Thin Film Modeling of Crystal Growth and Dissolution in Confinement Luca Gagliardi

Total Page:16

File Type:pdf, Size:1020Kb

Thin Film Modeling of Crystal Growth and Dissolution in Confinement Luca Gagliardi Thin film modeling of crystal growth and dissolution in confinement Luca Gagliardi To cite this version: Luca Gagliardi. Thin film modeling of crystal growth and dissolution in confinement. Geophysics [physics.geo-ph]. Université de Lyon, 2018. English. NNT : 2018LYSE1211. tel-02044046 HAL Id: tel-02044046 https://tel.archives-ouvertes.fr/tel-02044046 Submitted on 21 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. No d’ordre NNT : 2018LYSE1211 THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON opérée au sein de l’Université Claude Bernard Lyon 1 École Doctorale ED 52 Physique et Astrophysique de Lyon Spécialité de doctorat : Physique Soutenue publiquement le 6 Novembre 2018, par : Luca Gagliardi Modèle de film mince pour la croissance et la dissolution de cristaux confinées Sous la direction de Olivier Pierre-Louis Devant le jury composé de : Colombani Jean, Professor, Université Lyon 1 Président(e) Cuerno Rodolfo, Professeur, Universidad Carlos III de Madrid Rapporteur Plapp Mathis, Directeur de Recherche, Ecole Polytechnique Rapporteur Renard Francois, Professeur, University of Oslo Rapporteur Shahidzadeh Noushine, Professeur Associé, University of Amsterdam Examinatrice Dysthe Dag Kristian, Professeur, University of Oslo Examinateur Pierre-Louis Olivier, Directeur de Recherche, Université Lyon 1 Directeur de thèse A Diodato Gagliardi, mio nonno. Résumé long Ces travaux de thèse ont pour objet l’étude de la croissance et de la dissolution de cristaux confinés à travers le développement et l’application d’un modèle continu. La croissance et la dissolution confinées des cristaux sont couramment observées dans les environnements naturels: les exemples vont de la géologie et la biominéralisation, aux matériaux de construction. En particulier, nous nous concentrons sur trois phénomènes: la dissolution sous contrainte, la formation de cavités sur la face confinée d’un cristal en croissance sur un substrat, et la force de cristallisation. La dissolution sous contrainte est la dissolution induite par une charge extérieure sur un ensemble de grains en solution et le compactage qui en résulte. Ceci est un problème classique en géologie, lié par exemple à l’évolution des bassins et des roches sédimentaires, et à la formation de stylolites (plans de discontinuité irréguliers entre deux unités rocheuses). La formation de cavités et de rebords sur la surface confinée de cristaux en croissance est un phénomène observé depuis ples d’un siècle, mais encore mal compris. La force de cristallisation est la force exercée par un cristal contraint contre les parois de pores ou de failles d’un matériel hôte. Ce phénomène est d’une grande importance pour comprendre les mécanismes d’érosion dans les roches naturelles, les bâtiments ou le patrimoine historique. Des mesures précises dans de tels systèmes sont difficiles et les résultats expérimentaux mon- trent souvent des différences importantes entre eux. D’autres difficultés d’interpretation sont liées aux lois heuristiques souvent employées pour décrire les données expérimentales ou le recours systématique à la thermodynamique d’équilibre pour décrire des phénomènes qui sont intrin- sèquement dynamiques. En général, il émerge le besoin de concevoir des modèles hors-équilibre pour démêler le nombre de questions débattues. Lors de la croissance et de la dissolution sous contrainte, un film mince de solution, permettant le transport de masse, est souvent présent entre le cristal et le substrat. Cependant, les approches théoriques existantes n’incluent pas des ingrédients importants tel que la pression de disjonction et l’hydrodynamique. Afin de construire un modèle qui inclut de manière cohérente ces ingredients physiques, nous nous concentrons sur la dynamique au sein des contacts lubrifiés. Nous développons un modèle continu de couche mince prenant en compte la diffusion, la cinétique de surface, l’hydrodynamique, la tension de surface et les interactions avec le substrat (pression de disjonc- tion). Le modèle est dérivé à partir de la limite de petites pentes