3.2 the Graph Minor Theorem

Total Page:16

File Type:pdf, Size:1020Kb

3.2 the Graph Minor Theorem Bounded Combinatorial Width and Forbidden Substructures by Michael John Diimeen B.S., University of Idaho, 1989 M.S., University of Victoria, 1992 A Dissertation Submitted in Partial Fulfil'ment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Computer Science We accept this dissertation as conforming to the required standard Dr. Michael R. Fellows, Supervisor (Department of Computer Science) Dr. Hausi A. Muller, Department Member (Department of Computer Science) Dr. Jon C. ^MuzibfDepartment Member (Department of Computer Science) Dr. Garf^MacGilliv^, OutsideWmber (Department of Mathematics) ^ / ■ — —-• Dr. Arvind Gupta, External Examiner (School of Computing Science, Simon Fraser University) © MICHAEL JOHN DINNEEN, 1995 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by mimeograph or other means, without the permission of the author. ii Supervisor: M. R. Fellows A bstract A substantial part of the history of graph theory deals with the study and classifi­ cation of sets of graphs that share common properties. One predominant trend is to characterize graph families by sets of minimal forbidden graphs (within some partial ordering on the graphs). For example, the famous Kuratowski Theorem classifies the planar graph family by two forbidden graphs (in the topological partial order). Most, if not all, of the current approaches for finding these forbidden substructure characterizations use extensive and specialized case analysis. Thus, until now, for a fixed graph family, this type of mathematical theorem proving often required months or even years of human effort. The main focus of this dissertation is to develop a practical theory for automating (with distributed computer programming) this clas­ sic part of graph theory. We extend and (more importantly) implement a variation of the seminal work done by Fellows and Langston regarding computing finite-basis characterizations, The recently celebrated Robertson-Seymour Graph Minor Theorem establishes that many natural graph families are characterizable by a finite set of graphs. In particular, if a graph family is closed under the three basic minor operations (i.e., isolated vertex deletions, edge deletions, and edge contractions) then there exists (by a nonconstruc­ tive argument) a finite set of forbidden graphs. Two examples are the well-known /..•-V ertex C over , and ^-F eedback V ertex S et graph families. In this disserta­ tion, we characterize, for the first time, these parameterized families, among others, for small /,:. Our forbidden graph computations use a restricted search space consisting of graphs of bounded combinatorial wi ,Ji (where pathwidth and treewidth are two important metrics). Using an algebraic enumeration scheme for graphs, we have implemented a terminating algorithm that will find all minor-order forbidden graphs for each fixed pathwidth. For a targeted graph family, this algorithm requires a mathematical description given in one of many acceptable forms (or combinations thereof), such as a finite-index congruence or a set of automaton-generating tests. Our main assumption is that an upper bound on the pathwidth (or treewidth) of the largest forbidden graph of a particular graph family is more readily available than its order (or size). A byproduct of our bounded width approach is that we give practical linear time membership algorithms in the form of dynamic programs (over parsed graph struc­ tures of bounded width) for several graph families (e.g., /c -M aximum P ath L eng th and O u t e r P lanar ). >11 Examiners: Dr. Michael R. Fellows, Supervisor (Department of Computer Science) Dr. Hausi A. Muller, Department MembeX' (Department of Computer Science) Dr. Jon C. Muzi^f^ephrtment Member (Department of Computer Science) Dr. G ary^lacG illivr^, OutsideCE^ember (Department of Mathematics) Dr. Arvind Gupta, External Examiner (School of Computing Science, Simon Fraser University) iv Contents Abstract ii Table of Contents iv List of Figures viii List of Tables xi Acknowledgements xii 1 Introduction 1 1.1 The Graph Theory Setting ......................................................................... 5 1.2 Some Finitely Characterizable Graph Families ....................................... 9 1.3 A Historical Perspective on Computing O bstructions .......................... 12 1.4 An Overview of Our Computational Technique ....................................... 13 1.5 A Survey of The Dissertation ................................................................... 18 1 The Basic Theory 21 2 Bounded Combinatorial Width 22 2.1 Introduction ................................................................................................... 23 2.1.1 Treewidth and k-trees .................................................................... 24 2.1.2 Pathwidth and k-p a th s .................................................................... 26 2.1.3 Other graph-theoretical widths .................................................... 31 2.2 Algebraic Graph Representations ............................................................. 33 V 2.2.1 The 4-parse operator s e t ................................................................ 34 2.2.2 Some 4-parse exam ples ................................................................... 40 2.2.3 Other operator s e ts .......................................................................... 41 2.3 Simple Enumeration S c h e m es .................................................................... 