Probabilistic Temporal Databases, II: Calculus and Query Processing 1

Total Page:16

File Type:pdf, Size:1020Kb

Probabilistic Temporal Databases, II: Calculus and Query Processing 1 Probabilistic Temp oral Databases I I Calculus and Query Pro cessing y z x Alex Dekhtyar Fatma Ozcan Rob ert Ross VS Subrahmanian Abstract There is a vast class of applications in which we know that a certain event o ccurred but do not know exactly when it o ccurred However as studied by Dyreson and Sno dgrass there are many natural scenarios where probability distributions exist and quantify this uncertainty Dekhtyar et al extended Dyreson and Sno dgrasss work and dened an extension of the relational algebra to handle such data The rst contribution of this pap er is a declarative temp oral probabilistic TP for short calculus which we show is equivalent in expressive p ower to the temp oral probabilistic algebra of Our second ma jor contribution is a set of equivalence and containment results for the TPalgebra Our third contribution is the development of cost mo dels that may b e used to estimate the cost of TPalgebra op erations Our fourth contribution is an exp erimental evaluation of the accuracy of our cost mo dels and the use of the equivalence results as rewrite rules for optimizing queries by using an implementation of TPdatabases on top of ODBC Intro duction Dyreson and Sno dgrass pioneered the study of uncertainty in temp oral databases where statements of the form Event e o ccurred or will o ccur at some time p oint in the time interval t t are p ermitted Such statements are common For instance a shipp er like Federal Express may tell customers that their package will b e delivered within hours of drop o In such a case if the smallest unit of time ab out which reasoning is p erformed is a minute then there are minutes at which the package may b e p ossibly delivered However over this timeframe there is a probability distribution reecting the probability that the package will b e delivered precisely t minutes after drop o Such a probability distribution may b e skewed eg the probability that the package is delivered within hours is probably zero if the package has to make its way from Seattle to Boston Dyreson and Sno dgrass develop ed this idea substantially to provide a framework for reasoning ab out temp oralprobabilistic data They also provided applications in a variety of other areas including carb ondating of historical records and sto ck market analysis For example there are literally hundreds of programs that make sto ck market predictions most prediction mo dels This work was supp orted in part by the Army Research Lab under contract numb er DAALK the Army Research Oce under grant numb er DAAD by DARPARL contract numb er F and by the ARL CTA on Advanced Decision Architectures y Department of Computer Science University of Kentucky Lexington KY Email dekhtyarcsukyedu z Department of Computer Science University of Maryland College Park MD Email fatmacsumdedu x Department of Computer Science University of Maryland College Park MD Email robrosscsumdedu Department of Computer Science University of Maryland College Park MD Email vscsumdedu are uncertain and provide probabilistic outputs In the same vein statistical mo dels that track p erformance of machines and machine parts on a factory o or yield probabilistic estimates of when the parts will need to b e repaired andor replaced Decision making programs for such applications typically execute calls to the results of suc predictions Following on the imp ortant work of Dyreson and Sno dgrass work Dekhtyar et al develop ed a temp oral probabilistic algebra TPA which eliminated many of the assumptions in the framework of We start this pap er with a brief overview of TPdatabases in Section We then move on to our sp ecic contributions First in Section we develop a temp oral probabilistic calculus TPcalculus for short We show that this calculus which is similar to the safe relational calculus has the nice prop erty that it is equivalent in expressive p ower to the TPalgebra Second in Section we develop a set of query equivalence results in the TPalgebra These equivalences automatically yield a set of rewrite rules that a query optimizer for TPdatabases might use Third in Section we develop mechanisms to estimate the cost of executing a TPalgebra query Even though TPalgebra op erations are implemented on top of a relational database these op erations