Entropic Updating of Probabilities and Density Matrices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantum Information, Entanglement and Entropy
QUANTUM INFORMATION, ENTANGLEMENT AND ENTROPY Siddharth Sharma Abstract In this review I had given an introduction to axiomatic Quantum Mechanics, Quantum Information and its measure entropy. Also, I had given an introduction to Entanglement and its measure as the minimum of relative quantum entropy of a density matrix of a Hilbert space with respect to all separable density matrices of the same Hilbert space. I also discussed geodesic in the space of density matrices, their orthogonality and Pythagorean theorem of density matrix. Postulates of Quantum Mechanics The basic postulate of quantum mechanics is about the Hilbert space formalism: • Postulates 0: To each quantum mechanical system, has a complex Hilbert space ℍ associated to it: Set of all pure state, ℍ⁄∼ ≔ {⟦푓⟧|⟦푓⟧ ≔ {ℎ: ℎ ∼ 푓}} and ℎ ∼ 푓 ⇔ ∃ 푧 ∈ ℂ such that ℎ = 푧 푓 where 푧 is called phase • Postulates 1: The physical states of a quantum mechanical system are described by statistical operators acting on the Hilbert space. A density matrix or statistical operator, is a positive operator of trace 1 on the Hilbert space. Where is called positive if 〈푥, 푥〉 for all 푥 ∈ ℍ and 〈⋇,⋇〉. • Postulates 2: The observables of a quantum mechanical system are described by self- adjoint operators acting on the Hilbert space. A self-adjoint operator A on a Hilbert space ℍ is a linear operator 퐴: ℍ → ℍ which satisfies 〈퐴푥, 푦〉 = 〈푥, 퐴푦〉 for 푥, 푦 ∈ ℍ. Lemma: The density matrices acting on a Hilbert space form a convex set whose extreme points are the pure states. Proof. Denote by Σ the set of density matrices. -
A Mini-Introduction to Information Theory
A Mini-Introduction To Information Theory Edward Witten School of Natural Sciences, Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 USA Abstract This article consists of a very short introduction to classical and quantum information theory. Basic properties of the classical Shannon entropy and the quantum von Neumann entropy are described, along with related concepts such as classical and quantum relative entropy, conditional entropy, and mutual information. A few more detailed topics are considered in the quantum case. arXiv:1805.11965v5 [hep-th] 4 Oct 2019 Contents 1 Introduction 2 2 Classical Information Theory 2 2.1 ShannonEntropy ................................... .... 2 2.2 ConditionalEntropy ................................. .... 4 2.3 RelativeEntropy .................................... ... 6 2.4 Monotonicity of Relative Entropy . ...... 7 3 Quantum Information Theory: Basic Ingredients 10 3.1 DensityMatrices .................................... ... 10 3.2 QuantumEntropy................................... .... 14 3.3 Concavity ......................................... .. 16 3.4 Conditional and Relative Quantum Entropy . ....... 17 3.5 Monotonicity of Relative Entropy . ...... 20 3.6 GeneralizedMeasurements . ...... 22 3.7 QuantumChannels ................................... ... 24 3.8 Thermodynamics And Quantum Channels . ...... 26 4 More On Quantum Information Theory 27 4.1 Quantum Teleportation and Conditional Entropy . ......... 28 4.2 Quantum Relative Entropy And Hypothesis Testing . ......... 32 4.3 Encoding -
A Short Introduction to the Quantum Formalism[S]
A short introduction to the quantum formalism[s] François David Institut de Physique Théorique CNRS, URA 2306, F-91191 Gif-sur-Yvette, France CEA, IPhT, F-91191 Gif-sur-Yvette, France [email protected] These notes are an elaboration on: (i) a short course that I gave at the IPhT-Saclay in May- June 2012; (ii) a previous letter [Dav11] on reversibility in quantum mechanics. They present an introductory, but hopefully coherent, view of the main formalizations of quantum mechanics, of their interrelations and of their common physical underpinnings: causality, reversibility and locality/separability. The approaches covered are mainly: (ii) the canonical formalism; (ii) the algebraic formalism; (iii) the quantum logic formulation. Other subjects: quantum information approaches, quantum correlations, contextuality and non-locality issues, quantum measurements, interpretations and alternate theories, quantum gravity, are only very briefly and superficially discussed. Most of the material is not new, but is presented in an original, homogeneous and hopefully not technical or abstract way. I try to define simply all the mathematical concepts used and to justify them physically. These notes should be accessible to young physicists (graduate level) with a good knowledge of the standard formalism of quantum mechanics, and some interest for theoretical physics (and mathematics). These notes do not cover the historical and philosophical aspects of quantum physics. arXiv:1211.5627v1 [math-ph] 24 Nov 2012 Preprint IPhT t12/042 ii CONTENTS Contents 1 Introduction 1-1 1.1 Motivation . 1-1 1.2 Organization . 1-2 1.3 What this course is not! . 1-3 1.4 Acknowledgements . 1-3 2 Reminders 2-1 2.1 Classical mechanics . -