à l’aide d’un développement asymptotique standard qui exploite la minceur du film. Certaines approximations supplémen- taires sont effectuées, par exemple en considérant un cristal rigide, des densités égales entre le liquide et le cristal, la limite diluée dans la solution, et uniquement des déplacements verticaux. Le modèle est ensuite appliqué aux différents problèmes susmentionnés. Dans un premier temps, nous étudions la dissolution induite par une charge externe. Nous nous concentrons sur le rôle des interactions entre cristal et substrat sur la dynamique de dissolution pour un contact unique. On considère que le contact est une arête symétrique (1D) ou axisymmetrique (2D). 5 Résumé long Nous nous intéressons au cas où la cinétique de surface est rapide par rapport à la diffusion dans la région du contact. Nous trouvons que la forme fonctionnelle de la pression de disjonction – finie ou divergente au contact – est cruciale pour déterminer les vitesses de dissolution et les morphologies stationnaires. Une interaction singulière en loi de puissance conduit par exemple à des profils aplatis et à un taux de dissolution qui augmente indéfiniment avec la charge en loi de puissance. Ces lois de puissances sont caractérisées par des exposants qui dépendent de la valeur de la viscosité. Nous identifions deux régimes. Un premier régime, à forte viscosité, où la charge externe est équilibrée par la dissipation visqueuse dans le film. Un second régime, à faible viscosité, où la charge est équilibrée par la pression de disjonction. Étonnamment, pour des charges externes importantes, une interaction exponentielle finie conduit à un profil stationnaire de forme pointue et dont la vitesse de dissolution est indépendante de la charge appliquée. Malgré la pression de disjonction finie, il n’est pas possible d’observer un cristal qui touche le substrat à une charge finie dans un état stationnaire. Cela est dû au couplage entre la dissipation visqueuse et la tension superficielle. Celle-ci, en régularisent la pointe, implique que le liquide soit évacué moins efficacement. Deuxièmement, nous considérons un cristal en croissance à proximité d’un mur plat. Nous supposons un contact axisymmetrique. Dans un premier temps, nous considérons la croissance dans un régime dominé par la diffusion (cinétique de surface rapide). Nous constatons qu’une cavité apparaît sur la surface cristalline confinée. Nous obtenons un diagramme de morphologie hors-équilibre décrivant la formation de la cavité qui depend d’un taux de croissance critique. Ce résultat est en accord avec les observations expérimentales effectuées par Felix Kohler et Dag Kristian Dysthe à l’Université d’Oslo. En traversant la ligne de transition, la cavité apparaît en manière continue si l’interaction avec le substrat est purement répulsive. Par ailleurs, nous ob- servons que lorsque la séparation avec le substrat est nanométrique, dû à l’effet d’une attraction van der Waals avec le substrat, la transition apparait en manière discontinue et avec hystérésis. De plus, dans ce cas, les effets hydrodynamiques peuvent entraver la formation de la cavité. Nous montrons qu’au-dessus d’une viscosité critique ou au-dessous d’une épaisseur de film cri- tique, aucune cavité ne peut se former. Nous considérons ensuite, des dynamiques de croissance dominées par la cinétique de surface et non par la diffusion. En particulier, le diagramme de morphologie peut être généralisé pour inclure les effets d’une cinétique de surface lente. Par ailleurs, l’inclusion de la cinétique de surface dans la description du phénomène permet, sous certaines restrictions, de décrire la forme globale d’un cristal en croissance sur un substrat après, par exemple, sédimentation ou nucléation hétérogène. Enfin, nous abordons la question de la force de cristallisation exercée par un cristal en crois- sance entre deux parois planes. Nous considérons un cristal entre deux contacts parallèles dans une géometrie axisymmetrique. Premièrement, nous considérons le cristal à l’équilibre. Nous montrons l’importance de la définition de la surface de contact pour déterminer la pression d’équilibre. Par exemple, avec une définition spécifique du rayon de contact à l’équilibre et pour une pression de disjonction répulsive, le