45 2.3.1 Canonic pathwidth 4 -p a rse s .......................................................... 46 2.3.2 Canonic treewidth 4-parses ............................................................. 51 3 Graph Minors and Well-Quasi-Orders 56 3.1 Preliminaries . ......................................................................................... 56 3.2 The Graph Minor Theorem ...................................................................... 59 3.3 Other Graph Partial O rd e rs ...................................................................... 65 4 Finding Forbidden Minors 68 4.1 Key 4-parse P ro p e rtie s ............................................................................... 68 4.2 Simple Procedure for Finding O b stru ctio n s ...................................... 72 4.3 Proving 4-parses Minimal or Nonm inim al ................................................ 75 4.3.1 Direct proofs of nonminimalifcy ................................................... 76 4.3.2 Proofs based on a dynamic programming algorithm ................. 77 4.3.3 Proofs obtained by a randomized search .................................... 83 4.3.4 Proofs based on a testset congruence .......................................... 85 4.4 Making the Theory Practical ...................................................................... 87 4.4.1 Pruning at disconnected 4-parses ................... 87 4.4.2 Searching via universal distinguishes .......................................... 91 4.4.3 Using other linite-index congruences .......................................... 93 4/1.4 Finding uses of random ization ....................................................... 94 5 The Implementation and The Future 96 5.1 Using Distributed Programming ................................................................ 96 5.2 Software S u m m ary ...................................................................................... 98 5.3 Future Research G oals ................................................................................ 105 5.3.1 Second-order congruence research ................... 107 5.3.2 Approximation algorithms based on partial obstruction sets . 109 vi II Obstruction Set Characterizations 112 6 Vertex Cover (VC) 113 6.1 Introduction .................................................................................................. 113 6.2 A Finite State Algorithm ........................................................................... 115 6.3 The VC Obstruction Set Computation .................................................. 121 6.4 The VC O bstructions .................................................................................. 124 6.5 Independent Set and Clique Fam ilies ..................................................... 125 7 Feedback Vertex/Edge Sets (FVS and FES) 131 7.1 Introduction ................................................................................................. 131 7.2 The FVS Obstruction Set Computation ....................................... 133 7.2.1 A finite state algorithm .................................................................... 133 7.2.2 A complete FVS testset ................................................................ 142 7.3 The FVS Obstructions ................................................................... 145 7.4 The FES Obstruction Set Computation ....................................... 149 7.4.1 A direct nonminimal FES t e s t ....................................................... 149 7.4.2 A complete FES testset ................................................................ 151 7.5 The FES Obstructions ......... 152 8 Some Generalized VC and FVS Graph Families 158 8.1 Path Covers .............................................. 158 8.1.1 A patb-cover congruence ......................... 160 8.2 Cycle Covers .............................................................................................. 164 8.3 Path/Cycle Cover T estsets .......................................................................
Recommended publications
  • On Treewidth and Graph Minors
    On Treewidth and Graph Minors Daniel John Harvey Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy February 2014 Department of Mathematics and Statistics The University of Melbourne Produced on archival quality paper ii Abstract Both treewidth and the Hadwiger number are key graph parameters in structural and al- gorithmic graph theory, especially in the theory of graph minors. For example, treewidth demarcates the two major cases of the Robertson and Seymour proof of Wagner's Con- jecture. Also, the Hadwiger number is the key measure of the structural complexity of a graph. In this thesis, we shall investigate these parameters on some interesting classes of graphs. The treewidth of a graph defines, in some sense, how \tree-like" the graph is. Treewidth is a key parameter in the algorithmic field of fixed-parameter tractability. In particular, on classes of bounded treewidth, certain NP-Hard problems can be solved in polynomial time. In structural graph theory, treewidth is of key interest due to its part in the stronger form of Robertson and Seymour's Graph Minor Structure Theorem. A key fact is that the treewidth of a graph is tied to the size of its largest grid minor. In fact, treewidth is tied to a large number of other graph structural parameters, which this thesis thoroughly investigates. In doing so, some of the tying functions between these results are improved. This thesis also determines exactly the treewidth of the line graph of a complete graph. This is a critical example in a recent paper of Marx, and improves on a recent result by Grohe and Marx.