are not mere relational algebra queries implementing them on top of the relational algebra involves writing a C program that includes emb edded SQL calls Costing such programs builds on top of cost mo dels of relational op erators but involves taking into account the sp ecic asp ects of the programs themselves Our cost mo dels involve identifying a set of statistics to b e stored ab out the data as well as metho ds to compute such statistics for intermediate results obtained during query pro cessing Fourth in Section we conduct a set of exp eriments to evaluate three things Our rst goal is to assess the accuracy of our cost mo del Our second goal is to assess the eectiveness of our rewrite rules The third goal is to assess the eciency of a query optimizer based on this cost mo del and these rewrite rules Exp eriments were run using our implementation of TPdatabases which is built on top of ODBC using Paradox as a backend We compare our work with related work in Section and nally conclude with directions for further research Preliminaries TPDatabases Overview In this section we recapitulate the notions of a Temp oral Probabilistic database TPdatabase and the Temp oral Probabilistic Algebra TPA Full details may b e found in Temp oralProbabilistic DB Mo del To make statements ab out when certain events o ccurred or when certain facts werewill b e true TPdatabases use a calendar cf Sno dgrass and So o and temp oral constraints Calendar A calendar consists of an ordered list of time units For example day month year is a p ossible calendar Each time unit has a nite domain asso ciated with it Given a calendar over time units tu tu a time point is an expression of the form v v where each v is in n n i the domain of tu For instance wrt the example calendar is a time p oint i Temp oral constraint Temporal constraints are inductively dened i If tu is a time unit op f g and v domtu then tu op v is a temp oral constraint over ii If t t are time p oints in and t t then t t is a temp oral constraint over iii If C and C are temp oral constraints then so are C C C C and C The syntax t t is a shorthand for the constraint t t t We abuse notation and write t instead of t t Solutions of temp oral constraints denoted solC are dened in the obvious way For example the constraint has as its solutions all time p oints b etween pm to pm as well as all time p oints b etween pm to pm Probability Distribution Function PDF Let S b e the set of all temp oral constraints over calendar Then the function S is a PDF if D S t solD D t P D t Furthermore is a restricted PDF if D S tsolD This denition of a PDF is rich enough to capture almost all probability mass functions eg uniform geometric binomial Poisson etc studied in classical probability theory Furthermore probability density functions can b e approximated by PDFs via a pro cess of quantization TPcase A TPcase over calendar is a tuple hC D L U i where i C and D are temp oral constraints over ii solC solD iii L U and iv is a restricted PDF For example h ui is a TPcase where is a uniform distribution Intuitively C sp ecies the time p oints when an event is valid while D sp ecies the time p oints that are distributed by Since solC solD it follows that assigns a probability interval to each time p oint t sol C Sp ecically let PrhC D L U i t denote D t L U Alternatively could b e dened as where is a restricted PDF is a unrestricted L U L U PDF and t solC D t L D t U This generalization is useful when the lower L U and upp er probability b ounds do not follow the same distribution Here PrhC D L U i t L U denotes the probability interval D t L D t U Although extending to a pair of PDFs L U is straightforward we avoid this redenition in order to maintain b etter compatibility with TPtuple A TPtuple over relation scheme R A A and calendar is a pair d where k d is a relational k tuple over R and is a nonempty TPcase statement over ie is a set of TPcases over where i j sol C C i j i j In the following supp ose R is a relation scheme and is a calendar over tu tu n TPtable A TPtable over R is a multiset of TPtuples over R TPrelation A TPrelation r over R is a TPtable over R where R is a sup erkey for r TPdatabase A TPdatabase over is a set of TPtables over Annotation The annotation of TPrelation r over R pro duces a relation ANNr over relation scheme R tu tu L U where domL domU and n t t t t ANNr fd t L U j d r t sol C L U Pr tg t t t t Equivalence TPrelations r and r are equivalent denoted r r i ANNr ANNr Example Base TPrelations The following TPrelations are named TrainDep and BusArr TrainNo From To C D L U Baltimore New York u g BusNo From To C D L U Ro ckville Baltimore b u The second TPcase in TrainDep says that there is a probability that train numb er from Baltimore to New York will depart b etween and Furthermore given any time p oint t in this interval the probability that the train will depart at exactly time t is b etween D t g and D t
