Reduction Chem 115

Total Page:16

File Type:pdf, Size:1020Kb

Reduction Chem 115 Myers Reduction Chem 115 General References • Catalytic hydrogenation is used for the reduction of many organic functional groups. The reaction can be modified with respect to catalyst, hydrogen pressure, solvent, and temperature in order to Carey, F. A.; Sundberg, R. J. In Advanced Organic Chemistry Part B, Springer: New York, 2007, execute a desired reduction. p. 396–431. • A brief list of recommended reaction conditions for catalytic hydrogenations of selected functional Brown, H. C.; Ramachandran, P. V. In Reductions in Organic Synthesis: Recent Advances and groups is given below. Practical Applications, Abdel-Magid, A. F. Ed.; American Chemical Society: Washington DC, 1996, p. 1-30. Catalyst/Compound Substrate Product Catalyst Ratio (wt%) Pressure (atm) Ripin, D. H. B. Oxidation. In Practical Synthetic Organic Chemistry; Caron, S., Ed.; John Wiley & Sons: New Jersey, 2011. Alkene Alkane 5% Pd/C 5-10% 1-3 Reactivity Trends Alkyne Alkene 5% Pd(BaSO4) 2% + 2% quinoline 1 • Following are general guidelines concerning the reactivities of various reducing agents. Aldehyde Alcohol PtO2 2-4% 1 (Ketone) Substrates, Reduction Products Halide Alkane 5% Pd/C 1-15%, KOH 1 Iminium Ion Acid Halide Aldehyde Ester Amide Carboxylate Salt Nitrile Amine Raney Ni 3-30% 35-70 Hydride Donors Adapted from: Hudlicky, M. In Reductions in Organic Chemistry 2nd Ed., American Chemical LiAlH4 Amine Alcohol Alcohol Alcohol Amine Alcohol Society Monograph 188: Washington DC, 1996, p. 8. Summary of Reagents for Reductive Functional Group Interconversions: DIBAL – Alcohol Alcohol Alcohol or Amine or Alcohol Aldehyde Aldehyde O O R OH R H NaAlH(O-t-Bu)3 – Aldehyde Alcohol Alcohol Amine – R OR' R H (slow) (slow) ester aldehyde alcohol alkane AlH3 – Alcohol Alcohol Alcohol Amine Alcohol Diisobutylaluminum Hydride Sodium Borohydride (DIBAL) NaBH4 Amine – Alcohol – – – Luche Reduction Barton Deoxygenation (NaBH , CeCl ) Lithium Triethoxyaluminohydride 4 3 Reduction of Alkyl Tosylates ** (LTEAH) NaCNBH3 Amine – Alcohol – – – Ionic Hydrogenation (slow) (Et SiH, TFA) Diazene-Mediated Deoxygenation Reduction of Acid Chlorides, 3 Amides, and Nitriles Samarium Iodide Na(AcO)3BH Amine – Alcohol Alcohol Amine – (slow) (slow) (slow) O B2H6 – – Alcohol Alcohol Amine Alcohol O O (slow) (slow) R CH3 R H R OH R OH R H R OH Li(Et)3BH – Alcohol Alcohol Alcohol Alcohol – (tertiary amide) acid alcohol aldehyde alkane acid alkane (–1C) H2 (catalyst) Amine Alcohol Alcohol Alcohol Amine – Lithium Aluminum Hydride (LAH) Wolff–Kishner Reduction Barton Decarboxylation Lithium Borohydride Reduction of Tosylhydrazones LAB – – Alcohol Alcohol Alcohol – Borane Complexes Desulfurization with Raney ** !