Semantic Representations in Text Data 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Document and Topic Models: Plsa
10/4/2018 Document and Topic Models: pLSA and LDA Andrew Levandoski and Jonathan Lobo CS 3750 Advanced Topics in Machine Learning 2 October 2018 Outline • Topic Models • pLSA • LSA • Model • Fitting via EM • pHITS: link analysis • LDA • Dirichlet distribution • Generative process • Model • Geometric Interpretation • Inference 2 1 10/4/2018 Topic Models: Visual Representation Topic proportions and Topics Documents assignments 3 Topic Models: Importance • For a given corpus, we learn two things: 1. Topic: from full vocabulary set, we learn important subsets 2. Topic proportion: we learn what each document is about • This can be viewed as a form of dimensionality reduction • From large vocabulary set, extract basis vectors (topics) • Represent document in topic space (topic proportions) 푁 퐾 • Dimensionality is reduced from 푤푖 ∈ ℤ푉 to 휃 ∈ ℝ • Topic proportion is useful for several applications including document classification, discovery of semantic structures, sentiment analysis, object localization in images, etc. 4 2 10/4/2018 Topic Models: Terminology • Document Model • Word: element in a vocabulary set • Document: collection of words • Corpus: collection of documents • Topic Model • Topic: collection of words (subset of vocabulary) • Document is represented by (latent) mixture of topics • 푝 푤 푑 = 푝 푤 푧 푝(푧|푑) (푧 : topic) • Note: document is a collection of words (not a sequence) • ‘Bag of words’ assumption • In probability, we call this the exchangeability assumption • 푝 푤1, … , 푤푁 = 푝(푤휎 1 , … , 푤휎 푁 ) (휎: permutation) 5 Topic Models: Terminology (cont’d) • Represent each document as a vector space • A word is an item from a vocabulary indexed by {1, … , 푉}. We represent words using unit‐basis vectors. -
Redalyc.Latent Dirichlet Allocation Complement in the Vector Space Model for Multi-Label Text Classification
International Journal of Combinatorial Optimization Problems and Informatics E-ISSN: 2007-1558 [email protected] International Journal of Combinatorial Optimization Problems and Informatics México Carrera-Trejo, Víctor; Sidorov, Grigori; Miranda-Jiménez, Sabino; Moreno Ibarra, Marco; Cadena Martínez, Rodrigo Latent Dirichlet Allocation complement in the vector space model for Multi-Label Text Classification International Journal of Combinatorial Optimization Problems and Informatics, vol. 6, núm. 1, enero-abril, 2015, pp. 7-19 International Journal of Combinatorial Optimization Problems and Informatics Morelos, México Available in: http://www.redalyc.org/articulo.oa?id=265239212002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative © International Journal of Combinatorial Optimization Problems and Informatics, Vol. 6, No. 1, Jan-April 2015, pp. 7-19. ISSN: 2007-1558. Latent Dirichlet Allocation complement in the vector space model for Multi-Label Text Classification Víctor Carrera-Trejo1, Grigori Sidorov1, Sabino Miranda-Jiménez2, Marco Moreno Ibarra1 and Rodrigo Cadena Martínez3 Centro de Investigación en Computación1, Instituto Politécnico Nacional, México DF, México Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación (INFOTEC)2, Ags., México Universidad Tecnológica de México3 – UNITEC MÉXICO [email protected], {sidorov,marcomoreno}@cic.ipn.mx, [email protected] [email protected] Abstract. In text classification task one of the main problems is to choose which features give the best results. Various features can be used like words, n-grams, syntactic n-grams of various types (POS tags, dependency relations, mixed, etc.), or a combinations of these features can be considered. -
Evaluating Vector-Space Models of Word Representation, Or, the Unreasonable Effectiveness of Counting Words Near Other Words
Evaluating Vector-Space Models of Word Representation, or, The Unreasonable Effectiveness of Counting Words Near Other Words Aida Nematzadeh, Stephan C. Meylan, and Thomas L. Griffiths University of California, Berkeley fnematzadeh, smeylan, tom griffi[email protected] Abstract angle between word vectors (e.g., Mikolov et al., 2013b; Pen- nington et al., 2014). Vector-space models of semantics represent words as continuously-valued vectors and measure similarity based on In this paper, we examine whether these constraints im- the distance or angle between those vectors. Such representa- ply that Word2Vec and GloVe representations suffer from the tions have become increasingly popular due to the recent de- same difficulty as previous vector-space models in capturing velopment of methods that allow them to be efficiently esti- mated from very large amounts of data. However, the idea human similarity judgments. To this end, we evaluate these of relating similarity to distance in a spatial representation representations on a set of tasks adopted from Griffiths et al. has been criticized by cognitive scientists, as human similar- (2007) in which the authors showed that the representations ity judgments have many properties that are inconsistent with the geometric constraints that a distance metric must obey. We learned by another well-known vector-space model, Latent show that two popular vector-space models, Word2Vec and Semantic Analysis (Landauer and Dumais, 1997), were in- GloVe, are unable to capture certain critical aspects of human consistent with patterns of semantic similarity demonstrated word association data as a consequence of these constraints. However, a probabilistic topic model estimated from a rela- in human word association data. -
