18.S097 Applied Category Theory. Textbook Chapter 3: Databases

Total Page:16

File Type:pdf, Size:1020Kb

18.S097 Applied Category Theory. Textbook Chapter 3: Databases Chapter 3 Databases: Categories, functors, and universal constructions 3.1 What is a database? Integrating data from disparate sources is a major problem in industry today. A study in 2008 [BH08] showed that data integration accounts for 40% of IT (information technology) budgets, and that the market for data integration software was $2.5 billion in 2007 and increasing at a rate of more than 8% per year. In other words, it is a major problem; but what is it? A database is a system of interlocking tables. Data becomes information when it is stored in a given formation. That is, the numbers and letters don’t mean anything until they are organized, often into a system of interlocking tables. An organized system of interlocking tables is called a database. Here is a favorite example: Employee FName WorksIn Mngr Department DName Secr 1 Alan 101 2 101 Sales 1 2 Ruth 101 2 102 IT 3 3 Kris 102 3 (3.1) These two tables interlock by use of a special left-hand column, demarcated by a vertical line; it is called the ID column. The ID column of the first table is called ‘Employee,’ and the ID column of the second table is called ‘Department.’ The entries in the ID column—e.g. 1, 2, 3 or 101, 102—are like row labels; they indicate a whole row of the table they’re in. Thus each row label must be unique (no two rows in a table can have the same label), so that it can unambiguously specify its row. 77 78 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS Each table’s ID column, and the set of unique identifiers found therein, is what allows for the interlocking mentioned above. Indeed, other entries in various tables can reference rows in a given table by use of its ID column. For example, each entry in the WorksIn column references a department for each employee; each entry in the Mngr (manager) column references an employee for each employee, and each entry in the Secr (secretary) column references an employee for each department. Managing all this cross-referencing is the purpose of databases. Looking back at Eq. (3.1), one might notice that every non-ID column, found in either table, is a reference to a label of some sort. Some of these, namely WorksIn, Mngr, and Secr, are internal references, often called foreign keys; they refer to rows (keys) in the ID column of some (foreign) table. Others, namely FName and DName, are external references; they refer to strings or integers, which can also be thought of as labels, whose meaning is known more broadly. Internal reference labels can be changed as long as the change is consistent—1 could be replaced by 1001 everywhere without changing the meaning—whereas external reference labels certainly cannot! Changing Ruth to Bruce everywhere would change how people understood the data. The reference structure for a given database—i.e. how tables interlock via foreign keys—tells us something about what information was intended to be stored in it. One may visualize the reference structure for Eq. (3.1) graphically as follows: Employee WorksIn Department Mngr • Secr • easySchema B (3.2) FName string DName ◦ This is a kind of “Hasse diagram for a database,” much like the Hasse diagrams for preorders in Remark 1.39. How should you read it? The two tables from Eq. (3.1) are represented in the graph (3.2) by the two black nodes, which are given the same name as the ID columns: Employee and Department. There is another node—drawn white rather than black—which represents the external reference type of strings, like “Alan,” “Alpha,” and “Sales". The arrows in the diagram represent non-ID columns of the tables; they point in the direction of reference: WorksIn refers an employee to a department. Exercise 3.3. Count the number of non-ID columns in Eq. (3.1). Count the number of arrows (foreign keys) in Eq. (3.2). They should be the same number in this case; is this a coincidence? ♦ A Hasse-style diagram like the one in Eq. (3.2) can be called a database schema; it represents how the information is being organized, the formation in which the data is kept. One may add rules, sometimes called ‘business rules’ to the schema, in order to ensure the integrity of the data. If these rules are violated, one knows that data being 3.1. WHAT IS A DATABASE? 79 entered does not conform to the way the database designers intended. For example, the designers may enforce rules saying • every department’s secretary must work in that department; • every employee’s manager must work in the same department as the employee. Doing so changes the schema, say from ‘easySchema’ (3.2) to ‘mySchema’ below. Employee WorksIn Department Mngr • Secr • mySchema B (3.4) FName string DName ◦ Department.Secr.WorksIn = Department Employee.Mngr.WorksIn = Employee.WorksIn In other words, the difference is that easySchema plus constraints equals mySchema. We will soon see that database schemas are categories C, that the data itself is given by a ‘set-valued’ functor C Set, and that databases can be mapped to each other via ! functors C D. In other words, there is a relatively large overlap between database ! theory and category theory. This has been worked out in a number of papers; see Section 3.6. It has also been implemented in working software, called FQL, which stands for functorial query language. Here is example FQL code for the schema shown above: schema mySchema = { nodes Employee, Department; attributes DName : Department -> string, FName : Employee -> string; arrows Mngr : Employee -> Employee, WorksIn : Employee -> Department, Secr : Department -> Employee; equations Department.Secr.WorksIn = Department, Employee.Mngr.WorksIn = Employee.WorksIn; } Communication between databases. We have said that databases are designed to store information about something. But different people or organizations might view the same sort of thing in different ways. For example, one bank stores its financial records according to European standards and another does so according to Japanese standards. If these two banks merge into one, they will need to be able to share their data despite differences in the shape of their database schemas. 