-alkoxy esters are reduced to the corresponding alcohols. Nickel via 1,3-dithiane (BH3•L) – indicates no reaction or no productive reaction (alcohols are deprotonated in many instances, Clemmensen Reduction e.g.) Mark G. Charest, Fan Liu 1 Myers Reduction Chem 115 O R OH TESO O CH3 TESO O CH3 R OH O LiAlH4, ether O Acid Alcohol CH3O N CH3O N H –78 °C H (CH3)2N OTES N (CH3)2N OTES N Lithium Aluminum Hydride (LAH): LiAlH4 CO2CH3 CH2OH • LAH is a powerful and rather nonselective hydride-transfer reagent that readily reduces 72% carboxylic acids, esters, lactones, anhydrides, amides and nitriles to the corresponding alcohols or amines. In addition, aldehydes, ketones, epoxides, alkyl halides, and many other functional groups are reduced readily by LAH. Evans, D. A.; Gage, J. R.; Leighton, J. L. J. Am. Chem. Soc. 1992, 114, 9434-9453. • LAH is commercially available as a dry, grey solid or as a solution in a variety of organic solvents (e.g., ethyl ether). Both the solid and solution forms of LAH are highly flammable and should be stored protected from moisture. O • Several work-up procedures for LAH reductions are available that avoid the difficulties of Ph Ph separating by-products of the reduction and minimize the possibility of ignition of liberated H2. OH LiAlH4, THF OH In the Fieser work-up, following reduction with n grams of LAH, careful successive dropwise N OEt N addition of n mL of water, n mL of 15% NaOH solution, and 3n mL of water provides a H 0 ! 65 ºC H H granular inorganic precipitate that is easy to rinse and filter. For moisture-sensitive substrates, ethyl acetate can be added to consume any excess LAH and the reduction O product, ethanol, is unlikely to interfere with product isolation. 8.93 g 98% • Although, in theory, one equivalent of LAH provides four equivalents of hydride, an excess of the reagent is typically used. Becker, C. W.; Dembofsky, B. T.; Hall, J. E.; Jacobs, R. T.; Pivonka, D. E.; Ohnmacht, C. J. Paquette, L. A. In Handbook of Reagents for Organic Synthesis: Oxidizing and Reducing Reagents, Burke, S. D.; Danheiser, R. L., Eds., John Wiley and Sons: New York, 1999, p. 199-204. Synthesis 2005, 2549-2561. Fieser, L. F.; Fieser, M. Reagents for Organic Synthesis 1967, 581-595. H H • Examples O O HO O O CH3 LiAlH4 O HO N N CH3 ether H3C H3C 89-95% CH O LiAlH4 CH3O CH3 CH3 3 H H O THF O H H 70% OH O Heathcock, C. H.; Ruggeri, R. B.; McClure, K. F. J. Org. Chem. 1992, 57, 2585-2599. (+)-codeine White, J. D.; Hrnciar, P.; Stappenbeck, F. J. Org. Chem. 1999, 64, 7871-7884. O H3C H3C HOCH OCH LiAlH4 OH CH3O2C 2 3 O C(CH3)3 OH CH3O2C HOCH2 OCH3 THF, 0 ºC OH H3C H3C H O H TIPSO O >99% TIPSO LiAlH4, THF reflux 102 g H H OH H3C CO2H 72% H3C Yamaguchi, J.; Seiple, I.; Young, I. S.; O'Malley, D. P.; Maue, M.; Baran, P. S. Angew. Chem., Int. Bergner, E. J.; Helmchen, G. J. Org. Chem. 2000, 65, 5072-5074. Ed. Engl. 2008, 47, 3578–3580. Mark G. Charest, Fan Liu 2 Myers Reduction Chem 115 Lithium Borohydride: LiBH4 Borane Complexes: BH3•L • Lithium borohydride is commonly used for the selective reduction of esters and lactones to the • Borane is commonly used for the reduction of carboxylic acids in the presence of esters, corresponding alcohols in the presence of carboxylic acids, tertiary amides, and nitriles. lactones, amides, halides and other functional groups. In addition, borane rapidly reduces Aldehydes, ketones, epoxides, and several other functional groups can also be reduced by aldehydes, ketones, and alkenes. lithium