Genetic Variation Across the Human Olfactory Receptor Repertoire Alters Odor Perception

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Variation Across the Human Olfactory Receptor Repertoire Alters Odor Perception Genetic variation across the human olfactory receptor repertoire alters odor perception C. Trimmera,1, A. Kellerb, N. R. Murphya, L. L. Snydera, J. R. Willerc, M. H. Nagaid,e, N. Katsanisc, L. B. Vosshallb,f,g, H. Matsunamid,h, and J. D. Mainlanda,i aMonell Chemical Senses Center, Philadelphia, PA 19104; bLaboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065; cCenter for Human Disease Modeling, Duke University Medical Center, Durham, NC 27710; dDepartment of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; eDepartment of Biochemistry, University of Sao Paulo, Sao Paulo 03178-200, Brazil; fHoward Hughes Medical Institute, The Rockefeller University, New York, NY 10065; gKavli Neural Systems Institute, The Rockefeller University, New York, NY 10065; hDepartment of Neurobiology and Duke Institute for Brain Sciences, Duke University, Durham, NC 27710; and iDepartment of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 Edited by John G. Hildebrand, University of Arizona, Tucson, AZ, and approved September 12, 2018 (received for review March 15, 2018) Humans use a family of more than 400 olfactory receptors (ORs) by an odorant has been proposed to encode both intensity and to detect odors, but there is currently no model that can predict pleasantness (9, 10). Alternatively, the large set of ORs may olfactory perception from receptor activity patterns. Genetic varia- redundantly encode odorant representations, such that loss of tion in human ORs is abundant and alters receptor function, allowing function of a single OR only rarely has perceptual consequences. us to examine the relationship between receptor function and Recent work suggests that functional changes in a single receptor perception. We sequenced the OR repertoire in 332 individuals and can have significant perceptual consequences, but data linking examined how genetic variation affected 276 olfactory phenotypes, perceptual and genetic variation exist for only five ORs (11–15). including the perceived intensity and pleasantness of 68 odorants at We extended these studies to the entire OR repertoire, under the two concentrations, detection thresholds of three odorants, and premise that studies of natural perceptual variation will improve our general olfactory acuity. Genetic variation in a single OR was fre- understanding of the normal translation of OR activity to odor per- quently associated with changes in odorant perception, and we ception. Here we identified associations between genetic variation in validated 10 cases in which in vitro OR function correlated with 418 OR genes and 276 olfactory phenotypes, used cell-based func- GENETICS in vivo odorant perception using a functional assay. In 8 of these 10 tional assays to investigate the mechanisms underlying the associa- cases, reduced receptor function was associated with reduced inten- tions, and examined the contributions of single OR genotype, genetic sity perception. In addition, we used participant genotypes to quan- ancestry, age, and gender to variations in olfactory perception. tify genetic ancestry and found that, in combination with single OR Results genotype, age, and gender, we can explain between 10% and 20% of the perceptual variation in 15 olfactory phenotypes, highlighting We carried out high-throughput sequencing of the entire OR sub- the importance of single OR genotype, ancestry, and demographic genome in a cohort of 332 participants who had been previously factors in the variation of olfactory perception. phenotyped for their sense of smell. These data include ratings of the perceived intensity and pleasantness of 68 odorants at two concen- trations (SI Appendix,TableS1), detection thresholds of three olfaction | genetic variation | human genome | odor intensity | ancestry odorants, and overall olfactory acuity (16). Participants rated each stimulus twice, and the median within-subject test-retest correlation nderstanding how the olfactory system detects odorants and was 0.63 for intensity ratings and 0.57 for pleasantness ratings. Utranslates their features into perceptual information is one of the fundamental questions in olfaction. Although early color Significance vision researchers were unable to directly observe receptor re- sponses, perceptual deficits caused by genetic variation (i.e., color A persistent mystery in olfaction is how the combinatorial acti- blindness) helped show that color vision is mediated by three re- vation of a family of 400 olfactory receptors (ORs) encodes odor ceptors responding to different wavelengths of light (1, 2). Guillot perception. We take advantage of the high frequency of natural (3), and then Amoore (4), extended this idea to olfaction and OR knockouts in the human genome to tackle a major bottle- proposed that cataloging specific anosmias (the inability to per- neck in the field—namely, how an odor is transduced into per- ceive a particular odorant) may provide similar clues linking genes ceptual characteristics. We demonstrate that loss of function of and perception. Early applications of this idea failed, presumably an individual OR correlates with changes in perceived intensity because olfaction relies on hundreds of receptors, and without and pleasantness. This study demonstrates how natural varia- direct observation of their responses, psychophysical tests could tion can provide important clues to the normal translation of OR not