Gensim Is Robust in Nature and Has Been in Use in Various Systems by Various People As Well As Organisations for Over 4 Years
Gensim i Gensim About the Tutorial Gensim = “Generate Similar” is a popular open source natural language processing library used for unsupervised topic modeling. It uses top academic models and modern statistical machine learning to perform various complex tasks such as Building document or word vectors, Corpora, performing topic identification, performing document comparison (retrieving semantically similar documents), analysing plain-text documents for semantic structure. Audience This tutorial will be useful for graduates, post-graduates, and research students who either have an interest in Natural Language Processing (NLP), Topic Modeling or have these subjects as a part of their curriculum. The reader can be a beginner or an advanced learner. Prerequisites The reader must have basic knowledge about NLP and should also be aware of Python programming concepts. Copyright & Disclaimer Copyright 2020 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected] ii Gensim Table of Contents About the Tutorial .......................................................................................................................................... -
Deconstructing Word Embedding Models
Deconstructing Word Embedding Models Koushik K. Varma Ashoka University, [email protected] Abstract – Analysis of Word Embedding Models through Analysis, one must be certain that all linguistic aspects of a a deconstructive approach reveals their several word are captured within the vector representations because shortcomings and inconsistencies. These include any discrepancies could be further amplified in practical instability of the vector representations, a distorted applications. While these vector representations have analogical reasoning, geometric incompatibility with widespread use in modern natural language processing, it is linguistic features, and the inconsistencies in the corpus unclear as to what degree they accurately encode the data. A new theoretical embedding model, ‘Derridian essence of language in its structural, contextual, cultural and Embedding,’ is proposed in this paper. Contemporary ethical assimilation. Surface evaluations on training-test embedding models are evaluated qualitatively in terms data provide efficiency measures for a specific of how adequate they are in relation to the capabilities of implementation but do not explicitly give insights on the a Derridian Embedding. factors causing the existing efficiency (or the lack there of). We henceforth present a deconstructive review of 1. INTRODUCTION contemporary word embeddings using available literature to clarify certain misconceptions and inconsistencies Saussure, in the Course in General Linguistics, concerning them. argued that there is no substance in language and that all language consists of differences. In language there are only forms, not substances, and by that he meant that all 1.1 DECONSTRUCTIVE APPROACH apparently substantive units of language are generated by other things that lie outside them, but these external Derrida, a post-structualist French philosopher, characteristics are actually internal to their make-up. -
Vector Space Models for Words and Documents Statistical Natural Language Processing ELEC-E5550 Jan 30, 2019 Tiina Lindh-Knuutila D.Sc
Vector space models for words and documents Statistical Natural Language Processing ELEC-E5550 Jan 30, 2019 Tiina Lindh-Knuutila D.Sc. (Tech) Lingsoft Language Services & Aalto University tiina.lindh-knuutila -at- aalto dot fi Material also by Mari-Sanna Paukkeri (mari-sanna.paukkeri -at- utopiaanalytics dot com) Today’s Agenda • Vector space models • word-document matrices • word vectors • stemming, weighting, dimensionality reduction • similarity measures • Count models vs. predictive models • Word2vec • Information retrieval (Briefly) • Course project details You shall know the word by the company it keeps • Language is symbolic in nature • Surface form is in an arbitrary relation with the meaning of the word • Hat vs. cat • One substitution: Levenshtein distance of 1 • Does not measure the semantic similarity of the words • Distributional semantics • Linguistic items which appear in similar contexts in large samples of language data tend to have similar meanings Firth, John R. 1957. A synopsis of linguistic theory 1930–1955. In Studies in linguistic analysis, 1–32. Oxford: Blackwell. George Miller and Walter Charles. 1991. Contextual correlates of semantic similarity. Language and Cognitive Processes, 6(1):1–28. Vector space models (VSM) • The use of a high-dimensional space of documents (or words) • Closeness in the vector space resembles closeness in the semantics or structure of the documents (depending on the features extracted). • Makes the use of data mining possible • Applications: – Document clustering/classification/… • Finding similar documents • Finding similar words – Word disambiguation – Information retrieval • Term discrimination: ranking keywords in the order of usefulness Vector space models (VSM) • Steps to build a vector space model 1. Preprocessing 2. -
Short-Text Clustering Using Statistical Semantics