modèle implique une pression d’équilibre identique à l’expression thermodynamique standard d’un cristal macroscopique. En particulier, notre ré- sultat ne montre aucune dépendance vis-à-vis de la taille du contact. Cependant, lorsqu’on considère une interaction attractive, avec une définition alternative du rayon de contact, des corrections pour les cristaux de taille finie apparaissent. Ces corrections dépendent de l’angle de contact. Nous traitons ensuite le problème hors équilibre, en laissant le cristal croître sous l’effect d’une sursaturation fixée en dehors de la région de contact. Nous observons que pendant la croissance, la ligne triple peut subir une transition cinétique qui comporte la formation d’un film macroscopique. La transition dépend uniquement du rapport entre la constante
Recommended publications
  • Stochastic Surface Growth
    Stochastic Surface Growth Dissertation der Fakultät für Physik der Ludwig-Maximilians-Universität vorgelegt von Michael Prähofer aus München München 2003 Tag der mündlichen Prüfung: 10. Juli 2003 Erstgutachter: Prof. Dr. Herbert Spohn Zweitgutachter: Prof. Dr. Wilhelm Zwerger iii Zusammenfassung Wachstumsphänomene stellen ein wichtiges Teilgebiet in der statistischen Mechanik des Nichtgleichgewichts dar. Einerseits sind sie überall in der Natur anzutreffen, andererseits stellt ihr theoretisches Verständnis eine Herausforderung an die Methoden der theoreti- schen Physik dar. Typischerweise führen Wachstumsprozesse zu statistisch skaleninvari- anten Strukturen. Für nichtlokales Wachstum bilden sich selbstähnliche Cluster in Form von Fraktalen, man denke an Schneeflocken oder Eisblumen. Oberflächenwachstum, bei dem das Wachstum ausschließlich lokal bestimmt ist, führt dagegen zur Bildung eines kompakten Objekts, das durch eine wohldefinierte Oberfläche von seiner Umgebung ge- trennt ist, wie zum Beispiel bei Kristallwachstum aus einer Lösung. Die Komplexität liegt in diesem Fall in der selbstaffinen Rauhigkeit der Oberfläche, die durch Fluktuationen bei der zufälligen Anlagerung bewirkt wird. Für solches stochastisches Oberflächenwachstum schlugen Kardar, Parisi und Zhang (KPZ) im Jahre 1986 eine Kontinuumstheorie vor, die durch die KPZ-Gleichung, eine nichtlineare stochastische partielle Differentialgleichung definiert wird. Sie ist die wohl einfachstmögliche Bewegungsgleichung für die Dynamik einer Grenzfläche, die alle we- sentlichen Zutaten für
    [Show full text]
  • On the Geometric Principles of Surface Growth
    On the Geometric Principles of Surface Growth Carlos Escudero Instituto de Matem´aticas y F´ısica Fundamental, Consejo Superior de Investigaciones Cient´ıficas, C/ Serrano 123, 28006 Madrid, Spain Abstract We introduce a new equation describing epitaxial growth processes. This equation is derived from a simple variational geometric principle and it has a straightforward interpretation in terms of continuum and microscopic physics. It is also able to reproduce the critical behavior already observed, mound formation and mass conservation, but however does not fit a divergence form as the most commonly spread models of conserved surface growth. This formulation allows us to connect the results of the dynamic renormalization group analysis with intuitive geometric principles, whose generic character may well allow them to describe surface growth and other phenomena in different areas of physics. PACS numbers: 68.35.Fx,02.40.Hw,05.40.-a,64.60.Ht arXiv:0811.2890v1 [cond-mat.stat-mech] 18 Nov 2008 1 Variational principles can be found everywhere in physics. Classical mechanics, optics, electrodynamics, and general relativity are examples of fundamental theories that are de- scribed by one such principle. These principles are not only a mathematically elegant way of describing the theory, but they are also supposed to express the fundamental physical con- tent of it. Quantum mechanics and quantum field theories, the most precise theories ever developed in any scientific discipline, can be expressed as quantizations (e. g. by means of path integrals) of the corresponding classical variational principles. The main role that variational principles have played in a vast range of physical theories makes them desirable when building new theoretical frameworks.