    [Show full text]
  • Randomly Coloring Graphs of Logarithmically Bounded Pathwidth Shai Vardi
    Randomly coloring graphs of logarithmically bounded pathwidth Shai Vardi To cite this version: Shai Vardi. Randomly coloring graphs of logarithmically bounded pathwidth. 2018. hal-01832102 HAL Id: hal-01832102 https://hal.archives-ouvertes.fr/hal-01832102 Preprint submitted on 6 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Randomly coloring graphs of logarithmically bounded pathwidth Shai Vardi∗ Abstract We consider the problem of sampling a proper k-coloring of a graph of maximal degree ∆ uniformly at random. We describe a new Markov chain for sampling colorings, and show that it mixes rapidly on graphs of logarithmically bounded pathwidth if k ≥ (1 + )∆, for any > 0, using a new hybrid paths argument. ∗California Institute of Technology, Pasadena, CA, 91125, USA. E-mail: [email protected]. 1 Introduction A (proper) k-coloring of a graph G = (V; E) is an assignment σ : V ! f1; : : : ; kg such that neighboring vertices have different colors. We consider the problem of sampling (almost) uniformly at random from the space of all k-colorings of a graph.1 The problem has received considerable attention from the computer science community in recent years, e.g., [12, 17, 24, 26, 33, 44, 45].
    [Show full text]
  • A Dynamic Data Structure for Planar Graph Embedding
    October 1987 UILU-ENG-87-2265 ACT-83 COORDINATED SCIENCE LABORATORY College of Engineering Applied Computation Theory A DYNAMIC DATA STRUCTURE FOR PLANAR GRAPH EMBEDDING Roberto Tamassia UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Approved for Public Release. Distribution Unlimited. UNCLASSIFIED___________ SEÒjrtlfy CLASSIFICATION OP THIS PAGE REPORT DOCUMENTATION PAGE 1 a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS Unclassified None 2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABIUTY OF REPORT 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release; distribution unlimited 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) UILU-ENG-87-2265 ACT #83 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Coordinated Science Lab (If applicati!a) University of Illinois N/A National Science Foundation 6c ADDRESS (City, Statt, and ZIP Coda) 7b. ADDRESS (City, Stata, and ZIP Coda) 1101 W. Springfield Avenue 1800 G Street, N.W. Urbana, IL 61801 Washington, D.C. 20550 8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicatila) National Science Foundation ECS-84-10902 8c. ADDRESS (City, Stata, and ZIP Coda) 10. SOURCE OF FUNDING NUMBERS 1800 G Street, N.W. PROGRAM PROJECT TASK WORK UNIT Washington, D.C. 20550 ELEMENT NO. NO. NO. ACCESSION NO. A Dynamic Data Structure for Planar Graph Embedding 12. PERSONAL AUTHOR(S) Tamassia, Roberto 13a. TYPE OF REPORT 13b. TIME COVERED 14-^ A T E OP REPORT (Year, Month, Day) 5. PAGE COUNT Technical FROM______ TO 1987, October 26 ? 41 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continua on ravarsa if nacassary and identify by block number) FIELD GROUP SUB-GROUP planar graph, planar embedding, dynamic data structure, on-line algorithm, analysis of algorithms present a dynamic data structure that allows for incrementally constructing a planar embedding of a planar graph.
    [Show full text]
  • Partial Duality and Closed 2-Cell Embeddings
    Partial duality and closed 2-cell embeddings To Adrian Bondy on his 70th birthday M. N. Ellingham1;3 Department of Mathematics, 1326 Stevenson Center Vanderbilt University, Nashville, Tennessee 37240, U.S.A. [email protected] Xiaoya Zha2;3 Department of Mathematical Sciences, Box 34 Middle Tennessee State University Murfreesboro, Tennessee 37132, U.S.A. [email protected] April 28, 2016; to appear in Journal of Combinatorics Abstract In 2009 Chmutov introduced the idea of partial duality for embeddings of graphs in surfaces. We discuss some alternative descriptions of partial duality, which demonstrate the symmetry between vertices and faces. One is in terms of band decompositions, and the other is in terms of the gem (graph-encoded map) representation of an embedding. We then use these to investigate when a partial dual is a closed 2-cell embedding, in which every face is bounded by a cycle in the graph. We obtain a necessary and sufficient condition for a partial dual to be closed 2-cell, and also a sufficient condition for no partial dual to be closed 2-cell. 1 Introduction In this paper a surface Σ means a connected compact 2-manifold without boundary. By an open or closed disk in Σ we mean a subset of the surface homeomorphic to such a subset of R2. By a simple closed curve or circle in Σ we mean an image of a circle in R2 under a continuous injective map; a simple arc is a similar image of [0; 1]. The closure of a set S is denoted S, and the boundary is denoted @S.
