinal nerve. - Classify spinal nerve branches. - Explain functional anatomy of thoracic spinal nerve branches. - Define term "plexus of somatic nerves" including the formation of cervical plexus. - Draw a scheme of spinal nerve: o а - in cervical region of spinal cord (except for the CVIII); o b - in thoracic region of spinal cord; o c - on the level of SII – SIV. - Analyse the connection of somatic nerve (thoracic spinal nerve) with ganglia of sympathetic trunk. - Create the conception of grey and white connecting branches in the functional aspect. 3. Basic level of preparation (interdisciplinary integration) of the student includes knowledge of medical biology and histology of the development of nervous system in phylogenesis and ontogenesis. Name of previous disciplines Obtained skills 1. Medical Biology and Histology Know ontogenesis and phylogenesis of nervous system. The structure of the neuron. 2. Sections of Human Anatomy: - osteology The student should have skills to describe the structure of - myology the spine in general, to be able to demonstrate structural features of the cervical vertebrae, their connections with each other and with the bones of the skull.
    [Show full text]
  • The Blood Supply of the Lumbar and Sacral Plexuses in the Human Foetus* by M
    J. Anat., Lond. (1964), 98, 1, 105-116 105 With 4 plates and 3 text-figures Printed in Great Britain The blood supply of the lumbar and sacral plexuses in the human foetus* BY M. H. DAYt Department of Anatomy, Royal Free Hospital School of Medicine INTRODUCTION The existence of a blood supply to peripheral nerve is well established. Recently, a number of authors have reviewed the literature of the field, among them Blunt (1956) and Abdullah (1958), who from their own observations have confirmed that peripheral nerves are supplied by regional vessels reinforcing longitudinally arranged channels which freely anastomose with each other. There is also evidence that posterior root ganglia are particularly well supplied with blood vessels (Abdullah, 1958), but the precise distribution and arrangement of arteries to some individual nerve trunks and plexuses is still in need of investigation. The literature reveals few references to the blood supply of the lumbar and sacral plexuses. The distribution of arteries to the roots and ganglia of the sacral nerves was noted by Haller (1756), but the most important contributions in this field were those of Bartholdy (1897) and Tonkoff (1898), whose observations on the lumbar and sacral plexuses form part of a general survey of the blood supply of peripheral nerve in man. They cited the lumbar, ilio-lumbar, median and lateral sacral arteries as well as the gluteal and pudendal vessels as sources of supply, but gave no indication of the frequency of these contributions. Subsequent authors including Hovelacque (1927), dealt briefly with the distribution of the lateral sacral, median sacral, gluteal and pudendal arteries to the sacral plexus, but treated more fully the blood supply of the sciatic nerve.
    [Show full text]
  • LECTURE (SACRAL PLEXUS, SCIATIC NERVE and FEMORAL NERVE) Done By: Manar Al-Eid Reviewed By: Abdullah Alanazi
    CNS-432 LECTURE (SACRAL PLEXUS, SCIATIC NERVE AND FEMORAL NERVE) Done by: Manar Al-Eid Reviewed by: Abdullah Alanazi If there is any mistake please feel free to contact us: [email protected] Both - Black Male Notes - BLUE Female Notes - GREEN Explanation and additional notes - ORANGE Very Important note - Red CNS-432 Objectives: By the end of the lecture, students should be able to: . Describe the formation of sacral plexus (site & root value). List the main branches of sacral plexus. Describe the course of the femoral & the sciatic nerves . List the motor and sensory distribution of femoral & sciatic nerves. Describe the effects of lesion of the femoral & the sciatic nerves (motor & sensory). CNS-432 The Mind Maps Lumber Plexus 1 Branches Iliohypogastric - obturator ilioinguinal Femoral Cutaneous branches Muscular branches to abdomen and lower limb 2 Sacral Plexus Branches Pudendal nerve. Pelvic Splanchnic Sciatic nerve (largest nerves nerve), divides into: Tibial and divides Fibular and divides into : into: Medial and lateral Deep peroneal Superficial planter nerves . peroneal CNS-432 Remember !! gastrocnemius Planter flexion – knee flexion. soleus Planter flexion Iliacus –sartorius- pectineus – Hip flexion psoas major Quadriceps femoris Knee extension Hamstring muscles Knee flexion and hip extension gracilis Hip flexion and aids in knee flexion *popliteal fossa structures (superficial to deep): 1-tibial nerve 2-popliteal vein 3-popliteal artery. *foot drop : planter flexed position Common peroneal nerve injury leads to Equinovarus Tibial nerve injury leads to Calcaneovalgus CNS-432 Lumbar Plexus Formation Ventral (anterior) rami of the upper 4 lumbar spinal nerves (L1,2,3 and L4). Site Within the substance of the psoas major muscle.