Recommended publications
  • Probabilistic Databases
    Series ISSN: 2153-5418 SUCIU • OLTEANU •RÉ •KOCH M SYNTHESIS LECTURES ON DATA MANAGEMENT &C Morgan & Claypool Publishers Series Editor: M. Tamer Özsu, University of Waterloo Probabilistic Databases Probabilistic Databases Dan Suciu, University of Washington, Dan Olteanu, University of Oxford Christopher Ré,University of Wisconsin-Madison and Christoph Koch, EPFL Probabilistic databases are databases where the value of some attributes or the presence of some records are uncertain and known only with some probability. Applications in many areas such as information extraction, RFID and scientific data management, data cleaning, data integration, and financial risk DATABASES PROBABILISTIC assessment produce large volumes of uncertain data, which are best modeled and processed by a probabilistic database. This book presents the state of the art in representation formalisms and query processing techniques for probabilistic data. It starts by discussing the basic principles for representing large probabilistic databases, by decomposing them into tuple-independent tables, block-independent-disjoint tables, or U-databases. Then it discusses two classes of techniques for query evaluation on probabilistic databases. In extensional query evaluation, the entire probabilistic inference can be pushed into the database engine and, therefore, processed as effectively as the evaluation of standard SQL queries. The relational queries that can be evaluated this way are called safe queries. In intensional query evaluation, the probabilistic Dan Suciu inference is performed over a propositional formula called lineage expression: every relational query can be evaluated this way, but the data complexity dramatically depends on the query being evaluated, and Dan Olteanu can be #P-hard. The book also discusses some advanced topics in probabilistic data management such as top-kquery processing, sequential probabilistic databases, indexing and materialized views, and Monte Carlo databases.
    [Show full text]
  • Adaptive Schema Databases ∗
    Adaptive Schema Databases ∗ William Spothb, Bahareh Sadat Arabi, Eric S. Chano, Dieter Gawlicko, Adel Ghoneimyo, Boris Glavici, Beda Hammerschmidto, Oliver Kennedyb, Seokki Leei, Zhen Hua Liuo, Xing Niui, Ying Yangb b: University at Buffalo i: Illinois Inst. Tech. o: Oracle {wmspoth|okennedy|yyang25}@buffalo.edu {barab|slee195|xniu7}@hawk.iit.edu [email protected] {eric.s.chan|dieter.gawlick|adel.ghoneimy|beda.hammerschmidt|zhen.liu}@oracle.com ABSTRACT in unstructured or semi-structured form, then an ETL (i.e., The rigid schemas of classical relational databases help users Extract, Transform, and Load) process needs to be designed in specifying queries and inform the storage organization of to translate the input data into relational form. Thus, clas- data. However, the advantages of schemas come at a high sical relational systems require a lot of upfront investment. upfront cost through schema and ETL process design. In This makes them unattractive when upfront costs cannot this work, we propose a new paradigm where the database be amortized, such as in workloads with rapidly evolving system takes a more active role in schema development and data or where individual elements of a schema are queried data integration. We refer to this approach as adaptive infrequently. Furthermore, in settings like data exploration, schema databases (ASDs). An ASD ingests semi-structured schema design simply takes too long to be practical. or unstructured data directly using a pluggable combina- Schema-on-query is an alternative approach popularized tion of extraction and data integration techniques. Over by NoSQL and Big Data systems that avoids the upfront time it discovers and adapts schemas for the ingested data investment in schema design by performing data extraction using information provided by data integration and infor- and integration at query-time.