    [Show full text]
  • Regularity and Blow-Up in a Surface Growth Model
    REGULARITY AND BLOW-UP IN A SURFACE GROWTH MODEL DIRK BLOMKER¨ AND MARCO ROMITO Abstract. The paper contains several regularity results and blow-up criterions for a surface growth model, which seems to have similar properties to the 3D Navier-Stokes, although it is a scalar equation. As a starting point we focus on energy methods and Lyapunov-functionals. Contents 1. Introduction2 1.1. Existence of solutions2 1.2. Energy inequality3 1.3. A Lyapunov-type functional4 2. Existence and uniqueness in a critical space4 1 2.1. Existence and uniqueness in H_ 2 6 2.2. Uniqueness among weak solutions 11 3. Regularity 16 3.1. Criticality 16 3.2. Regularity Criteria 16 3.3. H3-regularity 18 3.4. Blow up below criticality 19 4. Blow-up 19 4.1. Some remarks 20 4.2. Leray-type results 21 4.3. Criterion for point-wise blow up to −∞ 22 4.4. The set of singular times 24 Appendix A. An inequality for the non-linearity 25 Appendix B. Blow up for ODEs 27 Appendix C. Analytic Semigroups 28 arXiv:0902.1409v1 [math.AP] 9 Feb 2009 References 28 2000 Mathematics Subject Classification. 35B33, 35B45, 35B65, 35K55, 35Qxx, 60H15. Key words and phrases. surface growth, critical space, uniqueness, regularity, blow up, Leray estimates, Lyapunov function. The second author gratefully acknowledges the support of Hausdorff Research Institute for Mathematics (Bonn), through the Junior Trimester Program on Computational Mathematics, and the hospitality of Augsburg Universit¨at. 1 2 D. BLOMKER¨ AND M. ROMITO 1. Introduction Throughout this paper we consider a possible blow up for a model from surface growth.
    [Show full text]
  • Dynamics for Chaos and Fractals
    DYNAMICS FOR CHAOS AND FRACTALS A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY EJAILY ALEJAILY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MATHEMATICS AUGUST 2019 Approval of the thesis: DYNAMICS FOR CHAOS AND FRACTALS submitted by EJAILY ALEJAILY in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Department, Middle East Tech- nical University by, Prof. Dr. Halil Kalıpçılar Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Yıldıray Ozan Head of Department, Mathematics Prof. Dr. Marat Akhmet Supervisor, Mathematics Department, METU Assoc. Prof. Dr. Mehmet Onur Fen Co-supervisor, Mathematics Department, TED University Examining Committee Members: Prof. Dr. Hur¸sitÖnsiper Mathematics Department, METU Prof. Dr. Marat Akhmet Mathematics Department, METU Prof. Dr. Hüseyin Bereketoglu˘ Mathematics Department, Ankara University Assoc. Prof. Dr. Fatma Fen Mathematics Department, Gazi University Assoc. Prof. Dr. Duygu Arugaslan˘ Mathematics Department, Süleyman Demirel University Date: I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Surname: Ejaily Alejaily Signature : iv ABSTRACT DYNAMICS FOR CHAOS AND FRACTALS Alejaily, Ejaily Ph.D., Department of Mathematics Supervisor: Prof. Dr. Marat Akhmet Co-Supervisor: Assoc. Prof. Dr. Mehmet Onur Fen August 2019, 98 pages In this thesis, we study how to construct and analyze dynamics for chaos and frac- tals.