borohydride. • Borane is commercially available as a complex with tetrahydrofuran (THF) or dimethysulfide in • The reactivity of lithium borohydride is dependent on the reaction medium and follows the solution. In addition, though highly flammable, gaseous diborane (B H ) is available. order: ether > THF > 2-propanol. This is attributed to the availability of the lithium counterion 2 6 for coordination to the substrate, promoting reduction. • The borane-dimethylsulfide complex exhibits improved stability and solubility compared to the • Lithium borohydride is commercially available in solid form and as solutions in many organic borane-THF complex. solvents (e.g., THF). Both are inflammable and should be stored protected from moisture. • Competing hydroboration of carbon-carbon double bonds can limit the usefulness of borane- THF as a reducing agent. Nystrom, R. F.; Chaikin, S. W.; Brown, W. G. J. Am. Chem. Soc. 1949, 71, 3245-3246. Lane, C. F. Chem. Rev. 1976, 76, 773-799. Banfi, L.; Narisano, E.; Riva, R. In Handbook of Reagents for Organic Synthesis: Oxidizing and Reducing Reagents, Burke, S. D.; Danheiser, R. L., Eds., John Wiley and Sons: New York, Brown, H. C.; Stocky, T. P. J. Am. Chem. Soc. 1977, 99, 8218-8226. 1999, p. 209-212. • Examples • Examples O 1. BH3•THF, 0 °C O O O H CH3 2. dihydropyran, THF H CH3 F TsOH, 0 °C O2N Br CO2H Br CH2OTHP O CO2CH3 H LiBH , CH OH 86% N OTBS 4 3 N THF, Et O, 0 °C H 2 Corey, E. J.; Sachdev, H. S. J. Org. Chem. 1975, 40, 579-581. O H C CH 3 3 SO CH SO CH 83% 2 3 2 3 O HO F HO BH •THF, 0 °C O2N OH 3 O EtO2C EtO2C H THF, 98% Laïb, T.; Zhu, J. Synlett. 2000, 1363-1365. N OTBS N H O 500 g Br Br H3C CH3 Lobben, P. C.; Leung, S. S.-W.; Tummala, S. Org. Process Res. Dev. 2004, 8, 1072–1075. • The combination of boron trifluoride etherate and sodium borohydride has been used to generate diborane in situ. O LiBH4 THF, i-PrOH CO2H CH2OH H3C OEt H3C OH 15 ºC, 100% CO2H CO2H NaBH4, BF3•Et2O 450 g THF, 15 °C HN SO 2 95% HN SO2 Hu, B.; Prashad, M.; Har, D.; Prasad, K.; Repic, O.; Blacklock, T. J. Org. Process Rev. Dev. 2007, 11, 90–93. Miller, R. A.; Humphrey, G. R.; Lieberman, D. R.; Ceglia, S. S.; Kennedy, D. J.; Grabowski, E. J. J.; Reider, P. J. J. Org. Chem. 2000, 65, 1399-1406. Brown, H. C.; Tierney, P. A. J. Am. Chem. Soc. 1980, 80, 1552–1558. Mark G. Charest, Fan Liu 3 Myers Reduction Chem 115 O O R OR' R H O OMOM H Ester Aldehyde H C N O 3 TMS O MOMO Diisobutylaluminum Hydride (DIBAL): i-Bu2AlH CH3 DIBAL, THF OMOM H3C CH3 CH • At low temperatures, DIBAL reduces esters to the corresponding aldehydes, and lactones to O 3OAc OAc O O –100 ! –78 °C lactols. • Typically, toluene is used as the reaction solvent, but other solvents have also been employed, including dichloromethane. CH3 CH3 CH3 CH3 CO2CH3 O O Miller, A. E. G.; Biss, J. W.; Schwartzman, L. H. J. Org. Chem. 1959, 24, 627-630. Zakharkin, L. I.; Khorlina, I. M. Tetrahedron Lett. 1962, 3, 619-620. • Examples O OMOM H CO CH CHO H C N O 2 3 3 TMS O DIBAL, toluene O N –78 °C N O Boc Boc MOMO CH3 H3C H3C O OMOM H3C CH3 CH3 CH3 OMOM H CH 76% H C N O O 3OAc OAc O O 3 TMS O Garner, P.; Park, J.