    [Show full text]
  • Finding Interesting Itemsets Using a Probabilistic Model for Binary Databases
    Finding interesting itemsets using a probabilistic model for binary databases Tijl De Bie University of Bristol, Department of Engineering Mathematics Queen’s Building, University Walk, Bristol, BS8 1TR, UK [email protected] ABSTRACT elegance and e±ciency of the algorithms to search for fre- A good formalization of interestingness of a pattern should quent patterns. Unfortunately, the frequency of a pattern satisfy two criteria: it should conform well to intuition, and is only loosely related to interestingness. The output of fre- it should be computationally tractable to use. The focus quent pattern mining methods is usually an immense bag has long been on the latter, with the development of frequent of patterns that are not necessarily interesting, and often pattern mining methods. However, it is now recognized that highly redundant with each other. This has hampered the more appropriate measures than frequency are required. uptake of FPM and FIM in data mining practice. In this paper we report results in this direction for item- Recent research has shifted focus to the search for more set mining in binary databases. In particular, we introduce useful formalizations of interestingness that match practical a probabilistic model that can be ¯tted e±ciently to any needs more closely, while still being amenable to e±cient binary database, and that has a compact and explicit repre- algorithms. As FIM is arguably the simplest special case of sentation. We then show how this model enables the formal- frequent pattern mining, it is not surprising that most of the ization of an intuitive and tractable interestingness measure recent work has focussed on itemset patterns, see e.g.
    [Show full text]
  • Open-World Probabilistic Databases
    Open-World Probabilistic Databases Ismail˙ Ilkan˙ Ceylan and Adnan Darwiche and Guy Van den Broeck Computer Science Department University of California, Los Angeles [email protected],fdarwiche,[email protected] Abstract techniques, from part-of-speech tagging until relation ex- traction (Mintz et al. 2009). For knowledge-base comple- Large-scale probabilistic knowledge bases are becoming in- tion – the task of deriving new facts from existing knowl- creasingly important in academia and industry alike. They edge – statistical relational learning algorithms make use are constantly extended with new data, powered by modern information extraction tools that associate probabilities with of embeddings (Bordes et al. 2011; Socher et al. 2013) database tuples. In this paper, we revisit the semantics under- or probabilistic rules (Wang, Mazaitis, and Cohen 2013; lying such systems. In particular, the closed-world assump- De Raedt et al. 2015). In both settings, the output is a pre- tion of probabilistic databases, that facts not in the database dicted fact with its probability. It is therefore required to de- have probability zero, clearly conflicts with their everyday fine probabilistic semantics for knowledge bases. The classi- use. To address this discrepancy, we propose an open-world cal and most-basic model is that of tuple-independent prob- probabilistic database semantics, which relaxes the probabili- abilistic databases (PDBs) (Suciu et al. 2011), which in- ties of open facts to intervals. While still assuming a finite do- deed underlies many of these systems (Dong et al. 2014; main, this semantics can provide meaningful answers when Shin et al. 2015).
    [Show full text]
  • A Compositional Query Algebra for Second-Order Logic and Uncertain Databases
    A Compositional Query Algebra for Second-Order Logic and Uncertain Databases Christoph Koch Department of Computer Science Cornell University, Ithaca, NY, USA [email protected] ABSTRACT guages for querying possible worlds. Indeed, second-order World-set algebra is a variable-free query language for uncer- quantifiers are the essence of what-if reasoning in databases. tain databases. It constitutes the core of the query language World-set algebra seems to be a strong candidate for a core implemented in MayBMS, an uncertain database system. algebra for forming query plans and optimizing and execut- This paper shows that world-set algebra captures exactly ing them in uncertain database management systems. second-order logic over finite structures, or equivalently, the It was left open in previous work whether world-set alge- polynomial hierarchy. The proofs also imply that world- bra is closed under composition, or whether definitions are set algebra is closed under composition, a previously open adding to the expressive power of the language. Compo- problem. sitionality is a desirable and rather commonplace property of query algebras, but in the case of WSA it seems rather unlikely to hold. The reason for this is that the algebra con- 1. INTRODUCTION tains an uncertainty-introduction operation that on the level Developing suitable query languages for uncertain data- of possible worlds is nondeterministic. First materializing a bases is a substantial research challenge that is only cur- view and subsequently using it multiple times in the query is rently starting to get addressed. Conceptually, an uncertain semantically quite different from composing the query with database is a finite set of possible worlds, each one a re- the view and thus obtaining several copies of the view def- lational database.