    [Show full text]
  • Discrete Simulation Models of Surface Growth
    Theoretical Physics Discrete simulation models of surface growth Martin Bjork¨ Erik Deng [email protected] [email protected] SA104X Degree Project in Engineering Physics, First Level Department of Theoretical Physics Royal Institute of Technology (KTH) Supervisor: Jack Lidmar May 22, 2014 Abstract In this thesis the time evolution and scaling properties of different discrete models of surface growth using computer simulation is studied. The models are mainly using random deposition at a perpendicular angle to the substrates to model the adsorption process, and both one dimensional and two dimensional surfaces are considered. The Edwards-Wilkinson, Kardar-Parisi-Zhang and Mullins equations are also studied as analytical methods to describe the growth of surfaces. The scaling exponents derived from these equations are used as reference when analysing the exponents calculated from the simulation models studied in this thesis. We have found that the simulation models do not correspond perfectly with the analytical models for surface growth, suggesting possible flaws in our models or definitions. Despite the possible flaws, the models prove to be powerful tools for analysing the time evolution of surface growth. Furthermore, we have shown that most of the simulation models exhibit the expected scaling properties, which indicates that the surfaces do have the self-affine structure they are presumed to have. Sammanfattning I denna avhandling har tidsutvecklingen och skalningsegenskaperna hos olika diskreta modeller for¨ yttillvaxt¨ studerats med hjalp¨ av datorsimuleringar. De flesta modellerna anvander¨ slumpmassig¨ deposition vinkelratt¨ mot substraten for¨ att modellera adsorption, och bade˚ en- och tvadimensionella˚ modeller har studerats. Edward-Wilkingson-, Kardar-Parisi-Zhang- och Mullinsekvationen har aven¨ studerats som analytiska modeller for¨ att beskriva yttillvaxt.¨ Skalningsexponenterna som har erhallits˚ fran˚ dessa ekvationer har anvants¨ som referenser vid analysen av exponenterna som har raknats¨ ut fran˚ de simuleringsmodeller som har studerats i denna avhandling.
    [Show full text]
  • Disassembly of Faceted Macrosteps in the Step Droplet Zone in Non-Equilibrium Steady State
    crystals Article Disassembly of Faceted Macrosteps in the Step Droplet Zone in Non-Equilibrium Steady State Noriko Akutsu Faculty of Engineering, Osaka Electro-Communication University, Hatsu-cho, Neyagawa, Osaka 572-8530, Japan; [email protected]; Tel.: +81-72-824-1131 Academic Editor: Hiroki Nada Received: 23 December 2016; Accepted: 2 February 2017; Published: 8 February 2017 Abstract: A Wulff figure—the polar graph of the surface tension of a crystal—with a discontinuity was calculated by applying the density matrix renormalization group method to the p-RSOS model, a restricted solid-on-solid model with a point-contact-type step–step attraction. In the step droplet zone in this model, the surface tension is discontinuous around the (111) surface and continuous around the (001) surface. The vicinal surface of 4H-SiC crystal in a Si–Cr–C solution is thought to be in the step droplet zone. The dependence of the vicinal surface growth rate and the macrostep size hni on the driving force Dm for a typical state in the step droplet zone in non-equilibrium steady state was calculated using the Monte Carlo method. In contrast to the known step bunching phenomenon, the size of the macrostep was found to decrease with increasing driving force. The detachment of elementary steps from a macrostep was investigated, and it was found that hni satisfies a scaling function. Moreover, kinetic roughening was observed for jDmj > DmR, where DmR is the crossover driving force above which the macrostep disappears. Keywords: Monte Carlo simulation; crystal growth; surface and interface; density matrix renormalization group calculation; surface tension; kinetic roughening; surface free energy; step–step attraction PACS: 81.10.Aj; 68.35.Ct; 05.70.Np; 68.35.Md 1.
    [Show full text]
  • Monte Carlo and Kinetic Monte Carlo Methods – a Tutorial
    Institute for Advanced Simulation Monte Carlo and Kinetic Monte Carlo Methods – A Tutorial Peter Kratzer published in Multiscale Simulation Methods in Molecular Sciences, J. Grotendorst, N. Attig, S. Bl¨ugel, D. Marx (Eds.), Institute for Advanced Simulation, Forschungszentrum J¨ulich, NIC Series, Vol. 42, ISBN 978-3-9810843-8-2, pp. 51-76, 2009. c 2009 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentioned above. http://www.fz-juelich.de/nic-series/volume42 Monte Carlo and Kinetic Monte Carlo Methods – A Tutorial Peter Kratzer Fachbereich Physik and Center for Nanointegration (CeNIDE) Universit¨at Duisburg-Essen, Lotharstr. 1, 47048 Duisburg, Germany E-mail: [email protected] 1 Introduction In Computational Materials Science we have learned a lot from molecular dynamics (MD) simulations that allows us to follow the dynamics of molecular processes in great detail. In particular, the combination of MD simulations with density functional theory (DFT) calculations of the electronic structure, as pioneered more than thirty years ago by the work of R. Car and M. Parrinello1, has brought us a great step further: Since DFT enables us to describe a wide class of chemical bonds with good accuracy, it has become possible to model the microscopic dynamics behind many technological important processes in materials processing or chemistry.