untangle the fundamental rules of odor coding. However, with activation to odor information and places a constraint on the the advent of next-generation genome sequencing to profile ol- amount of redundancy in the olfactory code. factory receptor (OR) genes and cell-based assays to identify li- gands for ORs, receptor variation can now be matched to Author contributions: A.K., L.B.V., H.M., and J.D.M. designed research; C.T., A.K., N.R.M., individuals and receptor responses can be directly observed. L.L.S., J.R.W., M.H.N., N.K., and J.D.M. performed research; C.T. analyzed data; and C.T. Humans have approximately 400 OR genes that are intact in wrote the paper. at least part of the population, but individuals have different Conflict of interest statement: J.D.M is on the scientific advisory board of Aromyx and repertoires of pseudogenes, copy number variations, and single receives compensation for these activities. nucleotide polymorphisms (SNPs) that can alter receptor re- This article is a PNAS Direct Submission. sponses (5–7). While nonfunctional genes are rare in the genome Published under the PNAS license. (on average approximately 100 heterozygous and 20 homozygous Data deposition: The data have been deposited in the database of Genotypes and Phe- pseudogenes in an individual), they are significantly enriched in notypes (dbGaP), www.ncbi.nlm.nih.gov/gap/ (accession no. phs001757.v1.p1). OR genes (8). This provides a useful set of “natural knockouts” 1To whom correspondence should be addressed. Email: [email protected]. to examine the role of a single OR in olfactory perception and This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. distinguish between different hypotheses of how odor in- 1073/pnas.1804106115/-/DCSupplemental. formation is encoded. For example, the number of ORs activated Published online April 30, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1804106115 PNAS | May 7, 2019 | vol. 116 | no. 19 | 9475–9480 Downloaded by guest on September 25, 2021 High-Throughput Sequencing of the OR Gene Family. We used Illu- difficult to discriminate between the causal mutation and nearby mina short-read DNA sequencing to analyze target regions SNPs in linkage disequilibrium with the causal mutation (18, 19). consisting of 418 ORs and 256 olfactory-related genes (∼800 kb), To illustrate this point, three different ORs in close proximity on obtaining a minimum of 15× coverage for 96% of the targeted chromosome 6 were significantly associated with the perceived bases and identifying 19,535 variants. We validated a subset of intensity of 2-ethylfenchol: OR11A1, OR12D2, and OR10C1 these by comparing them with variants identified from Sanger (Fig. 2A). The most highly associated SNP (Dataset S2), found in sequencing data for 10 ORs. Eight ORs had >95% concordance OR10C1, is in high linkage disequilibrium with SNPs in OR11A1 between the two sequencing methods, while concordance and OR12D2, with >60% correlation in the 1000 Genomes was <85% for OR10G4 and OR10G9. These ORs share >95% Project EUR superpopulation data (20, 21). sequence similarity (17), making it difficult to assign genetic To investigate these associations, we cloned all major haplo- variants to the correct genomic location. Therefore, alternate types in this locus and found that only OR11A1 haplotypes sequencing methods may prove necessary for ORs with high responded in the heterologous assay (Fig. 2B). OR haplotypes sequence similarity. However, high-throughput sequencing can with lower maximum responses in cell culture were associated be expected to accurately identify sequence variants for ORs in with lower perceived intensity ratings (Fig. 2C). These results in- which sequencing reads map with high confidence (90% of ORs dicate that of the three ORs found to significantly associate with have a median mapping confidence >99.9%). the perceived intensity of 2-ethylfenchol in our analysis, OR11A1 was the best candidate for a causal receptor at this locus. Genetic Variation in Single ORs Frequently Associates
Recommended publications
  • OR12D2 (Y-13): Sc-109987
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . OR12D2 (Y-13): sc-109987 BACKGROUND PRODUCT Olfactory receptors interact with odorant molecules in the nose to initiate a Each vial contains 200 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide neuronal response that leads to the perception of smell. While they share a and 0.1% gelatin. seven transmembrane domain structure with many neurotransmitter and hor - Blocking peptide available for competition studies, sc-109987 P, (100 µg mone receptors, olfactory receptors are responsible for the recognition and peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA). transduction of odorant signals. The olfactory receptor gene family is the larg- est in the genome. OR12D2 (olfactory receptor 12D2), also known as OR6-28 APPLICATIONS or Hs6M1-20, is a 307 amino acid multi-pass membrane protein that belongs to the G-protein coupled receptor 1 family. The gene that encodes OR12D2 OR12D2 (Y-13) is recommended for detection of OR12D2 of human origin by consists of nearly 1,000 bases and maps to human chromosome 6p22.1. With Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immu- 170 million base pairs, chromosome 6 comprises nearly 6% of the human nofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid genome. Deletion of a portion of the q arm of chromosome 6 is associated phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000); non cross- with early onset intestinal cancer, suggesting the presence of a cancer sus - reactive with family member OR12D3.