Recommended publications
  • Supporting Information For
    Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Supporting Information for: 2- Quadruple-CO3 Bridged Octanuclear Dysprosium(III) Compound Showing Single-Molecule Magnet Behaviour Experimental Section Synthetic procedures All chemicals were of reagent grade and were used without any further purification. Synthesis of pyrazine-2-carbohydrazide The pyrazine-2-carboxylic acid methyl ester was prepared by a literature procedure described elsewhere. A mixture of pyrazine-2-carboxylic acid methyl ester (1.38 g, 10 mmol) and hydrazine hydrate (85%, 15 ml) in methanol (20 ml) was refluxed overnight, at a temperature somewhat below 80°C. The resulting pale-yellow solution set aside 12 hrs. During this period, a colorless product, i.e. pyrazine-2-carbohydrazide, precipitated from the reaction mixture as a crystalline solid (yield = 0.84 g, 61%). Synthesis of (E)-N'-(2-hyborxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide Pyrazine-2-carbohydrazide (2 mmol, 0.276 g) was suspended together with o-vanillin (2 mmol, 0.304 g) in methanol (20 ml), and the resulting mixture was stirred at the room temperature overnight. The pale yellow solid was collected by filtration (yield = 0.56 g, 83%). Elemental analysis (%) calcd for C13H12N4O3: C, 57.35, H, 4.44, N, 20.58: found C, 57.64, H, 4.59, N, 20.39. IR (KBr, cm-1): 3415(w), 3258(w), 1677(vs), 1610(s), 1579(m). 1530(s), 1464(s), 1363(m), 1255(vs), 1153(s), 1051(w), 1021(s), 986(w), 906(m), 938(w), 736(s), 596(m), 498(w). Synthesis of the complex 1 The solution of DyCl3⋅6H2O (56.5 mg, 0.15 mmol) and the H2L (40.5 mg, 0.15 mmol) in 15 ml CH3OH/CH2Cl2 (1:2 v/v) was stirred with triethylamine (0.4 mmol) for 6h.
    [Show full text]
  • Densifying Metal Hydrides with High Temperature and Pressure
    3,784,682 United States Patent Office Patented Jan. 8, 1974 feet the true density. That is, by this method only theo- 3,784,682 retical or near theoretical densities can be obtained by DENSIFYING METAL HYDRIDES WITH HIGH making the material quite free from porosity (p. 354). TEMPERATURE AND PRESSURE The true density remains the same. Leonard M. NiebylsM, Birmingham, Mich., assignor to Ethyl Corporation, Richmond, Va. SUMMARY OF THE INVENTION No Drawing. Continuation-in-part of abandoned applica- tion Ser. No. 392,370, Aug. 24, 1964. This application The process of this invention provides a practical Apr. 9,1968, Ser. No. 721,135 method of increasing the true density of hydrides of Int. CI. COlb 6/00, 6/06 metals of Groups II-A, II-B, III-A and III-B of the U.S. CI. 423—645 8 Claims Periodic Table. More specifically, true densities of said 10 metal hydrides may be substantially increased by subject- ing a hydride to superatmospheric pressures at or above ABSTRACT OF THE DISCLOSURE fusion temperatures. When beryllium hydride is subjected A method of increasing the density of a hydride of a to this process, a material having a density of at least metal of Groups II-A, II-B, III-A and III-B of the 0.69 g./cc. is obtained. It may or may not be crystalline. Periodic Table which comprises subjecting a hydride to 15 a pressure of from about 50,000 p.s.i. to about 900,000 DESCRIPTION OF THE PREFERRED p.s.i. at or above the fusion temperature of the hydride; EMBODIMENT i.e., between about 65° C.
    [Show full text]
  • Thermodynamic Hydricity of Small Borane Clusters and Polyhedral Closo-Boranes
    molecules Article Thermodynamic Hydricity of Small Borane Clusters y and Polyhedral closo-Boranes Igor E. Golub 1,* , Oleg A. Filippov 1 , Vasilisa A. Kulikova 1,2, Natalia V. Belkova 1 , Lina M. Epstein 1 and Elena S. Shubina 1,* 1 A. N. Nesmeyanov Institute of Organoelement Compounds and Russian Academy of Sciences (INEOS RAS), 28 Vavilova St, 119991 Moscow, Russia; [email protected] (O.A.F.); [email protected] (V.A.K.); [email protected] (N.V.B.); [email protected] (L.M.E.) 2 Faculty of Chemistry, M.V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, 119991 Moscow, Russia * Correspondence: [email protected] (I.E.G.); [email protected] (E.S.S.) Dedicated to Professor Bohumil Štibr (1940-2020), who unfortunately passed away before he could reach the y age of 80, in the recognition of his outstanding contributions to boron chemistry. Academic Editors: Igor B. Sivaev, Narayan S. Hosmane and Bohumír Gr˝uner Received: 6 June 2020; Accepted: 23 June 2020; Published: 25 June 2020 MeCN Abstract: Thermodynamic hydricity (HDA ) determined as Gibbs free energy (DG◦[H]−) of the H− detachment reaction in acetonitrile (MeCN) was assessed for 144 small borane clusters (up 2 to 5 boron atoms), polyhedral closo-boranes dianions [BnHn] −, and their lithium salts Li2[BnHn] (n = 5–17) by DFT method [M06/6-311++G(d,p)] taking into account non-specific solvent effect (SMD MeCN model). Thermodynamic hydricity values of diborane B2H6 (HDA = 82.1 kcal/mol) and its 2 MeCN dianion [B2H6] − (HDA = 40.9 kcal/mol for Li2[B2H6]) can be selected as border points for the range of borane clusters’ reactivity.