    [Show full text]
  • Roughness in Surface Growth Equations
    Interfaces and Free Boundaries 3, (2001) 465–484 Roughness in surface growth equations DIRK BLOMKER¨ † Institut fur¨ Mathematik, RWTH Aachen, 52062 Aachen, Germany STANISLAUS MAIER-PAAPE‡ NWF I - Mathematik, RWTH Aachen, 52062 Aachen, Germany AND THOMAS WANNER§ Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA [Received 9 August 2000 and in revised form 21 February 2001] We consider the roughness of surfaces described by stochastic partial differential equations on bounded domains which arise in surface growth equations. The roughness is usually described by the mean interface width, which is the expected value of the squared L2-norm. Our main results describe the growth of the mean interface width for linear stochastic partial differential equations perturbed by white or colored noise. Keywords: Surface roughness; molecular beam epitaxy; stochastic partial differential equations; additive white and colored noise; mean interface width. 1. Introduction Surface growth problems study the spatio-temporal evolution of a surface profile generated through a growth process. These processes are not stationary, since the growth of the surface is due to constant deposition of material, as depicted in Fig. 1. One particular example is molecular beam epitaxy (MBE), where amorphous or crystalline material is deposited by a molecular beam onto an initially flat surface. Generally, the molecular beam is perturbed by stochastic fluctuations, such as, for example, Brownian motion in a gas—and therefore the process is expected to generate rather rough surfaces. On the other hand, there are several mechanisms that allow the particles to move on the surface while it is generated.
    [Show full text]
  • Controlling Roughening Processes in the Stochastic Kuramoto–
    Physica D 348 (2017) 33–43 Contents lists available at ScienceDirect Physica D journal homepage: www.elsevier.com/locate/physd Controlling roughening processes in the stochastic Kuramoto–Sivashinsky equation S.N. Gomes a,∗, S. Kalliadasis b, D.T. Papageorgiou a, G.A. Pavliotis a, M. Pradas c a Department of Mathematics, Imperial College London, London, SW7 2AZ, UK b Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK c School of Mathematics and Statistics, The Open University, Milton Keynes MK7 6AA, UK h i g h l i g h t s • Generic framework for the control of stochastic partial differential equations. • Framework exemplified with the stochastic Kuramoto-Sivashinsky (sKS) equation. • Control of roughening processes of sKS equation with Burgers or KPZ nonlinearity. • Force solutions of stochastic partial differential equations to a prescribed shape. • Controls are linear and can be both localized or periodically distributed. article info a b s t r a c t Article history: We present a novel control methodology to control the roughening processes of semilinear parabolic Received 6 April 2016 stochastic partial differential equations in one dimension, which we exemplify with the stochastic Accepted 22 February 2017 Kuramoto-Sivashinsky equation. The original equation is split into a linear stochastic and a nonlinear Available online 1 March 2017 deterministic equation so that we can apply linear feedback control methods. Our control strategy is then Communicated by J. Bronski based on two steps: first, stabilize the zero solution of the deterministic part and, second, control the roughness of the stochastic linear equation. We consider both periodic controls and point actuated ones, Keywords: observing in all cases that the second moment of the solution evolves in time according to a power-law Stochastic partial differential equations Stochastic Kuramoto–Sivashinsky equation until it saturates at the desired controlled value.