80 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS Such problems are huge and intricate in general, because databases often comprise hundreds or thousands of interlocking tables. Moreover, these problems occur more frequently than just when companies want to merge. It is quite common that a given company moves data between databases on a daily basis. The reason is that different ways of organizing information are convenient for different purposes. Just like we pack our clothes in a suitcase when traveling but use a closet at home, there is generally not one best way to organize anything. Category theory provides a mathematical approach for translating between these different organizational forms. That is, it formalizes a sort of automated reorganizing process called data migration, which takes data that fits snugly in one schema and moves it into another. Here is a simple case. Imagine an airline company has two different databases, perhaps created at different times, that hold roughly the same data. $ $ ◦ ◦ Price Price Price A B Economy First Class Airline Seat : B • • • Position Position Position string string (3.5) ◦ ◦ Schema A has more detail than schema B—an airline seat may be in first class or economy—but they are roughly the same. We will see that they can be connected by a functor, and that data conforming to A can be migrated through this functor to schema B and vice versa. The statistics at the beginning of this section show that this sort of problem— when occurring at enterprise scale—continues to prove difficult and expensive. If one attempts to move data from a source schema to a target schema, the migrated data could fail to fit into the target schema or fail to satisfy some of its constraints. This happens surprisingly often in the world of business: a night may be spent moving data, and the next morning it is found to have arrived broken and unsuitable for further use. In fact, it is believed that over half of database migration projects fail. In this chapter, we will discuss a category-theoretic method for migrating data. Using categories and functors, one can prove up front that a given data migration will not fail, i.e. that the result is guaranteed to fit into the target schema and satisfy all its constraints. The material in this chapter gets to the heart of category theory: in particular, we discuss categories, functors, natural transformations, adjunctions, limits, and colimits. In fact, many of these ideas have been present in the discussion above: • The schema pictures, e.g. Eq. (3.4) depict categories C. 3.2. CATEGORIES 81 • The instances, e.g. Eq. (3.1) are functors from C to a certain category called Set. • The implicit mapping in Eq. (3.5), which takes economy and first class seats in A to airline seats in B, constitutes a functor A B. ! • The notion of data migration for moving data between schemas is formalized by adjoint functors. We begin in Section 3.2 with the definition of categories and a bunch of different sorts of examples. In Section 3.3 we bring back databases, in particular their instances and the maps between them, by discussing functors and natural transformations. In Section 3.4 we discuss data migration by way of adjunctions, which generalize the Galois connections we introduced in Section 1.4. Finally in Section 3.5 we give a bonus section on limits and colimits.1 3.2 Categories A category C consists of four pieces of data—objects, morphisms, identities, and a composition rule—satisfying two properties.
Recommended publications
  • A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints
    A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints by Mehrdad Sabetzadeh A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2003 by Mehrdad Sabetzadeh Abstract A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints Mehrdad Sabetzadeh Master of Science Graduate Department of Computer Science University of Toronto 2003 Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. This may result in inconsis- tencies between the descriptions provided by stakeholders. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this thesis, we propose a category-theoretic framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is a graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) cocomplete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. Taking advantage of the same category-theoretic techniques used in defining fuzzy viewpoints, we will also introduce a more general graph-based formalism that may find applications in other contexts. ii To my mother and father with love and gratitude. Acknowledgements First of all, I wish to thank my supervisor Steve Easterbrook for his guidance, support, and patience.