Short-Text Clustering using Statistical Semantics Sepideh Seifzadeh Ahmed K. Farahat Mohamed S. Kamel University of Waterloo University of Waterloo University of Waterloo Waterloo, Ontario, Canada. Waterloo, Ontario, Canada. Waterloo, Ontario, Canada. N2L 3G1 N2L 3G1 N2L 3G1 [email protected] [email protected] [email protected] Fakhri Karray University of Waterloo Waterloo, Ontario, Canada. N2L 3G1 [email protected] ABSTRACT 1. INTRODUCTION Short documents are typically represented by very sparse In social media, users usually post short texts. Twitter vectors, in the space of terms. In this case, traditional limits the length of each Tweet to 140 characters; therefore, techniques for calculating text similarity results in measures developing data mining techniques to handle the large vol- which are very close to zero, since documents even the very ume of short texts has become an important goal [1]. Text similar ones have a very few or mostly no terms in common. document clustering has been widely used to organize doc- In order to alleviate this limitation, the representation of ument databases and discover similarity and topics among short-text segments should be enriched by incorporating in- documents. Short text clustering is more challenging than formation about correlation between terms. In other words, regular text clustering; due to the sparsity and noise, they if two short segments do not have any common words, but provide very few contextual clues for applying traditional terms from the first segment appear frequently with terms data mining techniques [2]; therefore, short documents re- from the second segment in other documents, this means quire different or more adapted approaches. -
Word Embeddings: History & Behind the Scene
Word Embeddings: History & Behind the Scene Alfan F. Wicaksono Information Retrieval Lab. Faculty of Computer Science Universitas Indonesia References • Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A Neural Probabilistic Language Model. The Journal of Machine Learning Research, 3, 1137–1155. • Mikolov, T., Corrado, G., Chen, K., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. Proceedings of the International Conference on Learning Representations (ICLR 2013), 1–12 • Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. NIPS, 1–9. • Morin, F., & Bengio, Y. (2005). Hierarchical Probabilistic Neural Network Language Model. Aistats, 5. References Good weblogs for high-level understanding: • http://sebastianruder.com/word-embeddings-1/ • Sebastian Ruder. On word embeddings - Part 2: Approximating the Softmax. http://sebastianruder.com/word- embeddings-softmax • https://www.tensorflow.org/tutorials/word2vec • https://www.gavagai.se/blog/2015/09/30/a-brief-history-of- word-embeddings/ Some slides were also borrowed from From Dan Jurafsky’s course slide: Word Meaning and Similarity. Stanford University. Terminology • The term “Word Embedding” came from deep learning community • For computational linguistic community, they prefer “Distributional Semantic Model” • Other terms: – Distributed Representation – Semantic Vector Space – Word Space https://www.gavagai.se/blog/2015/09/30/a-brief-history-of-word-embeddings/ Before we learn Word Embeddings... Semantic Similarity • Word Similarity – Near-synonyms – “boat” and “ship”, “car” and “bicycle” • Word Relatedness – Can be related any way – Similar: “boat” and “ship” – Topical Similarity: • “boat” and “water” • “car” and “gasoline” Why Word Similarity? • Document Classification • Document Clustering • Language Modeling • Information Retrieval • .. -
Distributional Semantics
Distributional semantics Distributional semantics is a research area that devel- by populating the vectors with information on which text ops and studies theories and methods for quantifying regions the linguistic items occur in; paradigmatic sim- and categorizing semantic similarities between linguis- ilarities can be extracted by populating the vectors with tic items based on their distributional properties in large information on which other linguistic items the items co- samples of language data. The basic idea of distributional occur with. Note that the latter type of vectors can also semantics can be summed up in the so-called Distribu- be used to extract syntagmatic similarities by looking at tional hypothesis: linguistic items with similar distributions the individual vector components. have similar meanings. The basic idea of a correlation between distributional and semantic similarity can be operationalized in many dif- ferent ways. There is a rich variety of computational 1 Distributional hypothesis models implementing distributional semantics, includ- ing latent semantic analysis (LSA),[8] Hyperspace Ana- The distributional hypothesis in linguistics is derived logue to Language (HAL), syntax- or dependency-based from the semantic theory of language usage, i.e. words models,[9] random indexing, semantic folding[10] and var- that are used and occur in the same contexts tend to ious variants of the topic model. [1] purport similar meanings. The underlying idea that “a Distributional semantic models differ primarily with re- word is characterized by the company it keeps” was pop- spect to the following parameters: ularized by Firth.[2] The Distributional Hypothesis is the basis for statistical semantics. Although the Distribu- • tional Hypothesis originated in linguistics,[3] it is now re- Context type (text regions vs. -