    [Show full text]
  • Rescaled Whittaker Driven Stochastic Differential Equations Converge To
    Rescaled Whittaker driven stochastic differential equations converge to the additive stochastic heat equation Yu-Ting Chen∗ October 19, 2018 Abstract We study SDEs arising from limiting fluctuations in a (2 + 1)-dimensional surface growth model called the Whittaker driven particle system, which is believed to be in the anisotropic Kardar{Parisi{ Zhang class. The main result of this paper proves an irrelevance of nonlinearity in the surface growth model in the continuum by weak convergence in a path space; the first instance of this irrelevance is obtained recently for this model in terms of the covariance functions along certain diverging character- istics. With the same limiting scheme, we prove that the derived SDEs converge in distribution to the 0 2 additive stochastic heat equation in C(R+; S (R )). The proof addresses the solutions as stochastic convolutions where the convolution structures are broken by discretization of the diverging character- istics. Keywords: Stochastic heat equations ; stochastic convolutions ; surface growth models. Mathematics Subject Classification (2000): 60H10, 60H15, 60G15 Contents 1 Introduction and main results2 2 Fourier representations of the solutions5 arXiv:1802.05346v2 [math.PR] 23 Apr 2018 3 Setup for the main theorem 11 4 Convergence of the stochastic parts 13 4.1 Semi-discrete integration by parts . 14 4.2 Stochastic integral representations . 17 4.3 Removal of remainders: dampening oscillations . 22 4.4 Removal of remainders: bounding convolution-like stochastic integrals . 25 4.5 Characterization of limits . 33 5 Convergence of the deterministic parts 34 ∗Department of Mathematics, University of Tennessee, Knoxville, United States of America. 1 6 List of frequent notations for Sections3{5 37 7 References 37 1 Introduction and main results In this paper, we consider rescaled limits of the Whittaker driven stochastic differential equations (SDEs) obtained in the recent work [7].
    [Show full text]
  • Surface Stability and Growth Kinetics of Compound Semiconductors: an Ab Initio-Based Approach
    Materials 2013, 6, 3309-3360; doi:10.3390/ma6083309 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Review Surface Stability and Growth Kinetics of Compound Semiconductors: An Ab Initio-Based Approach Yoshihiro Kangawa 1,*, Toru Akiyama 2, Tomonori Ito 2, Kenji Shiraishi 3 and Takashi Nakayama 4 1 Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan 2 Department of Physics Engineering, Mie University, 1577 Kurima-Machiya, Tsu 514-8507, Japan; E-Mails: [email protected] (T.A.); [email protected] (T.I.) 3 Institute of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; E-Mail: [email protected] 4 Department of Physics, Faculty of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-92-583-7742; Fax: +81-92-583-7743. Received: 27 June 2013 / Accepted: 30 July 2013 / Published: 6 August 2013 Abstract: We review the surface stability and growth kinetics of III-V and III-nitride semiconductors. The theoretical approach used in these studies is based on ab initio calculations and includes gas-phase free energy. With this method, we can investigate the influence of growth conditions, such as partial pressure and temperature, on the surface stability and growth kinetics. First, we examine the feasibility of this approach by comparing calculated surface phase diagrams of GaAs(001) with experimental results.
    [Show full text]
  • Recent Developments on the KPZ Surface-Growth Equation
    Recent developments on the KPZ surface-growth equation By Horacio S. Wio1, Carlos Escudero2, Jorge A. Revelli1, Roberto R. Deza3 and Marta S. de la Lama4 (1) Instituto de F¶³sica de Cantabria (UC and CSIC), Avda. de los Castros, s/n, E-39005 Santander, Spain; (2) ICMAT (CSIC-UAM-UC3M-UCM), Departamento de Matem¶aticas, Facultad de Ciencias, Universidad Aut¶onomade Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (3) Instituto de Investigaciones F¶³sicas Mar del Plata (UNMdP and CONICET), De¶anFunes 3350, B7602AYL Mar del Plata, Argentina; (4) Max-Planck-Institute for Dynamics and Self-Organization, Bunsenstra¼e 10, 37073 GÄottingen,Germany The stochastic nonlinear PDE known as the Kardar{Parisi{Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries, and its prediction of an exact dynamic scaling relation for a one-dimensional (1D) sub- stratum, led people to adopt it as a \standard" model in the ¯eld during the last quarter of century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these we ¯nd the beliefs that \genuine" nonequilibrium processes are nonvariational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface pro¯les has been generally assumed in the literature throughout the years. Here|among other topics|we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization, and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the 1D fluctuation– dissipation theorem.
    [Show full text]