    [Show full text]
  • Notes and Solutions to Exercises for Mac Lane's Categories for The
    Stefan Dawydiak Version 0.3 July 2, 2020 Notes and Exercises from Categories for the Working Mathematician Contents 0 Preface 2 1 Categories, Functors, and Natural Transformations 2 1.1 Functors . .2 1.2 Natural Transformations . .4 1.3 Monics, Epis, and Zeros . .5 2 Constructions on Categories 6 2.1 Products of Categories . .6 2.2 Functor categories . .6 2.2.1 The Interchange Law . .8 2.3 The Category of All Categories . .8 2.4 Comma Categories . 11 2.5 Graphs and Free Categories . 12 2.6 Quotient Categories . 13 3 Universals and Limits 13 3.1 Universal Arrows . 13 3.2 The Yoneda Lemma . 14 3.2.1 Proof of the Yoneda Lemma . 14 3.3 Coproducts and Colimits . 16 3.4 Products and Limits . 18 3.4.1 The p-adic integers . 20 3.5 Categories with Finite Products . 21 3.6 Groups in Categories . 22 4 Adjoints 23 4.1 Adjunctions . 23 4.2 Examples of Adjoints . 24 4.3 Reflective Subcategories . 28 4.4 Equivalence of Categories . 30 4.5 Adjoints for Preorders . 32 4.5.1 Examples of Galois Connections . 32 4.6 Cartesian Closed Categories . 33 5 Limits 33 5.1 Creation of Limits . 33 5.2 Limits by Products and Equalizers . 34 5.3 Preservation of Limits . 35 5.4 Adjoints on Limits . 35 5.5 Freyd's adjoint functor theorem . 36 1 6 Chapter 6 38 7 Chapter 7 38 8 Abelian Categories 38 8.1 Additive Categories . 38 8.2 Abelian Categories . 38 8.3 Diagram Lemmas . 39 9 Special Limits 41 9.1 Interchange of Limits .
    [Show full text]
  • Arithmetical Foundations Recursion.Evaluation.Consistency Ωi 1
    ••• Arithmetical Foundations Recursion.Evaluation.Consistency Ωi 1 f¨ur AN GELA & FRAN CISCUS Michael Pfender version 3.1 December 2, 2018 2 Priv. - Doz. M. Pfender, Technische Universit¨atBerlin With the cooperation of Jan Sablatnig Preprint Institut f¨urMathematik TU Berlin submitted to W. DeGRUYTER Berlin book on demand [email protected] The following students have contributed seminar talks: Sandra An- drasek, Florian Blatt, Nick Bremer, Alistair Cloete, Joseph Helfer, Frank Herrmann, Julia Jonczyk, Sophia Lee, Dariusz Lesniowski, Mr. Matysiak, Gregor Myrach, Chi-Thanh Christopher Nguyen, Thomas Richter, Olivia R¨ohrig,Paul Vater, and J¨orgWleczyk. Keywords: primitive recursion, categorical free-variables Arith- metic, µ-recursion, complexity controlled iteration, map code evaluation, soundness, decidability of p. r. predicates, com- plexity controlled iterative self-consistency, Ackermann dou- ble recursion, inconsistency of quantified arithmetical theo- ries, history. Preface Johannes Zawacki, my high school teacher, told us about G¨odel'ssec- ond theorem, on non-provability of consistency of mathematics within mathematics. Bonmot of Andr´eWeil: Dieu existe parceque la Math´e- matique est consistente, et le diable existe parceque nous ne pouvons pas prouver cela { God exists since Mathematics is consistent, and the devil exists since we cannot prove that. The problem with 19th/20th century mathematical foundations, clearly stated in Skolem 1919, is unbound infinitistic (non-constructive) formal existential quantification. In his 1973
    [Show full text]
  • A Subtle Introduction to Category Theory
    A Subtle Introduction to Category Theory W. J. Zeng Department of Computer Science, Oxford University \Static concepts proved to be very effective intellectual tranquilizers." L. L. Whyte \Our study has revealed Mathematics as an array of forms, codify- ing ideas extracted from human activates and scientific problems and deployed in a network of formal rules, formal definitions, formal axiom systems, explicit theorems with their careful proof and the manifold in- terconnections of these forms...[This view] might be called formal func- tionalism." Saunders Mac Lane Let's dive right in then, shall we? What can we say about the array of forms MacLane speaks of? Claim (Tentative). Category theory is about the formal aspects of this array of forms. Commentary: It might be tempting to put the brakes on right away and first grab hold of what we mean by formal aspects. Instead, rather than trying to present \the formal" as the object of study and category theory as our instrument, we would nudge the reader to consider another perspective. Category theory itself defines formal aspects in much the same way that physics defines physical concepts or laws define legal (and correspondingly illegal) aspects: it embodies them. When we speak of what is formal/physical/legal we inescapably speak of category/physical/legal theory, and vice versa. Thus we pass to the somewhat grammatically awkward revision of our initial claim: Claim (Tentative). Category theory is the formal aspects of this array of forms. Commentary: Let's unpack this a little bit. While individual forms are themselves tautologically formal, arrays of forms and everything else networked in a system lose this tautological formality.