Some Trace Inequalities for Exponential and Logarithmic Functions
Bull. Math. Sci. https://doi.org/10.1007/s13373-018-0123-3 Some trace inequalities for exponential and logarithmic functions Eric A. Carlen1 · Elliott H. Lieb2 Received: 8 October 2017 / Revised: 17 April 2018 / Accepted: 24 April 2018 © The Author(s) 2018 Abstract Consider a function F(X, Y ) of pairs of positive matrices with values in the positive matrices such that whenever X and Y commute F(X, Y ) = X pY q . Our first main result gives conditions on F such that Tr[X log(F(Z, Y ))]≤Tr[X(p log X + q log Y )] for all X, Y, Z such that TrZ = Tr X. (Note that Z is absent from the right side of the inequality.) We give several examples of functions F to which the theorem applies. Our theorem allows us to give simple proofs of the well known logarithmic inequalities of Hiai and Petz and several new generalizations of them which involve three variables X, Y, Z instead of just X, Y alone. The investigation of these logarith- mic inequalities is closely connected with three quantum relative entropy functionals: The standard Umegaki quantum relative entropy D(X||Y ) = Tr[X(log X − log Y ]), and two others, the Donald relative entropy DD(X||Y ), and the Belavkin–Stasewski relative entropy DBS(X||Y ). They are known to satisfy DD(X||Y ) ≤ D(X||Y ) ≤ DBS(X||Y ). We prove that the Donald relative entropy provides the sharp upper bound, independent of Z on Tr[X log(F(Z, Y ))] in a number of cases in which F(Z, Y ) is homogeneous of degree 1 in Z and −1inY . -
Functional Integration on Paracompact Manifods Pierre Grange, E
Functional Integration on Paracompact Manifods Pierre Grange, E. Werner To cite this version: Pierre Grange, E. Werner. Functional Integration on Paracompact Manifods: Functional Integra- tion on Manifold. Theoretical and Mathematical Physics, Consultants bureau, 2018, pp.1-29. hal- 01942764 HAL Id: hal-01942764 https://hal.archives-ouvertes.fr/hal-01942764 Submitted on 3 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Functional Integration on Paracompact Manifolds Pierre Grangé Laboratoire Univers et Particules, Université Montpellier II, CNRS/IN2P3, Place E. Bataillon F-34095 Montpellier Cedex 05, France E-mail: [email protected] Ernst Werner Institut fu¨r Theoretische Physik, Universita¨t Regensburg, Universita¨tstrasse 31, D-93053 Regensburg, Germany E-mail: [email protected] ........................................................................ Abstract. In 1948 Feynman introduced functional integration. Long ago the problematic aspect of measures in the space of fields was overcome with the introduction of volume elements in Probability Space, leading to stochastic formulations. More recently Cartier and DeWitt-Morette (CDWM) focused on the definition of a proper integration measure and established a rigorous mathematical formulation of functional integration. CDWM’s central observation relates to the distributional nature of fields, for it leads to the identification of distribution functionals with Schwartz space test functions as density measures. -
Lecture 18 — October 26, 2015 1 Overview 2 Quantum Entropy
PHYS 7895: Quantum Information Theory Fall 2015 Lecture 18 | October 26, 2015 Prof. Mark M. Wilde Scribe: Mark M. Wilde This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. 1 Overview In the previous lecture, we discussed classical entropy and entropy inequalities. In this lecture, we discuss several information measures that are important for quantifying the amount of information and correlations that are present in quantum systems. The first fundamental measure that we introduce is the von Neumann entropy. It is the quantum generalization of the Shannon entropy, but it captures both classical and quantum uncertainty in a quantum state. The von Neumann entropy gives meaning to a notion of the information qubit. This notion is different from that of the physical qubit, which is the description of a quantum state of an electron or a photon. The information qubit is the fundamental quantum informational unit of measure, determining how much quantum information is present in a quantum system. The initial definitions here are analogous to the classical definitions of entropy, but we soon discover a radical departure from the intuitive classical notions from the previous chapter: the conditional quantum entropy can be negative for certain quantum states. In the classical world, this negativity simply does not occur, but it takes a special meaning in quantum information theory. Pure quantum states that are entangled have stronger-than-classical correlations and are examples of states that have negative conditional entropy. The negative of the conditional quantum entropy is so important in quantum information theory that we even have a special name for it: the coherent information. -