    [Show full text]
  • Aldehydes and Ketones
    12 Aldehydes and Ketones Ethanol from alcoholic beverages is first metabolized to acetaldehyde before being broken down further in the body. The reactivity of the carbonyl group of acetaldehyde allows it to bind to proteins in the body, the products of which lead to tissue damage and organ disease. Inset: A model of acetaldehyde. (Novastock/ Stock Connection/Glow Images) KEY QUESTIONS 12.1 What Are Aldehydes and Ketones? 12.8 What Is Keto–Enol Tautomerism? 12.2 How Are Aldehydes and Ketones Named? 12.9 How Are Aldehydes and Ketones Oxidized? 12.3 What Are the Physical Properties of Aldehydes 12.10 How Are Aldehydes and Ketones Reduced? and Ketones? 12.4 What Is the Most Common Reaction Theme of HOW TO Aldehydes and Ketones? 12.1 How to Predict the Product of a Grignard Reaction 12.5 What Are Grignard Reagents, and How Do They 12.2 How to Determine the Reactants Used to React with Aldehydes and Ketones? Synthesize a Hemiacetal or Acetal 12.6 What Are Hemiacetals and Acetals? 12.7 How Do Aldehydes and Ketones React with CHEMICAL CONNECTIONS Ammonia and Amines? 12A A Green Synthesis of Adipic Acid IN THIS AND several of the following chapters, we study the physical and chemical properties of compounds containing the carbonyl group, C O. Because this group is the functional group of aldehydes, ketones, and carboxylic acids and their derivatives, it is one of the most important functional groups in organic chemistry and in the chemistry of biological systems. The chemical properties of the carbonyl group are straightforward, and an understanding of its characteristic reaction themes leads very quickly to an understanding of a wide variety of organic reactions.
    [Show full text]
  • Herbert Charles Brown, a Biographical Memoir
    NATIONAL ACADEMY OF SCIENCES H E R B E R T Ch ARLES BROWN 1 9 1 2 — 2 0 0 4 A Biographical Memoir by E I-I CH I N EGIS HI Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2008 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph Credit Here. HERBERT CHARLES BROWN May 22, 1912–December 19, 2004 BY EI -ICH I NEGISHI ERBERT CHARLES BROWN, R. B. Wetherill Research Profes- Hsor Emeritus of Purdue University and one of the truly pioneering giants in the field of organic-organometallic chemistry, died of a heart attack on December 19, 2004, at age 92. As it so happened, this author visited him at his home to discuss with him an urgent chemistry-related matter only about 10 hours before his death. For his age he appeared well, showing no sign of his sudden death the next morn- ing. His wife, Sarah Baylen Brown, 89, followed him on May 29, 2005. They were survived by their only child, Charles A. Brown of Hitachi Ltd. and his family. H. C. Brown shared the Nobel Prize in Chemistry in 1979 with G. Wittig of Heidelberg, Germany. Their pioneering explorations of boron chemistry and phosphorus chemistry, respectively, were recognized. Aside from several biochemists, including V. du Vigneaud in 1955, H. C. Brown was only the second American organic chemist to win a Nobel Prize behind R. B. Woodward, in 1965. His several most significant contribu- tions in the area of boron chemistry include (1) codiscovery of sodium borohyride (1972[1], pp.