    [Show full text]
  • Product Category Rules
    Product Category Rules PRé’s own Vee Subramanian worked with a team of experts to publish a thought provoking article on product category rules (PCRs) in the International Journal of Life Cycle Assessment in April 2012. The full article can be viewed at http://www.springerlink.com/content/qp4g0x8t71432351/. Here we present the main body of the text that explores the importance of global alignment of programs that manage PCRs. Comparing Product Category Rules from Different Programs: Learned Outcomes Towards Global Alignment Vee Subramanian • Wesley Ingwersen • Connie Hensler • Heather Collie Abstract Purpose Product category rules (PCRs) provide category-specific guidance for estimating and reporting product life cycle environmental impacts, typically in the form of environmental product declarations and product carbon footprints. Lack of global harmonization between PCRs or sector guidance documents has led to the development of duplicate PCRs for same products. Differences in the general requirements (e.g., product category definition, reporting format) and LCA methodology (e.g., system boundaries, inventory analysis, allocation rules, etc.) diminish the comparability of product claims. Methods A comparison template was developed to compare PCRs from different global program operators. The goal was to identify the differences between duplicate PCRs from a broad selection of product categories and propose a path towards alignment. We looked at five different product categories: Milk/dairy (2 PCRs), Horticultural products (3 PCRs), Wood-particle board (2 PCRs), and Laundry detergents (4 PCRs). Results & discussion Disparity between PCRs ranged from broad differences in scope, system boundaries and impacts addressed (e.g. multi-impact vs. carbon footprint only) to specific differences of technical elements.
    [Show full text]
  • Derived Functors and Homological Dimension (Pdf)
    DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION George Torres Math 221 Abstract. This paper overviews the basic notions of abelian categories, exact functors, and chain complexes. It will use these concepts to define derived functors, prove their existence, and demon- strate their relationship to homological dimension. I affirm my awareness of the standards of the Harvard College Honor Code. Date: December 15, 2015. 1 2 DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION 1. Abelian Categories and Homology The concept of an abelian category will be necessary for discussing ideas on homological algebra. Loosely speaking, an abelian cagetory is a type of category that behaves like modules (R-mod) or abelian groups (Ab). We must first define a few types of morphisms that such a category must have. Definition 1.1. A morphism f : X ! Y in a category C is a zero morphism if: • for any A 2 C and any g; h : A ! X, fg = fh • for any B 2 C and any g; h : Y ! B, gf = hf We denote a zero morphism as 0XY (or sometimes just 0 if the context is sufficient). Definition 1.2. A morphism f : X ! Y is a monomorphism if it is left cancellative. That is, for all g; h : Z ! X, we have fg = fh ) g = h. An epimorphism is a morphism if it is right cancellative. The zero morphism is a generalization of the zero map on rings, or the identity homomorphism on groups. Monomorphisms and epimorphisms are generalizations of injective and surjective homomorphisms (though these definitions don't always coincide). It can be shown that a morphism is an isomorphism iff it is epic and monic.
    [Show full text]
  • Category Theory
    CMPT 481/731 Functional Programming Fall 2008 Category Theory Category theory is a generalization of set theory. By having only a limited number of carefully chosen requirements in the definition of a category, we are able to produce a general algebraic structure with a large number of useful properties, yet permit the theory to apply to many different specific mathematical systems. Using concepts from category theory in the design of a programming language leads to some powerful and general programming constructs. While it is possible to use the resulting constructs without knowing anything about category theory, understanding the underlying theory helps. Category Theory F. Warren Burton 1 CMPT 481/731 Functional Programming Fall 2008 Definition of a Category A category is: 1. a collection of ; 2. a collection of ; 3. operations assigning to each arrow (a) an object called the domain of , and (b) an object called the codomain of often expressed by ; 4. an associative composition operator assigning to each pair of arrows, and , such that ,a composite arrow ; and 5. for each object , an identity arrow, satisfying the law that for any arrow , . Category Theory F. Warren Burton 2 CMPT 481/731 Functional Programming Fall 2008 In diagrams, we will usually express and (that is ) by The associative requirement for the composition operators means that when and are both defined, then . This allow us to think of arrows defined by paths throught diagrams. Category Theory F. Warren Burton 3 CMPT 481/731 Functional Programming Fall 2008 I will sometimes write for flip , since is less confusing than Category Theory F.