    [Show full text]
  • A Study of Solution Strategies for Some Graph
    A STUDY OF SOLUTION STRATEGIES FOR SOME GRAPH EMBEDDING PROBLEMS A Synopsis Submitted in the partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics Submitted by Aditi Khandelwal Prof. Gur Saran Prof. Kamal Srivastava Supervisor Co-supervisor Department of Mathematics Department of Mathematics Prof. Ravinder Kumar Prof. G.S. Tyagi Head, Department of Head, Department of Physics Mathematics Dean, Faculty of Science Department of Mathematics Faculty of Science, Dayalbagh Educational Institute (Deemed University) Dayalbagh, Agra-282005 March, 2017. A STUDY OF SOLUTION STRATEGIES FOR SOME GRAPH EMBEDDING PROBLEMS 1. Introduction Many problems of practical interest can easily be represented in the form of graph theoretical optimization problems like the Travelling Salesman Problem, Time Table Scheduling Problem etc. Recently, the application of metaheuristics and development of algorithms for problem solving has gained particular importance in the field of Computer Science and specially Graph Theory. Although various problems are polynomial time solvable, there are large number of problems which are NP-hard. Such problems can be dealt with using metaheuristics. Metaheuristics are a successful alternative to classical ways of solving optimization problems, to provide satisfactory solutions to large and complex problems. Although they are alternative methods to address optimization problems, there is no theoretical guarantee on results [JJM] but usually provide near optimal solutions in practice. Using heuristic
    [Show full text]
  • Minimal Acyclic Forbidden Minors for the Family of Graphs with Bounded Path-Width
    Discrete Mathematics 127 (1994) 293-304 293 North-Holland Minimal acyclic forbidden minors for the family of graphs with bounded path-width Atsushi Takahashi, Shuichi Ueno and Yoji Kajitani Department of Electrical and Electronic Engineering, Tokyo Institute of Technology. Tokyo, 152. Japan Received 27 November 1990 Revised 12 February 1992 Abstract The graphs with bounded path-width, introduced by Robertson and Seymour, and the graphs with bounded proper-path-width, introduced in this paper, are investigated. These families of graphs are minor-closed. We characterize the minimal acyclic forbidden minors for these families of graphs. We also give estimates for the numbers of minimal forbidden minors and for the numbers of vertices of the largest minimal forbidden minors for these families of graphs. 1. Introduction Graphs we consider are finite and undirected, but may have loops and multiple edges unless otherwise specified. A graph H is a minor of a graph G if H is isomorphic to a graph obtained from a subgraph of G by contracting edges. A family 9 of graphs is said to be minor-closed if the following condition holds: If GEB and H is a minor of G then H EF. A graph G is a minimal forbidden minor for a minor-closed family F of graphs if G#8 and any proper minor of G is in 9. Robertson and Seymour proved the following deep theorems. Theorem 1.1 (Robertson and Seymour [15]). Every minor-closed family of graphs has a finite number of minimal forbidden minors. Theorem 1.2 (Robertson and Seymour [14]).