    [Show full text]
  • Aldehydes and Ketones Are Simple Organic Compounds Containing a Carbonyl Group
    Aldehydes and Ketones are simple organic compounds containing a carbonyl group. Carbonyl group contains carbon- oxygen double bond. These organic compounds are simple because the carbon atom presents in the carbonyl group lack reactive groups such as OH or Cl. By Dr. Sayed Hasan Mehdi Assistant Professor Department of Chemistry Shia P.G. College, Lucknow Dr. S.Hasan Mehdi 6/13/2020 This is to bring to kind notice that the matter of this e- content is for the B.Sc. IV semester students. It has been taken from the following sources. The students are advised to follow these books as well. •A TEXTBOOK OF ORGANIC CHEMISTRY by Arun Bahl & B.S. Bahl, S. Chand & Company Ltd. Publication. •Graduate Organic Chemistry by M. K. Jain and S.C. Sharma, Vishal Publishing Co. •Pradeep’s Organic Chemistry Vol II by R. N. Dhawan, Pradeep Publication, Jalandhar. Dr. S.Hasan Mehdi 6/13/2020 An aldehyde is one of the classes of carbonyl group- containing alkyl group on one end and hydrogen on the other end. The R and Ar denote alkyl or aryl member respectively. In the condensed form, the aldehyde is written as –CHO. Dr. S.Hasan Mehdi 6/13/2020 Dr. S.Hasan Mehdi 6/13/2020 1. From Alcohols: a. By oxidation of Alcohols: Aldehydes and ketones can be prepared by the controlled oxidation of primary and secondary alcohols using an acidified solution of potassium dichromate or permanganate. Primary alcohol produces aldehydesRef. Last slide. O K Cr O RCH2OH + [O] 2 2 7 + R C H H 10 Alcohol Aldehyde O CH3CH2OH+ [O] K2Cr2O7 + CH3 C H H Ethyl Alcohol Acetaldehyde The aldehydes formed in the above reaction are very easily oxidised to carboxylc acids if allowed to remain in the reaction mixture.
    [Show full text]
  • Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/Ceo2: Effect of Reaction Parameters on the Activity
    nanomaterials Article Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity Davide Motta 1, Ilaria Barlocco 2 , Silvio Bellomi 2, Alberto Villa 2,* and Nikolaos Dimitratos 3,* 1 Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK; [email protected] 2 Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy; [email protected] (I.B.); [email protected] (S.B.) 3 Dipartimento di Chimica Industriale e dei Materiali, Alma Mater Studiorum Università di Bologna, 40136 Bologna, Italy * Correspondence: [email protected] (A.V.); [email protected] (N.D.) Abstract: In the present work, an Ir/CeO2 catalyst was prepared by the deposition–precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen, which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques, i.e., X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with X-ray detector (EDX) and inductively coupled plasma—mass spectroscopy (ICP-MS). The effect of reaction conditions on the activity and selectivity of the material was evaluated in this study, modifying parameters such as temperature, the mass of the catalyst, stirring speed and concentration of base in order to find the optimal conditions of reaction, which allow performing the test in a kinetically limited regime. Citation: Motta, D.; Barlocco, I.; Bellomi, S.; Villa, A.; Dimitratos, N. Keywords: iridium; cerium oxide; hydrous hydrazine; hydrogen production Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity.
    [Show full text]
  • Esters Introduction Structurally, an Ester Is a Compound That Has an Alkoxy (OR) Group Attached to the Carbonyl Group
    Esters Introduction Structurally, an ester is a compound that has an alkoxy (OR) group attached to the carbonyl group. O R C O R' R may be H, alkyl or aryl, while R’ may be alkyl or aryl only. Esters are widespread in nature. Many of the fragrances of flowers and fruits are due to the esters present. Ethyl butanoate is the chief component that accounts for the pineapple-like aroma and flavour of pineapples. 1:18 PM 1 Nomenclature of Esters Names of esters consist of two words that reflect the composite structure of the ester. The first word is derived from the alkyl group of the alcohol component, and the second word from the carboxylate group of the carboxylic acid component of the ester. The name of the carboxylate portion is derived by substituting the -ic acid suffix of the parent carboxylic acid with the –ate suffix. The alkyl group is cited first followed by the carboxylate group separated by a space. An ester is thus named as an alkyl 1:18 PM alkanoate. 2 IUPAC Nomenclature of Esters Examples 1:18 PM 3 Synthesis of Esters Preparative Strategies Highlighted below are some of the most common strategies by which esters are prepared. The esters are commonly prepared from the reaction of carboxylic acids, acid chlorides and acid anhydrides with alcohols. 1:18 PM 4 Synthesis of Esters Acid-Catalysed Esterification of a Carboxylic Acid and an Alcohol The acid-catalysed reaction of carboxylic acids and alcohols provides esters. Typically, a catalytic amount of a strong inorganic (mineral) acid such as H2SO4, HCl and H3PO4 is used.