    [Show full text]
  • Answering Queries from Statistics and Probabilistic Views∗
    Answering Queries from Statistics and Probabilistic Views∗ Nilesh Dalvi Dan Suciu University of Washington, Seattle, WA, USA 1 Introduction paper we will assume the Local As View (LAV) data integration paradigm [17, 16], which consists of defin- Systems integrating dozens of databases, in the scien- ing a global mediated schema R¯, then expressing each tific domain or in a large corporation, need to cope local source i as a view vi(R¯) over the global schema. with a wide variety of imprecisions, such as: different Users are allowed to ask queries over the global, me- representations of the same object in different sources; diated schema, q(R¯), however the data is given as in- imperfect and noisy schema alignments; contradictory stances J1; : : : ; Jm of the local data sources. In our information across sources; constraint violations; or in- model all instances are probabilistic, both the local sufficient evidence to answer a given query. If standard instances and the global instance. Statistics are given query semantics were applied to such data, all but the explicitly over the global schema R¯, and the probabil- most trivial queries will return an empty answer. ities are given explicitly over the local sources, hence We believe that probabilistic databases are the right over the views. We make the Open World Assumption paradigm to model all types of imprecisions in a uni- throughout the paper. form and principled way. A probabilistic database is a probability distribution on all instances [5, 4, 15, 1.1 Example: Using Statistics 12, 11, 8]. Their early motivation was to model im- precisions at the tuple level: tuples are not known Suppose we integrate two sources, one show- with certainty to belong to the database, or represent ing which employee works for what depart- noisy measurements, etc.
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) On entity resolution in probabilistic data Ayat, S.N. Publication date 2014 Document Version Final published version Link to publication Citation for published version (APA): Ayat, S. N. (2014). On entity resolution in probabilistic data. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:01 Oct 2021 On Entity Resolution in Probabilistic Data Naser Ayat On Entity Resolution in Probabilistic Data Naser Ayat On Entity Resolution in Probabilistic Data Naser Ayat On Entity Resolution in Probabilistic Data Academisch Proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof.dr. D.C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op dinsdag 30 september 2014, te 12.00 uur door Seyed Naser Ayat geboren te Esfahan, Iran Promotors: prof.
    [Show full text]
  • BAYESSTORE: Managing Large, Uncertain Data Repositories with Probabilistic Graphical Models
    BAYESSTORE: Managing Large, Uncertain Data Repositories with Probabilistic Graphical Models Daisy Zhe Wang∗ , Eirinaios Michelakis∗ , Minos Garofalakisy∗ , and Joseph M. Hellerstein∗ ∗ Univ. of California, Berkeley EECS and y Yahoo! Research ABSTRACT Of course, the fundamental mathematical tools for managing un- certainty come from probability and statistics. In recent years, these Several real-world applications need to effectively manage and reason about tools have been aggressively imported into the computational do- large amounts of data that are inherently uncertain. For instance, perva- main under the rubric of Statistical Machine Learning (SML). Of sive computing applications must constantly reason about volumes of noisy special note here is the widespread use of Graphical Modeling tech- sensory readings for a variety of reasons, including motion prediction and niques, including the many variants of Bayesian Networks (BNs) human behavior modeling. Such probabilistic data analyses require so- and Markov Random Fields (MRFs) [13]. These techniques can phisticated machine-learning tools that can effectively model the complex provide robust statistical models that capture complex correlation spatio/temporal correlation patterns present in uncertain sensory data. Un- patterns among variables, while, at the same time, addressing some fortunately, to date, most existing approaches to probabilistic database sys- computational efficiency and scalability issues as well. Graphical tems have relied on somewhat simplistic models of uncertainty that can be models have been applied with great success in applications as di- easily mapped onto existing relational architectures: Probabilistic informa- verse as signal processing, information retrieval, sensornets and tion is typically associated with individual data tuples, with only limited pervasive computing, robotics, natural language processing, and or no support for effectively capturing and reasoning about complex data computer vision.