    [Show full text]
  • An Introduction to Category Theory and Categorical Logic
    An Introduction to Category Theory and Categorical Logic Wolfgang Jeltsch Category theory An Introduction to Category Theory basics Products, coproducts, and and Categorical Logic exponentials Categorical logic Functors and Wolfgang Jeltsch natural transformations Monoidal TTU¨ K¨uberneetika Instituut categories and monoidal functors Monads and Teooriaseminar comonads April 19 and 26, 2012 References An Introduction to Category Theory and Categorical Logic Category theory basics Wolfgang Jeltsch Category theory Products, coproducts, and exponentials basics Products, coproducts, and Categorical logic exponentials Categorical logic Functors and Functors and natural transformations natural transformations Monoidal categories and Monoidal categories and monoidal functors monoidal functors Monads and comonads Monads and comonads References References An Introduction to Category Theory and Categorical Logic Category theory basics Wolfgang Jeltsch Category theory Products, coproducts, and exponentials basics Products, coproducts, and Categorical logic exponentials Categorical logic Functors and Functors and natural transformations natural transformations Monoidal categories and Monoidal categories and monoidal functors monoidal functors Monads and Monads and comonads comonads References References An Introduction to From set theory to universal algebra Category Theory and Categorical Logic Wolfgang Jeltsch I classical set theory (for example, Zermelo{Fraenkel): I sets Category theory basics I functions from sets to sets Products, I composition
    [Show full text]
  • Categories, Functors, and Natural Transformations I∗
    Lecture 2: Categories, functors, and natural transformations I∗ Nilay Kumar June 4, 2014 (Meta)categories We begin, for the moment, with rather loose definitions, free from the technicalities of set theory. Definition 1. A metagraph consists of objects a; b; c; : : :, arrows f; g; h; : : :, and two operations, as follows. The first is the domain, which assigns to each arrow f an object a = dom f, and the second is the codomain, which assigns to each arrow f an object b = cod f. This is visually indicated by f : a ! b. Definition 2. A metacategory is a metagraph with two additional operations. The first is the identity, which assigns to each object a an arrow Ida = 1a : a ! a. The second is the composition, which assigns to each pair g; f of arrows with dom g = cod f an arrow g ◦ f called their composition, with g ◦ f : dom f ! cod g. This operation may be pictured as b f g a c g◦f We require further that: composition is associative, k ◦ (g ◦ f) = (k ◦ g) ◦ f; (whenever this composition makese sense) or diagrammatically that the diagram k◦(g◦f)=(k◦g)◦f a d k◦g f k g◦f b g c commutes, and that for all arrows f : a ! b and g : b ! c, we have 1b ◦ f = f and g ◦ 1b = g; or diagrammatically that the diagram f a b f g 1b g b c commutes. ∗This talk follows [1] I.1-4 very closely. 1 Recall that a diagram is commutative when, for each pair of vertices c and c0, any two paths formed from direct edges leading from c to c0 yield, by composition of labels, equal arrows from c to c0.