    [Show full text]
  • Minor-Closed Graph Classes with Bounded Layered Pathwidth
    Minor-Closed Graph Classes with Bounded Layered Pathwidth Vida Dujmovi´c z David Eppstein y Gwena¨elJoret x Pat Morin ∗ David R. Wood { 19th October 2018; revised 4th June 2020 Abstract We prove that a minor-closed class of graphs has bounded layered pathwidth if and only if some apex-forest is not in the class. This generalises a theorem of Robertson and Seymour, which says that a minor-closed class of graphs has bounded pathwidth if and only if some forest is not in the class. 1 Introduction Pathwidth and treewidth are graph parameters that respectively measure how similar a given graph is to a path or a tree. These parameters are of fundamental importance in structural graph theory, especially in Roberston and Seymour's graph minors series. They also have numerous applications in algorithmic graph theory. Indeed, many NP-complete problems are solvable in polynomial time on graphs of bounded treewidth [23]. Recently, Dujmovi´c,Morin, and Wood [19] introduced the notion of layered treewidth. Loosely speaking, a graph has bounded layered treewidth if it has a tree decomposition and a layering such that each bag of the tree decomposition contains a bounded number of vertices in each layer (defined formally below). This definition is interesting since several natural graph classes, such as planar graphs, that have unbounded treewidth have bounded layered treewidth. Bannister, Devanny, Dujmovi´c,Eppstein, and Wood [1] introduced layered pathwidth, which is analogous to layered treewidth where the tree decomposition is arXiv:1810.08314v2 [math.CO] 4 Jun 2020 required to be a path decomposition.
    [Show full text]
  • Approximating the Maximum Clique Minor and Some Subgraph Homeomorphism Problems
    Approximating the maximum clique minor and some subgraph homeomorphism problems Noga Alon1, Andrzej Lingas2, and Martin Wahlen2 1 Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv. [email protected] 2 Department of Computer Science, Lund University, 22100 Lund. [email protected], [email protected], Fax +46 46 13 10 21 Abstract. We consider the “minor” and “homeomorphic” analogues of the maximum clique problem, i.e., the problems of determining the largest h such that the input graph (on n vertices) has a minor isomorphic to Kh or a subgraph homeomorphic to Kh, respectively, as well as the problem of finding the corresponding subgraphs. We term them as the maximum clique minor problem and the maximum homeomorphic clique problem, respectively. We observe that a known result of Kostochka and √ Thomason supplies an O( n) bound on the approximation factor for the maximum clique minor problem achievable in polynomial time. We also provide an independent proof of nearly the same approximation factor with explicit polynomial-time estimation, by exploiting the minor separator theorem of Plotkin et al. Next, we show that another known result of Bollob´asand Thomason √ and of Koml´osand Szemer´ediprovides an O( n) bound on the ap- proximation factor for the maximum homeomorphic clique achievable in γ polynomial time. On the other hand, we show an Ω(n1/2−O(1/(log n) )) O(1) lower bound (for some constant γ, unless N P ⊆ ZPTIME(2(log n) )) on the best approximation factor achievable efficiently for the maximum homeomorphic clique problem, nearly matching our upper bound.
    [Show full text]
  • On Drawing a Graph Convexly in the Plane (Extended Abstract) *
    On Drawing a Graph Convexly in the Plane (Extended Abstract) * HRISTO N. DJIDJEV Department of Computer Science, Rice University, Hoston, TX 77251, USA Abstract. Let G be a planar graph and H be a subgraph of G. Given any convex drawing of H, we investigate the problem of how to extend the drawing of H to a convex drawing of G. We obtain a necessary and sufficient condition for the existence and a linear Mgorithm for the construction of such an extension. Our results and their corollaries generalize previous theoretical and algorithmic results of Tutte, Thomassen, Chiba, Yamanouchi, and Nishizeki. 1 Introduction The problem of embedding of a graph in the plane so that the resulting drawing has nice geometric properties has received recently .significant attention. This is due to the large number of applications including circuit and VLSI design, algorithm animation, information systems design and analysis. The reader is referred to [1] for annotated bibliography on graph drawings. The first linear-time algorithm for testing a graph for planarity was constructed by Hopcroft and Tarjan [9]. A different linear time algorithm was developed by Booth and Lueker [3], who made use of PQ-trees and a previous algorithm of Lempel et al. [11]. Using the information obtained during the planarity testing, one can find in linear time a planar representation of the graph, if it is planar. Such an algorithm based on [3] has been described by Chiba et al. [4]. A classical result established by Wagner states that every planar graph has a planar straight-line drawing [18].