Well-Defined Lagrangian Flows for Absolutely Continuous Curves of Probabilities on the Line
Graduate Theses, Dissertations, and Problem Reports 2016 Well-defined Lagrangian flows for absolutely continuous curves of probabilities on the line Mohamed H. Amsaad Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Amsaad, Mohamed H., "Well-defined Lagrangian flows for absolutely continuous curves of probabilities on the line" (2016). Graduate Theses, Dissertations, and Problem Reports. 5098. https://researchrepository.wvu.edu/etd/5098 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Well-defined Lagrangian flows for absolutely continuous curves of probabilities on the line Mohamed H. Amsaad Dissertation submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Adrian Tudorascu, Ph.D., Chair Harumi Hattori, Ph.D. Harry Gingold, Ph.D. Tudor Stanescu, Ph.D. Charis Tsikkou, Ph.D. Department Of Mathematics Morgantown, West Virginia 2016 Keywords: Continuity Equation, Lagrangian Flow, Optimal Transport, Wasserstein metric, Wasserstein space. -
Functional Derivative
Appendix Functional Derivative Appendix A: Calculus of Variation Consider a mapping from a vector space of functions to real number. Such mapping is called functional. One of the most representative examples of such a mapping is the action functional of analytical mechanics, A ,which is defined by Zt2 A½xtðÞ Lxt½ðÞ; vtðÞdt ðA:1Þ t1 where t is the independent variable, xtðÞis the trajectory of a particle, vtðÞ¼dx=dt is the velocity of the particle, and L is the Lagrangian which is the difference of kinetic energy and the potential: m L ¼ v2 À uxðÞ ðA:2Þ 2 Calculus of variation is the mathematical theory to find the extremal function xtðÞwhich maximizes or minimizes the functional such as Eq. (A.1). We are interested in the set of functions which satisfy the fixed boundary con- ditions such as xtðÞ¼1 x1 and xtðÞ¼2 x2. An arbitrary element of the function space may be defined from xtðÞby xtðÞ¼xtðÞþegðÞt ðA:3Þ where ε is a real number and gðÞt is any function satisfying gðÞ¼t1 gðÞ¼t2 0. Of course, it is obvious that xtðÞ¼1 x1 and xtðÞ¼2 x2. Varying ε and gðÞt generates any function of the vector space. Substitution of Eq. (A.3) to Eq. (A.1) gives Zt2 dx dg aðÞe A½¼xtðÞþegðÞt L xtðÞþegðÞt ; þ e dt ðA:4Þ dt dt t1 © Springer Science+Business Media Dordrecht 2016 601 K.S. Cho, Viscoelasticity of Polymers, Springer Series in Materials Science 241, DOI 10.1007/978-94-017-7564-9 602 Appendix: Functional Derivative From Eq. -
From Joint Convexity of Quantum Relative Entropy to a Concavity Theorem of Lieb
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 140, Number 5, May 2012, Pages 1757–1760 S 0002-9939(2011)11141-9 Article electronically published on August 4, 2011 FROM JOINT CONVEXITY OF QUANTUM RELATIVE ENTROPY TO A CONCAVITY THEOREM OF LIEB JOEL A. TROPP (Communicated by Marius Junge) Abstract. This paper provides a succinct proof of a 1973 theorem of Lieb that establishes the concavity of a certain trace function. The development relies on a deep result from quantum information theory, the joint convexity of quantum relative entropy, as well as a recent argument due to Carlen and Lieb. 1. Introduction In his 1973 paper on trace functions, Lieb establishes an important concavity theorem [Lie73, Thm. 6] concerning the trace exponential. Theorem 1 (Lieb). Let H be a fixed self-adjoint matrix. The map (1) A −→ tr exp (H +logA) is concave on the positive-definite cone. The most direct proof of Theorem 1 is due to Epstein [Eps73]; see Ruskai’s papers [Rus02, Rus05] for a condensed version of this argument. Lieb’s original proof develops the concavity of the function (1) as a corollary of another deep concavity theorem [Lie73, Thm. 1]. In fact, many convexity and concavity theorems for trace functions are equivalent with each other, in the sense that the mutual implications follow from relatively easy arguments. See [Lie73, §5] and [CL08, §5] for discussions of this point. The goal of this paper is to demonstrate that a modicum of convex analysis allows us to derive Theorem 1 directly from another major theorem, the joint convexity of the quantum relative entropy. -
Classical, Quantum and Total Correlations