    [Show full text]
  • N-Quasi-Abelian Categories Vs N-Tilting Torsion Pairs 3
    N-QUASI-ABELIAN CATEGORIES VS N-TILTING TORSION PAIRS WITH AN APPLICATION TO FLOPS OF HIGHER RELATIVE DIMENSION LUISA FIOROT Abstract. It is a well established fact that the notions of quasi-abelian cate- gories and tilting torsion pairs are equivalent. This equivalence fits in a wider picture including tilting pairs of t-structures. Firstly, we extend this picture into a hierarchy of n-quasi-abelian categories and n-tilting torsion classes. We prove that any n-quasi-abelian category E admits a “derived” category D(E) endowed with a n-tilting pair of t-structures such that the respective hearts are derived equivalent. Secondly, we describe the hearts of these t-structures as quotient categories of coherent functors, generalizing Auslander’s Formula. Thirdly, we apply our results to Bridgeland’s theory of perverse coherent sheaves for flop contractions. In Bridgeland’s work, the relative dimension 1 assumption guaranteed that f∗-acyclic coherent sheaves form a 1-tilting torsion class, whose associated heart is derived equivalent to D(Y ). We generalize this theorem to relative dimension 2. Contents Introduction 1 1. 1-tilting torsion classes 3 2. n-Tilting Theorem 7 3. 2-tilting torsion classes 9 4. Effaceable functors 14 5. n-coherent categories 17 6. n-tilting torsion classes for n> 2 18 7. Perverse coherent sheaves 28 8. Comparison between n-abelian and n + 1-quasi-abelian categories 32 Appendix A. Maximal Quillen exact structure 33 Appendix B. Freyd categories and coherent functors 34 Appendix C. t-structures 37 References 39 arXiv:1602.08253v3 [math.RT] 28 Dec 2019 Introduction In [6, 3.3.1] Beilinson, Bernstein and Deligne introduced the notion of a t- structure obtained by tilting the natural one on D(A) (derived category of an abelian category A) with respect to a torsion pair (X , Y).
    [Show full text]
  • The ACT Pipeline from Abstraction to Application
    Addressing hypercomplexity: The ACT pipeline from abstraction to application David I. Spivak (Joint with Brendan Fong, Paolo Perrone, Evan Patterson) Department of Mathematics Massachusetts Institute of Technology 0 / 25 Introduction Outline 1 Introduction Why? How? What? Plan of the talk 2 Some new applications 3 Catlab.jl 4 Conclusion 0 / 25 Introduction Why? What's wrong? As problem complexity increases, good organization becomes crucial. (Courtesy of Spencer Breiner, NIST) 1 / 25 Introduction Why? The problem is hypercomplexity The world is becoming more complex. We need to deal with more and more diverse sorts of interaction. Rather than closed dynamical systems, everything is open. The state of one system affects those of systems in its environment. Examples are everywhere. Designing anything requires input from more diverse stakeholders. Software is developed by larger teams, touching a common codebase. Scientists need to use experimental data obtained by their peers. (But the data structure and assumptions don't simply line up.) We need to handle this new complexity; traditional methods are faltering. 2 / 25 Introduction How? How might we deal with hypercomplexity? Organize the problem spaces effectively, as objects in their own right. Find commonalities in the various problems we work on. Consider the ways we build complex problems out of simple ones. Think of problem spaces and solutions as mathematical entities. With that in hand, how do you solve a hypercomplex problem? Migrating subproblems to groups who can solve them. Take the returned solutions and fit them together. Ensure in advance that these solutions will compose. Do this according the mathematical problem-space structure.
    [Show full text]
  • Diagrammatics in Categorification and Compositionality
    Diagrammatics in Categorification and Compositionality by Dmitry Vagner Department of Mathematics Duke University Date: Approved: Ezra Miller, Supervisor Lenhard Ng Sayan Mukherjee Paul Bendich Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the Graduate School of Duke University 2019 ABSTRACT Diagrammatics in Categorification and Compositionality by Dmitry Vagner Department of Mathematics Duke University Date: Approved: Ezra Miller, Supervisor Lenhard Ng Sayan Mukherjee Paul Bendich An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the Graduate School of Duke University 2019 Copyright c 2019 by Dmitry Vagner All rights reserved Abstract In the present work, I explore the theme of diagrammatics and their capacity to shed insight on two trends|categorification and compositionality|in and around contemporary category theory. The work begins with an introduction of these meta- phenomena in the context of elementary sets and maps. Towards generalizing their study to more complicated domains, we provide a self-contained treatment|from a pedagogically novel perspective that introduces almost all concepts via diagrammatic language|of the categorical machinery with which we may express the broader no- tions found in the sequel. The work then branches into two seemingly unrelated disciplines: dynamical systems and knot theory. In particular, the former research defines what it means to compose dynamical systems in a manner analogous to how one composes simple maps. The latter work concerns the categorification of the slN link invariant. In particular, we use a virtual filtration to give a more diagrammatic reconstruction of Khovanov-Rozansky homology via a smooth TQFT.
    [Show full text]