    [Show full text]
  • Brief Tutorial on Probabilistic Databases
    Brief Tutorial on Probabilistic Databases Dan Suciu University of Washington Simons 2016 1 About This Talk • Probabilistic databases – Tuple-independent – Query evaluation • Statistical relational models – Representation, learning, inference in FO – Reasoning/learning = lifted inference • Sources: – Book 2011 [S.,Olteanu,Re,Koch] – Upcoming F&T survey [van Den Broek,S] Simons 2016 2 Background: Relational databases Smoker Friend X Y X Z Database D = Alice 2009 Alice Bob Alice 2010 Alice Carol Bob 2009 Bob Carol Carol 2010 Carol Bob Query: Q(z) = ∃x (Smoker(x,’2009’)∧Friend(x,z)) Z Constraint: Q(D) = Bob Q = ∀x (Smoker(x,’2010’)⇒Friend(x,’Bob’)) Carol Q(D) = true Probabilistic Database Probabilistic database D: X y P a1 b1 p1 a1 b2 p2 a2 b2 p3 Possible worlds semantics: Σworld PD(world) = 1 X y P (Q) = Σ P (world) X Xy y D world |= Q D a1 b1 X y a1 a1b2 b1 X y a1 b2 a1 b1 X y p1p2p3 a2 a2b2 b2 a2 b2 X y a2 b2 a1 b2 a1 b1 X y (1-p1)p2p3 a1 b2 (1-p1)(1-p2)(1-p3) Outline • Model Counting • Small Dichotomy Theorem • Dichotomy Theorem • Query Compilation • Conclusions, Open Problems Simons 2016 5 Model Counting • Given propositional Boolean formula F, compute the number of models #F Example: X1 X2 X3 F F = (X1∨X2) ∧ (X2∨X3) ∧ (X3∨X1) 0 0 0 0 0 0 1 0 #F = 4 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 [Valiant’79] #P-hard, even for 2CNF 1 1 1 1 Probability of a Formula • Each variable X has a probability p(X); • P(F) = probability that F=true, when each X is set to true independently Example: X1 X2 X3 F F = (X1∨X2) ∧ (X2∨X3) ∧ (X3∨X1) 0 0 0 0 0 0 1 0 P(F) = (1-p1)*p2*p3 + 0 1 0 0 p1*(1-p2)*p3 + p1*p2*(1-p3) + 0 1 1 1 p1*p2*p3 1 0 0 0 1 0 1 1 n If p(X) = ½ for all X, then P(F) = #F / 2 1 1 0 1 1 1 1 1 Algorithms for Model Counting [Gomes, Sabharwal, Selman’2009] Based on full search DPLL: • Shannon expansion.