    [Show full text]
  • Pyramidalization/Twisting of the Amide Functional Group Via Remote Steric Congestion Triggered by Metal Coordination Chemical Science
    Chemical Volume 8 Number 1 January 2017 Pages 1–810 Science rsc.li/chemical-science ISSN 2041-6539 EDGE ARTICLE Naoya Kumagai, Masakatsu Shibasaki et al. Pyramidalization/twisting of the amide functional group via remote steric congestion triggered by metal coordination Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Pyramidalization/twisting of the amide functional group via remote steric congestion triggered by Cite this: Chem. Sci.,2017,8,85 metal coordination† Shinya Adachi, Naoya Kumagai* and Masakatsu Shibasaki* For decades, the planarity of the amide functional group has garnered sustained interest in organic chemistry, enticing chemists to deform its usually characteristic high-fidelity plane. As opposed to the construction of amides that are distorted by imposing rigid covalent bond assemblies, we demonstrate herein the deformation of the amide plane through increased steric bulk in the periphery of the amide moiety, which is induced by coordination to metal cations. A crystallographic analysis revealed that the thus obtained amides exhibit significant pyramidalization and twisting upon coordination to the metals, Received 16th August 2016 while the amide functional group remained intact. The observed deformation, which should be Accepted 21st September 2016 attributed to through-space interactions, substantially enhanced the solvolytic cleavage of the amide, DOI: 10.1039/c6sc03669d Creative Commons Attribution 3.0 Unported Licence. providing compelling evidence that temporary crowding in the periphery
    [Show full text]
  • BACKGROUND DOCUMENT for DYES METABOLIZED to BENZIDINE (BENZIDINE DYE CLASS)
    NTP REPORT ON CARCINOGENS BACKGROUND DOCUMENT for DYES METABOLIZED TO BENZIDINE (BENZIDINE DYE CLASS) FINAL MARCH1999 Prepared for the October 30-31, 1997, Meeting ofthe Report on Carcinogens Subcommittee ofthe NTP Board ofScientific Counselors Prepared by Integrated Laboratory Systems Post Office Box 13501 Research Triangle Park, North Carolina 27709 NIEHS Contract No. N01-ES-25346 NTP Report on Carcinogens 1997 Background Document for Dyes Metabolized to Benzidine (Benzidine Dye Class) TABLE OF CONTENTS NTP Report on Carcinogens Listing for Dyes Metabolized to Benzidine (Benzidine Dye Class) ...•.......•..•.•.......•...•..•.•.•.••••.•.•.•••.••••••••••••••• 1 Listing Criteria from the Report on Carcinogens, Eighth Edition ••••.••••••.••.•.•.• 3 Supporting Information for Listing .........•...................•.•........•.•.•••.•••.•••.•••.•.••..•... 4 Table 1. Some Regulated Azo Dyes Derived From Benzidine That Have Citations in BIOSIS, CANCERLIT, EMBASE, MEDLINE, RTECS, and/or TOXLINE •.•..•..••..•.••••.•.•.•••.•..•.••••••••••••••••••.•• 5 REFERENCES •.•.•.•.•.••.•.••.•.•.......•..•..•.....•.•..•..•..•.•....•..•..•.•.••••.•.•.••.•••.••••••••••••••.••••• 8 APPENDIX A- Excerpts from IARC (1982a) and IARC Supplements (IARC, 1979; IARC, 1982b; and IARC, 1987) Benzidine .•••...•••.••••••••• A-1 APPENDIX B- Excerpts from IARC (1982a) Direct Black 38, Direct Blue 6, Direct Brown 95 ..•.••.••.••••.••.•••••••.•.••.••••••••.•.•••.•••.•••••••••••••• B-1 APPENDIX C- Excerpts from the NCI Technical Report 13-Week Subchronic Toxicity Studies of Direct
    [Show full text]
  • Fermentation and Ester Taints