    [Show full text]
  • Genetic Variation Across the Human Olfactory Receptor Repertoire Alters Odor Perception
    bioRxiv preprint doi: https://doi.org/10.1101/212431; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Genetic variation across the human olfactory receptor repertoire alters odor perception Casey Trimmer1,*, Andreas Keller2, Nicolle R. Murphy1, Lindsey L. Snyder1, Jason R. Willer3, Maira Nagai4,5, Nicholas Katsanis3, Leslie B. Vosshall2,6,7, Hiroaki Matsunami4,8, and Joel D. Mainland1,9 1Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA 2Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, USA 3Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA 4Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA 5Department of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil 6Howard Hughes Medical Institute, New York, New York, USA 7Kavli Neural Systems Institute, New York, New York, USA 8Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, USA 9Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA *[email protected] ABSTRACT The human olfactory receptor repertoire is characterized by an abundance of genetic variation that affects receptor response, but the perceptual effects of this variation are unclear. To address this issue, we sequenced the OR repertoire in 332 individuals and examined the relationship between genetic variation and 276 olfactory phenotypes, including the perceived intensity and pleasantness of 68 odorants at two concentrations, detection thresholds of three odorants, and general olfactory acuity.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • OR10G4 (NM 001004462) Human Tagged ORF Clone Lentiviral Particle Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC222878L3V OR10G4 (NM_001004462) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: OR10G4 (NM_001004462) Human Tagged ORF Clone Lentiviral Particle Symbol: OR10G4 Synonyms: OR11-278 Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) ACCN: NM_001004462 ORF Size: 933 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC222878). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_001004462.1, NP_001004462.1 RefSeq Size: 936 bp RefSeq ORF: 936 bp Locus ID: 390264 UniProt ID: Q8NGN3, A0A126GWS5 Protein Families: Transmembrane Protein Pathways: Olfactory transduction MW: 34.4 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 OR10G4 (NM_001004462) Human Tagged ORF Clone Lentiviral Particle – RC222878L3V Gene Summary: Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell.
    [Show full text]
  • Functions of Olfactory Receptors Are Decoded from Their Sequence
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.06.895540; this version posted January 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Functions of olfactory receptors are decoded from their sequence Xiaojing Cong,1,†* Wenwen Ren,5,† Jody Pacalon1, Claire A. de March,6 Lun Xu,2 Hiroaki Matsunami,6 Yiqun Yu,2,3* Jérôme Golebiowski1,4* 1 Université Côte d’Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice 06108, France 2 Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031, People's Republic of China 3 School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China 4 Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, South Korea 5 Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, People's Republic of China 6 Department of Molecular Genetics and Microbiology, and Department of Neurobiology, and Duke Institute for Brain Sciences, Duke University Medical Center, Research Drive, Durham, NC 27710, USA † These authors contributed equally. * Correspondence may be addressed to: [email protected], [email protected] or [email protected] Abstract G protein-coupled receptors (GPCRs) conserve common structural folds and activation mechanisms, yet their ligand spectra and functions are highly diversified. This work investigated how the functional variations in olfactory GPCRs (ORs)−the largest GPCR family−are encoded in the primary sequence.