    [Show full text]
  • Anatomical Study of the Superior Cluneal Nerve and Its Estimation of Prevalence As a Cause of Lower Back Pain in a South African Population
    Anatomical study of the superior cluneal nerve and its estimation of prevalence as a cause of lower back pain in a South African population by Leigh-Anne Loubser (10150804) Dissertation to be submitted in full fulfilment of the requirements for the degree Master of Science in Anatomy In the Faculty of Health Science University of Pretoria Supervisor: Prof AN Van Schoor1 Co-supervisor: Dr RP Raath2 1 Department of Anatomy, University of Pretoria 2 Netcare Jakaranda Hospital, Pretoria 2017 DECLARATION OF ORIGINALITY UNIVERSITY OF PRETORIA The Department of Anatomy places great emphasis upon integrity and ethical conduct in the preparation of all written work submitted for academic evaluation. While academic staff teach you about referencing techniques and how to avoid plagiarism, you too have a responsibility in this regard. If you are at any stage uncertain as to what is required, you should speak to your lecturer before any written work is submitted. You are guilty of plagiarism if you copy something from another author’s work (e.g. a book, an article, or a website) without acknowledging the source and pass it off as your own. In effect, you are stealing something that belongs to someone else. This is not only the case when you copy work word-for-word (verbatim), but also when you submit someone else’s work in a slightly altered form (paraphrase) or use a line of argument without acknowledging it. You are not allowed to use work previously produced by another student. You are also not allowed to let anybody copy your work with the intention of passing if off as his/her work.
    [Show full text]
  • Spinal Nerves, Ganglia, and Nerve Plexus Spinal Nerves
    Chapter 13 Spinal Nerves, Ganglia, and Nerve Plexus Spinal Nerves Posterior Spinous process of vertebra Posterior root Deep muscles of back Posterior ramus Spinal cord Transverse process of vertebra Posterior root ganglion Spinal nerve Anterior ramus Meningeal branch Communicating rami Anterior root Vertebral body Sympathetic ganglion Anterior General Anatomy of Nerves and Ganglia • Spinal cord communicates with the rest of the body by way of spinal nerves • nerve = a cordlike organ composed of numerous nerve fibers (axons) bound together by connective tissue – mixed nerves contain both afferent (sensory) and efferent (motor) fibers – composed of thousands of fibers carrying currents in opposite directions Anatomy of a Nerve Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Epineurium Perineurium Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Endoneurium Nerve Rootlets fiber Posterior root Fascicle Posterior root ganglion Anterior Blood root vessels Spinal nerve (b) Copyright by R.G. Kessel and R.H. Kardon, Tissues and Organs: A Text-Atlas of Scanning Electron Microscopy, 1979, W.H. Freeman, All rights reserved Blood vessels Fascicle Epineurium Perineurium Unmyelinated nerve fibers Myelinated nerve fibers (a) Endoneurium Myelin General Anatomy of Nerves and Ganglia • nerves of peripheral nervous system are ensheathed in Schwann cells – forms neurilemma and often a myelin sheath around the axon – external to neurilemma, each fiber is surrounded by
    [Show full text]