    Fermentation and Ester Taints Anita Oberholster Introduction: Aroma Compounds • Grape‐derived –provide varietal distinction • Yeast and fermentation‐derived – Esters – Higher alcohols – Carbonyls – Volatile acids – Volatile phenols – Sulfur compounds What is and Esters? • Volatile molecule • Characteristic fruity and floral aromas • Esters are formed when an alcohol and acid react with each other • Few esters formed in grapes • Esters in wine ‐ two origins: – Enzymatic esterification during fermentation – Chemical esterification during long‐term storage Ester Formation • Esters can by formed enzymatically by both the plant and microbes • Microbes – Yeast (Non‐Saccharomyces and Saccharomyces yeast) – Lactic acid bacteria – Acetic acid bacteria • But mainly produced by yeast (through lipid and acetyl‐CoA metabolism) Ester Formation Alcohol function Keto acid‐Coenzyme A Ester Ester Classes • Two main groups – Ethyl esters – Acetate esters • Ethyl esters = EtOH + acid • Acetate esters = acetate (derivative of acetic acid) + EtOH or complex alcohol from amino acid metabolism Ester Classes • Acetate esters – Ethyl acetate (solvent‐like aroma) – Isoamyl acetate (banana aroma) – Isobutyl acetate (fruit aroma) – Phenyl ethyl acetate (roses, honey) • Ethyl esters – Ethyl hexanoate (aniseed, apple‐like) – Ethyl octanoate (sour apple aroma) Acetate Ester Formation • 2 Main factors influence acetate ester formation – Concentration of two substrates acetyl‐CoA and fusel alcohol – Activity of enzyme responsible for formation and break down reactions • Enzyme activity influenced by fermentation variables – Yeast – Composition of fermentation medium – Fermentation conditions Acetate/Ethyl Ester Formation – Fermentation composition and conditions • Total sugar content and optimal N2 amount pos. influence • Amount of unsaturated fatty acids and O2 neg. influence • Ethyl ester formation – 1 Main factor • Conc. of precursors – Enzyme activity smaller role • Higher fermentation temp formation • C and N increase small effect Saerens et al.
    [Show full text]
  • Chapter 14 – Aldehydes and Ketones
    Chapter 14 – Aldehydes and Ketones 14.1 Structures and Physical Properties of Aldehydes and Ketones Ketones and aldehydes are related in that they each possess a C=O (carbonyl) group. They differ in that the carbonyl carbon in ketones is bound to two carbon atoms (RCOR’), while that in aldehydes is bound to at least one hydrogen (H2CO and RCHO). Thus aldehydes always place the carbonyl group on a terminal (end) carbon, while the carbonyl group in ketones is always internal. Some common examples include (common name in parentheses): O O H HH methanal (formaldehyde) trans-3-phenyl-2-propenal (cinnamaldehyde) preservative oil of cinnamon O O propanone (acetone) 3-methylcyclopentadecanone (muscone) nail polish remover a component of one type of musk oil Simple aldehydes (e.g. formaldehyde) typically have an unpleasant, irritating odor. Aldehydes adjacent to a string of double bonds (e.g. 3-phenyl-2-propenal) frequently have pleasant odors. Other examples include the primary flavoring agents in oil of bitter almond (Ph- CHO) and vanilla (C6H3(OH)(OCH3)(CHO)). As your book says, simple ketones have distinctive odors (similar to acetone) that are typically not unpleasant in low doses. Like aldehydes, placing a collection of double bonds adjacent to a ketone carbonyl generally makes the substance more fragrant. The primary flavoring agent in oil of caraway is just a such a ketone. 2 O oil of carraway Because the C=O group is polar, small aldehydes and ketones enjoy significant water solubility. They are also quite soluble in typical organic solvents. 14.2 Naming Aldehydes and Ketones Aldehydes The IUPAC names for aldehydes are obtained by using rules similar to those we’ve seen for other functional groups (e.g.
    [Show full text]