    [Show full text]
  • Olfactory Receptor Proteins in Axonal Processes of Chemosensory Neurons
    7754 • The Journal of Neuroscience, September 1, 2004 • 24(35):7754–7761 Cellular/Molecular Olfactory Receptor Proteins in Axonal Processes of Chemosensory Neurons Joerg Strotmann, Olga Levai, Joerg Fleischer, Karin Schwarzenbacher, and Heinz Breer Institute of Physiology, University of Hohenheim, 70593 Stuttgart, Germany Olfactoryreceptorsaresupposedtoactnotonlyasmolecularsensorsforodorantsbutalsoascellrecognitionmoleculesguidingtheaxons of olfactory neurons to their appropriate glomerulus in the olfactory bulb. This concept implies that olfactory receptor proteins are located in sensory cilia and in the axons. To approach this critical issue, antibodies were generated against two peptides, one derived from olfactory receptor mOR256–17, one derived from the “mOR37” subfamily. By means of immunohistochemistry and double-labeling studies using transgenic mouse lines as well as Western blot analyses, it was demonstrated that the newly generated antibodies specifi- cally recognized the receptor proteins. To scrutinize the hypothesis that olfactory receptor proteins may also be present in the axonal processes and the nerve terminals, serial sections through the olfactory bulb were probed with the antibodies. Two glomeruli in each bulb were stained by anti-mOR256–17, one positioned in the medial, one in the lateral hemisphere. Fiber bundles approaching the glomeruli through the outer nerve layer also displayed intense immunofluorescence. A similar picture emerged for the antibody anti-mOR37, a small number of glomeruli in the ventral domain
    [Show full text]
  • Odorant Receptors: Regulation, Signaling, and Expression Michele Lynn Rankin Louisiana State University and Agricultural and Mechanical College, [email protected]
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2002 Odorant receptors: regulation, signaling, and expression Michele Lynn Rankin Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Rankin, Michele Lynn, "Odorant receptors: regulation, signaling, and expression" (2002). LSU Doctoral Dissertations. 540. https://digitalcommons.lsu.edu/gradschool_dissertations/540 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ODORANT RECEPTORS: REGULATION, SIGNALING, AND EXPRESSION A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy In The Department of Biological Sciences By Michele L. Rankin B.S., Louisiana State University, 1990 M.S., Louisiana State University, 1997 August 2002 ACKNOWLEDGMENTS I would like to thank several people who participated in my successfully completing the requirements for the Ph.D. degree. I thank Dr. Richard Bruch for giving me the opportunity to work in his laboratory and guiding me along during the degree program. I am very thankful for the support and generosity of my advisory committee consisting of Dr. John Caprio, Dr. Evanna Gleason, and Dr. Jaqueline Stephens. At one time or another, I performed experiments in each of their laboratories and include that work in this dissertation.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • On the Scent of Human Olfactory Orbitofrontal Cortex: Meta-Analysis and Comparison to Non-Human Primates
    Brain Research Reviews 50 (2005) 287 – 304 www.elsevier.com/locate/brainresrev Review On the scent of human olfactory orbitofrontal cortex: Meta-analysis and comparison to non-human primates Jay A. Gottfrieda,*, David H. Zaldb aDepartment of Neurology and the Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Searle 11-453, Chicago, IL 60611, USA bDepartment of Psychology, Vanderbilt University, Nashville, TN 37240, USA Accepted 25 August 2005 Available online 6 October 2005 Abstract It is widely accepted that the orbitofrontal cortex (OFC) represents the main neocortical target of primary olfactory cortex. In non-human primates, the olfactory neocortex is situated along the basal surface of the caudal frontal lobes, encompassing agranular and dysgranular OFC medially and agranular insula laterally, where this latter structure wraps onto the posterior orbital surface. Direct afferent inputs arrive from most primary olfactory areas, including piriform cortex, amygdala, and entorhinal cortex, in the absence of an obligatory thalamic relay. While such findings are almost exclusively derived from animal data, recent cytoarchitectonic studies indicate a close anatomical correspondence between non-human primate and human OFC. Given this cross-species conservation of structure, it has generally been presumed that the olfactory projection area in human OFC occupies the same posterior portions of OFC as seen in non-human primates. This review questions this assumption by providing a critical survey of the localization of primate and human olfactory neocortex. Based on a meta-analysis of human functional neuroimaging studies, the region of human OFC showing the greatest olfactory responsivity appears substantially rostral and in a different cytoarchitectural area than the orbital olfactory regions as defined in the monkey.
    [Show full text]
  • Inbreeding and Homozygosity in Breast Cancer Survival
    www.nature.com/scientificreports OPEN Inbreeding and homozygosity in breast cancer survival Hauke Thomsen1, Miguel Inacio da Silva Filho1, Andrea Woltmann1, Robert Johansson2, Jorunn E. Eyfjörd3, Ute Hamann4, Jonas Manjer5,6, Kerstin Enquist-Olsson7, Received: 15 June 2015 Roger Henriksson2,8, Stefan Herms9,10, Per Hoffmann9,10, Bowang Chen1, Stefanie Huhn1, Accepted: 14 October 2015 Kari Hemminki1,11, Per Lenner2 & Asta Försti1,11 Published: 12 November 2015 Genome-wide association studies (GWASs) help to understand the effects of single nucleotide polymorphisms (SNPs) on breast cancer (BC) progression and survival. We performed multiple analyses on data from a previously conducted GWAS for the influence of individual SNPs, runs of homozygosity (ROHs) and inbreeding on BC survival. (I.) The association of individual SNPs indicated no differences in the proportions of homozygous individuals among short-time survivors (STSs) and long-time survivors (LTSs). (II.) The analysis revealed differences among the populations for the number of ROHs per person and the total and average length of ROHs per person and among LTSs and STSs for the number of ROHs per person. (III.) Common ROHs at particular genomic positions were nominally more frequent among LTSs than in STSs. Common ROHs showed significant evidence for natural selection (iHS, Tajima’s D, Fay-Wu’s H). Most regions could be linked to genes related to BC progression or treatment. (IV.) Results were supported by a higher level of inbreeding among LTSs. Our results showed that an increased level of homozygosity may result in a preference of individuals during BC treatment. Although common ROHs were short, variants within ROHs might favor survival of BC and may function in a recessive manner.