    [Show full text]
  • On Self-Duality of Branchwidth in Graphs of Bounded Genus ⋆
    On Self-Duality of Branchwidth in Graphs of Bounded Genus ? Ignasi Sau a aMascotte project INRIA/CNRS/UNSA, Sophia-Antipolis, France; and Graph Theory and Comb. Group, Applied Maths. IV Dept. of UPC, Barcelona, Spain. Dimitrios M. Thilikos b bDepartment of Mathematics, National Kapodistrian University of Athens, Greece. Abstract A graph parameter is self-dual in some class of graphs embeddable in some surface if its value does not change in the dual graph more than a constant factor. Self-duality has been examined for several width-parameters, such as branchwidth, pathwidth, and treewidth. In this paper, we give a direct proof of the self-duality of branchwidth in graphs embedded in some surface. In this direction, we prove that bw(G∗) ≤ 6 · bw(G) + 2g − 4 for any graph G embedded in a surface of Euler genus g. Key words: graphs on surfaces, branchwidth, duality, polyhedral embedding. 1 Preliminaries A surface is a connected compact 2-manifold without boundaries. A surface Σ can be obtained, up to homeomorphism, by adding eg(Σ) crosscaps to the sphere. eg(Σ) is called the Euler genus of Σ. We denote by (G; Σ) a graph G embedded in a surface Σ. A subset of Σ meeting the drawing only at vertices of G is called G-normal. If an O-arc is G-normal, then we call it a noose. The length of a noose is the number of its vertices. Representativity, or face-width, is a parameter that quantifies local planarity and density of embeddings. The representativity rep(G; Σ) of a graph embedding (G; Σ) is the smallest length of a non-contractible noose in Σ.
    [Show full text]
  • Faster Algorithms Parameterized by Clique-Width
    Faster Algorithms Parameterized by Clique-width Sang-il Oum1?, Sigve Hortemo Sæther2??, and Martin Vatshelle2 1 Department of Mathematical Sciences, KAIST South Korea [email protected] 2 Department of Informatics, University of Bergen Norway [sigve.sether,vatshelle]@ii.uib.no Abstract. Many NP-hard problems, such as Dominating Set, are FPT parameterized by clique-width. For graphs of clique-width k given with a k-expression, Dominating Set can be solved in 4knO(1) time. How- ever, no FPT algorithm is known for computing an optimal k-expression. For a graph of clique-width k, if we rely on known algorithms to com- pute a (23k −1)-expression via rank-width and then solving Dominating Set using the (23k − 1)-expression, the above algorithm will only give a 3k runtime of 42 nO(1). There have been results which overcome this ex- ponential jump; the best known algorithm can solve Dominating Set 2 in time 2O(k )nO(1) by avoiding constructing a k-expression. We improve this to 2O(k log k)nO(1). Indeed, we show that for a graph of clique-width k, a large class of domination and partitioning problems (LC-VSP), in- cluding Dominating Set, can be solved in 2O(k log k)nO(1). Our main tool is a variant of rank-width using the rank of a 0-1 matrix over the rational field instead of the binary field. Keywords: clique-width, parameterized complexity, dynamic program- ming, generalized domination, rank-width 1 Introduction Parameterized complexity is a field of study dedicated to solving NP-hard prob- lems efficiently on restricted inputs, and has grown to become a well known field over the last 20 years.
    [Show full text]
  • Embeddings of Graphs
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 124 (1994) 217-228 217 North-Holland Embeddings of graphs Carsten Thomassen Mathematisk Institut, Danmarks Tekniske Hojskoie. Bygning 303, DK-Lyngby. Denmark Received 2 June 1990 Abstract We survey some recent results on graphs embedded in higher surfaces or general topological spaces. 1. Introduction A graph G is embedded in the topological space X if G is represented in X such that the vertices of G are distinct elements in X and an edge in G is a simple arc connecting its two ends such that no two edges intersect except possibly at a common end. Graph embeddings in a broad sense have existed since ancient time. Pretty tilings of the plane have been produced for aestetic or religious reasons (see e.g. [7]). The characterization of the Platonic solids may be regarded as a result on tilings of the sphere. The study of graph embeddings in a more restricted sense began with the 1890 conjecture of Heawood [S] that the complete graph K, can be embedded in the orientable surface S, provided Euler’s formula is not violated. That is, g >&(n - 3)(n -4). Much work on graph embeddings has been inspired by this conjecture the proof of which was not completed until 1968. A complete proof can be found in Ringel’s book [12]. Graph embedding problems also arise in the real world, for example in connection with the design of printed circuits. Also, algorithms involving graphs may be very sensitive to the way in which the graphs are represented.
    [Show full text]