UNIVERSITY of CALIFORNIA, SAN DIEGO Bag-Of-Concepts As a Movie
UNIVERSITY OF CALIFORNIA, SAN DIEGO Bag-of-Concepts as a Movie Genome and Representation A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Computer Science by Colin Zhou Committee in charge: Professor Shlomo Dubnov, Chair Professor Sanjoy Dasgupta Professor Lawrence Saul 2016 The Thesis of Colin Zhou is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION For Mom and Dad iv TABLE OF CONTENTS Signature Page........................................................................................................... iii Dedication.................................................................................................................. iv Table of Contents....................................................................................................... v List of Figures and Tables.......................................................................................... vi Abstract of the Thesis................................................................................................ vii Introduction................................................................................................................ 1 Chapter 1 Background............................................................................................... 3 1.1 Vector Space Models............................................................................... 3 1.1.1. Bag-of-Words........................................................................ -
Analysis of a Vector Space Model, Latent Semantic Indexing and Formal Concept Analysis for Information Retrieval
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 12, No 1 Sofia • 2012 Analysis of a Vector Space Model, Latent Semantic Indexing and Formal Concept Analysis for Information Retrieval Ch. Aswani Kumar1, M. Radvansky2, J. Annapurna3 1School of Information Technology and Engineering, VIT University, Vellore, India 2VSB Technical University of Ostrava, Ostrava, Czech Republic 3School of Computing Science and Engineering, VIT University, Vellore, India Email: [email protected] Abstract: Latent Semantic Indexing (LSI), a variant of classical Vector Space Model (VSM), is an Information Retrieval (IR) model that attempts to capture the latent semantic relationship between the data items. Mathematical lattices, under the framework of Formal Concept Analysis (FCA), represent conceptual hierarchies in data and retrieve the information. However, both LSI and FCA use the data represented in the form of matrices. The objective of this paper is to systematically analyze VSM, LSI and FCA for the task of IR using standard and real life datasets. Keywords: Formal concept analysis, Information Retrieval, latent semantic indexing, vector space model. 1. Introduction Information Retrieval (IR) deals with the representation, storage, organization and access to information items. IR is highly iterative in human interactive process aimed at retrieving the documents that are related to users’ information needs. The human interaction consists in submitting information needed as a query, analyzing the ranked and retrieved documents, modifying the query and submitting iteratively until the actual documents related to the need are found or the search process is terminated by the user. Several techniques including a simple keyword to advanced NLP are available for developing IR systems. -
Ontology Alignment Based on Word Embedding and Random Forest Classification
Ontology alignment based on word embedding and random forest classification Ikechukwu Nkisi-Orji1[0000−0001−9734−9978], Nirmalie Wiratunga1, Stewart Massie1, Kit-Ying Hui1, and Rachel Heaven2 1 Robert Gordon University, Aberdeen, UK {i.o.nkisi-orji , n.wiratunga, s.massie, k.hui}@rgu.ac.uk 2 British Geological Survey, Nottingham, UK [email protected] Abstract. Ontology alignment is crucial for integrating heterogeneous data sources and forms an important component of the semantic web. Accordingly, several ontology alignment techniques have been proposed and used for discovering correspondences between the concepts (or enti- ties) of different ontologies. Most alignment techniques depend on string- based similarities which are unable to handle the vocabulary mismatch problem. Also, determining which similarity measures to use and how to effectively combine them in alignment systems are challenges that have persisted in this area. In this work, we introduce a random forest classifier approach for ontology alignment which relies on word embed- ding for determining a variety of semantic similarities features between concepts. Specifically, we combine string-based and semantic similarity measures to form feature vectors that are used by the classifier model to determine when concepts match. By harnessing background knowledge and relying on minimal information from the ontologies, our approach can handle knowledge-light ontological resources. It also eliminates the need for learning the aggregation weights of a composition of similarity measures. Experiments using Ontology Alignment Evaluation Initiative (OAEI) dataset and real-world ontologies highlight the utility of our approach and show that it can outperform state-of-the-art alignment systems. Keywords: Ontology alignment · Word embedding · Machine classifi- cation · Semantic web.