    [Show full text]
  • Identification of Candidate Biomarkers and Pathways Associated with Type 1 Diabetes Mellitus Using Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.08.447531; this version posted June 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Identification of candidate biomarkers and pathways associated with type 1 diabetes mellitus using bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2021.06.08.447531; this version posted June 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Type 1 diabetes mellitus (T1DM) is a metabolic disorder for which the underlying molecular mechanisms remain largely unclear. This investigation aimed to elucidate essential candidate genes and pathways in T1DM by integrated bioinformatics analysis. In this study, differentially expressed genes (DEGs) were analyzed using DESeq2 of R package from GSE162689 of the Gene Expression Omnibus (GEO). Gene ontology (GO) enrichment analysis, REACTOME pathway enrichment analysis, and construction and analysis of protein-protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network, and validation of hub genes were then performed. A total of 952 DEGs (477 up regulated and 475 down regulated genes) were identified in T1DM. GO and REACTOME enrichment result results showed that DEGs mainly enriched in multicellular organism development, detection of stimulus, diseases of signal transduction by growth factor receptors and second messengers, and olfactory signaling pathway.
    [Show full text]
  • Sean Raspet – Molecules
    1. Commercial name: Fructaplex© IUPAC Name: 2-(3,3-dimethylcyclohexyl)-2,5,5-trimethyl-1,3-dioxane SMILES: CC1(C)CCCC(C1)C2(C)OCC(C)(C)CO2 Molecular weight: 240.39 g/mol Volume (cubic Angstroems): 258.88 Atoms number (non-hydrogen): 17 miLogP: 4.43 Structure: Biological Properties: Predicted Druglikenessi: GPCR ligand -0.23 Ion channel modulator -0.03 Kinase inhibitor -0.6 Nuclear receptor ligand 0.15 Protease inhibitor -0.28 Enzyme inhibitor 0.15 Commercial name: Fructaplex© IUPAC Name: 2-(3,3-dimethylcyclohexyl)-2,5,5-trimethyl-1,3-dioxane SMILES: CC1(C)CCCC(C1)C2(C)OCC(C)(C)CO2 Predicted Olfactory Receptor Activityii: OR2L13 83.715% OR1G1 82.761% OR10J5 80.569% OR2W1 78.180% OR7A2 77.696% 2. Commercial name: Sylvoxime© IUPAC Name: N-[4-(1-ethoxyethenyl)-3,3,5,5tetramethylcyclohexylidene]hydroxylamine SMILES: CCOC(=C)C1C(C)(C)CC(CC1(C)C)=NO Molecular weight: 239.36 Volume (cubic Angstroems): 252.83 Atoms number (non-hydrogen): 17 miLogP: 4.33 Structure: Biological Properties: Predicted Druglikeness: GPCR ligand -0.6 Ion channel modulator -0.41 Kinase inhibitor -0.93 Nuclear receptor ligand -0.17 Protease inhibitor -0.39 Enzyme inhibitor 0.01 Commercial name: Sylvoxime© IUPAC Name: N-[4-(1-ethoxyethenyl)-3,3,5,5tetramethylcyclohexylidene]hydroxylamine SMILES: CCOC(=C)C1C(C)(C)CC(CC1(C)C)=NO Predicted Olfactory Receptor Activity: OR52D1 71.900% OR1G1 70.394% 0R52I2 70.392% OR52I1 70.390% OR2Y1 70.378% 3. Commercial name: Hyperflor© IUPAC Name: 2-benzyl-1,3-dioxan-5-one SMILES: O=C1COC(CC2=CC=CC=C2)OC1 Molecular weight: 192.21 g/mol Volume
    [Show full text]