Classical, quantum and total correlations L. Henderson∗ and V. Vedral∗∗ ∗Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW ∗∗Optics Section, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ Abstract We discuss the problem of separating consistently the total correlations in a bipartite quantum state into a quantum and a purely classical part. A measure of classical correlations is proposed and its properties are explored. In quantum information theory it is common to distinguish between purely classical information, measured in bits, and quantum informa- tion, which is measured in qubits. These differ in the channel resources required to communicate them. Qubits may not be sent by a classical channel alone, but must be sent either via a quantum channel which preserves coherence or by teleportation through an entangled channel with two classical bits of communication [?]. In this context, one qubit is equivalent to one unit of shared entanglement, or `e-bit', together with two classical bits. Any bipartite quantum state may be used as a com- munication channel with some degree of success, and so it is of interest to determine how to separate the correlations it contains into a classi- cal and an entangled part. A number of measures of entanglement and of total correlations have been proposed in recent years [?, ?, ?, ?, ?]. However, it is still not clear how to quantify the purely classical part of the total bipartite correlations. In this paper we propose a possible measure of classical correlations and investigate its properties. We first review the existing measures of entangled and total corre- lations. -
35 Nopw It Is Time to Face the Menace
35 XIV. CORRELATIONS AND SUSCEPTIBILITY A. Correlations - saddle point approximation: the easy way out Nopw it is time to face the menace - path integrals. We were tithering on the top of this ravine for long enough. We need to take the plunge. The meaning of the path integral is very simple - tofind the partition function of a system locallyfluctuating, we need to consider the all the possible patterns offlucutations, and the only way to do this is through a path integral. But is the path integral so bad? Well, if you believe that anyfluctuation is still quite costly, then the path integral, like the integral over the exponent of a quadratic function, is pretty much determined by where the argument of the exponent is a minimum, plus quadraticfluctuations. These belief is translated into equations via the saddle point approximation. Wefind the minimum of the free energy functional, and then expand upto second order in the exponent. 1 1 F [m(x),h] = ddx γ( m (x))2 +a(T T )m (x)2 + um (x)4 hm + ( m (x))2 ∂2F (219) L ∇ min − c min 2 min − min 2 − min � � � I write here deliberately the vague partial symbol, in fact, this should be the functional derivative. Does this look familiar? This should bring you back to the good old classical mechanics days. Where the Lagrangian is the only thing you wanted to know, and the Euler Lagrange equations were the only guidance necessary. Non of this non-commuting business, or partition function annoyance. Well, these times are back for a short time! In order tofind this, we do a variation: m(x) =m min +δm (220) Upon assignment wefind: u F [m(x),h] = ddx γ( (m +δm)) 2 +a(T T )(m +δm) 2 + (m +δm) 4 h(m +δm) (221) L ∇ min − c min 2 min − min � � � Let’s expand this to second order: d 2 2 d x γ (mmin) + δm 2γ m+γ( δm) → ∇ 2 ∇ · ∇ ∇ 2 +a (mmin) +δm 2am+aδm � � ∇ u 4 ·3 2 2 (222) + 2 mmin +2umminδm +3umminδm hm hδm] − min − Collecting terms in power ofδm, thefirst term is justF L[mmin]. -
On the Solution and Application of Rational Expectations Models With
On the Solution and Application of Rational Expectations Models with Function-Valued States⇤ David Childers† November 16, 2015 Abstract Many variables of interest to economists take the form of time varying distribu- tions or functions. This high-dimensional ‘functional’ data can be interpreted in the context of economic models with function valued endogenous variables, but deriving the implications of these models requires solving a nonlinear system for a potentially infinite-dimensional function of infinite-dimensional objects. To overcome this difficulty, I provide methods for characterizing and numerically approximating the equilibria of dynamic, stochastic, general equilibrium models with function-valued state variables by linearization in function space and representation using basis functions. These meth- ods permit arbitrary infinite-dimensional variation in the state variables, do not impose exclusion restrictions on the relationship between variables or limit their impact to a finite-dimensional sufficient statistic, and, most importantly, come with demonstrable guarantees of consistency and polynomial time computational complexity. I demon- strate the applicability of the theory by providing an analytical characterization and computing the solution to a dynamic model of trade, migration, and economic geogra- phy. ⇤Preliminary, subject to revisions. For the latest version, please obtain from the author’s website at https://sites.google.com/site/davidbchilders/DavidChildersFunctionValuedStates.pdf †Yale University, Department of Economics. The author gratefully acknowledges financial support from the Cowles Foundation. This research has benefited from discussion and feedback from Peter Phillips, Tony Smith, Costas Arkolakis, John Geanakoplos, Xiaohong Chen, Tim Christensen, Kieran Walsh, and seminar participants at the Yale University Econometrics Seminar, Macroeconomics Lunch, and Financial Markets Reading Group.