    [Show full text]
  • Efficient In-Database Analytics with Graphical Models
    Efficient In-Database Analytics with Graphical Models Daisy Zhe Wang, Yang Chen, Christan Grant and Kun Li fdaisyw,yang,cgrant,[email protected]fl.edu University of Florida, Department of Computer and Information Science and Engineering Abstract Due to recent application push, there is high demand in industry to extend database systems to perform efficient and scalable in-database analytics based on probabilistic graphical models (PGMs). We discuss issues in supporting in-database PGM methods and present techniques to achieve a deep integration of the PGM methods into the relational data model as well as the query processing and optimization engine. This is an active research area and the techniques discussed are being further developed and evaluated. 1 Introduction Graphical models, also known as probabilistic graphical models (PGMs), are a class of expressive and widely adopted machine learning models that compactly represent the joint probability distribution over a large number of interdependent random variables. They are used extensively in large-scale data analytics, including infor- mation extraction (IE), knowledge base population (KBP), speech recognition and computer vision. In the past decade, many of these applications have witnessed dramatic increase in data volume. As a result, PGM-based data analytics need to scale to terabytes of data or billions of data items. While new data-parallel and graph- parallel processing platforms such as Hadoop, Spark and GraphLab [1, 36, 3] are widely used to support scalable PGM methods, such solutions are not effective for applications with data residing in databases or with need to support online PGM-based data analytics queries. More specifically, large volumes of valuable data are likely to pour into database systems for many years to come due to the maturity of the commercial database systems with transaction support and ACID properties and due to the legal auditing and data privacy requirements in many organizations.
    [Show full text]
  • Indexing Correlated Probabilistic Databases
    Indexing Correlated Probabilistic Databases Bhargav Kanagal Amol Deshpande [email protected] [email protected] Dept. of Computer Science, University of Maryland, College Park MD 20742 ABSTRACT 1. INTRODUCTION With large amounts of correlated probabilistic data being Large amounts of correlated probabilistic data are be- generated in a wide range of application domains includ- ing generated in a variety of application domains includ- ing sensor networks, information extraction, event detection ing sensor networks [14, 21], information extraction [20, 17], etc., effectively managing and querying them has become data integration [1, 15], activity recognition [28], and RFID an important research direction. While there is an exhaus- stream analysis [29, 26]. The correlations exhibited by these tive body of literature on querying independent probabilistic data sources can range from simple mutual exclusion depen- data, supporting efficient queries over large-scale, correlated dencies, to complex dependencies typically captured using databases remains a challenge. In this paper, we develop Bayesian or Markov networks [30] or through constraints on efficient data structures and indexes for supporting infer- the possible values that the tuple attributes can take [19, 12]. ence and decision support queries over such databases. Our Although several approaches have been proposed for rep- proposed hierarchical data structure is suitable both for in- resenting complex correlations and for querying over corre- memory and disk-resident databases. We represent the cor- lated databases, the rapidly increasing scale of such databases relations in the probabilistic database using a junction tree has raised unique challenges that have not been addressed over the tuple-existence or attribute-value random variables, before.
    [Show full text]
  • Analyzing Uncertain Tabular Data
    Analyzing Uncertain Tabular Data Oliver Kennedy and Boris Glavic Abstract It is common practice to spend considerable time refining source data to address issues of data quality before beginning any data analysis. For ex- ample, an analyst might impute missing values or detect and fuse duplicate records representing the same real-world entity. However, there are many sit- uations where there are multiple possible candidate resolutions for a data quality issue, but there is not sufficient evidence for determining which of the resolutions is the most appropriate. In this case, the only way forward is to make assumptions to restrict the space of solutions and/or to heuristically choose a resolution based on characteristics that are deemed predictive of \good" resolutions. Although it is important for the analyst to understand the impact of these assumptions and heuristic choices on her results, evalu- ating this impact can be highly non-trivial and time consuming. For several decades now, the fields of probabilistic, incomplete, and fuzzy databases have developed strategies for analyzing the impact of uncertainty on the outcome of analyses. This general family of uncertainty-aware databases aims to model ambiguity in the results of analyses expressed in standard languages like SQL, SparQL, R, or Spark. An uncertainty-aware database uses descriptions of potential errors and ambiguities in source data to derive a correspond- ing description of potential errors or ambiguities in the result of an analysis accessing this source data. Depending on technique, these descriptions of uncertainty may be either quantitative (bounds, probabilities), or qualita- tive (certain outcomes, unknown values, explanations of uncertainty).
    [Show full text]