Definitions and Examples

Total Page:16

File Type:pdf, Size:1020Kb

Definitions and Examples Chapter 1 Definitions and examples I hate definitions! Benjamin Disraeli In this chapter, we lay the foundations for a proper study of graph theory. Section 1.1 formalizes some of the graph ideas in the Introduction, Section 1.2 provides a variety of examples, and Section 1.3 presents two variations on the basic idea. In Section 1.4 we show how graphs can be used to represent and solve three problems from recrea- tional mathematics. More substantial applications are deferred until Chapters 2 and 3, when we have more machinery at our disposal. 1.1 Definitions A simple graph G consists of a non-empty finite set V(G) of elements called vertices (or nodes or points) and a finite set E(G) of distinct unordered pairs of distinct elements of V(G) called edges (or lines). We call V(G) the vertex-set and E(G) the edge-set of G. An edge {v, w} is said to join the vertices v and w, and is usually abbreviated to vw. For example, Fig. 1.1 represents the simple graph G whose vertex-set V(G)is {u, v, w, z}, and whose edge-set E(G) consists of the edges uv, uw, vw and wz. In any simple graph there is at most one edge joining a given pair of vertices. However, many results for simple graphs also hold for more general objects in which two vertices may have several edges joining them; such edges are called multiple edges. In addition, we may remove the restriction that an edge must join two distinct vertices, and allow loops – edges joining a vertex to itself. The resulting object, with loops and multiple edges allowed, is called a general graph – or, simply, a graph (see Fig. 1.2). Note that every simple graph is a graph, but not every graph is a simple graph. Figure 1.1 Figure 1.2 1.1 Definitions 9 Thus, a graph G consists of a non-empty finite set V(G) of elements called vertices and a finite family E(G) of unordered pairs of (not necessarily distinct) elements of V(G) called edges; the use of the word ‘family’ permits the existence of multiple edges. We call V(G) the vertex-set and E(G) the edge-family of G. An edge {v, w} is said to join the vertices v and w, and is again abbreviated to vw. Thus in Fig. 1.2, V(G) is the set {u, v, w, z} and E(G) consists of the edges uv, vv (twice), vw (three times), uw (twice) and wz. Note that each loop vv joins the vertex v to itself. Although we sometimes need to restrict our attention to simple graphs, we shall prove our results for general graphs whenever possible. Remark. The language of graph theory is not standard – all authors have their own terminology. Some use the term ‘graph’ for what we call a simple graph, while others use it for graphs with directed edges, or for graphs with infinitely many vertices or edges; we discuss these variations in Section 1.3. Any such definition is perfectly valid, provided that it is used consistently. In this book: All graphs are finite and undirected, with loops and multiple edges allowed unless specifically excluded. Isomorphism Two graphs G1 and G2 are isomorphic if there is a one–one correspondence between the vertices of G1 and those of G2 such that the number of edges joining any two vertices of G1 equals the number of edges joining the corresponding vertices of G2. For example, the two graphs in Fig. 1.3 are isomorphic, under the correspondence u 3 l, v 3 m, w 3 n, x 3 p, y 3 q, z 3 r. Figure 1.3 For many problems, the labels on the vertices are unnecessary and we drop them. We then say that two ‘unlabelled graphs’ are isomorphic if we can assign labels to their vertices so that the resulting ‘labelled graphs’ are isomorphic. For example, we regard the unlabelled graphs in Fig. 1.4 as isomorphic, since the labelled graphs in Fig. 1.3 are isomorphic. The difference between labelled and unlabelled graphs becomes more apparent when we try to count them. For example, if we restrict ourselves to graphs with three vertices, then there are eight different labelled graphs (see Fig. 1.5), but only four 10 Definitions and examples Figure 1.4 Figure 1.5 Figure 1.6 unlabelled ones (see Fig. 1.6). It is usually clear from the context whether we are referring to labelled or unlabelled graphs. Connected graphs We can combine two graphs to make a larger graph. If the two graphs are G1 and G2 ʜ and their vertex-sets V(G1) and V(G2) are disjoint, then their union G1 G2 is the ʜ ʜ graph with vertex-set V(G1) V(G2) and edge-family E(G1) E(G2) (see Fig. 1.7). Most of the graphs discussed so far have been ‘in one piece’. A graph is connected if it cannot be expressed as a union of graphs, and disconnected otherwise. Clearly, any disconnected graph G can be expressed as the union of connected graphs, each of which is called a component of G; a disconnected graph with three components is shown in Fig. 1.8. Figure 1.7 1.1 Definitions 11 Figure 1.8 When proving results about graphs in general, we can often obtain the correspond- ing results for connected graphs and then apply them to each component separately. A table of all the unlabelled connected simple graphs with up to five vertices is given in Fig. 1.9. Figure 1.9 12 Definitions and examples Adjacency and degrees We say that two vertices v and w of a graph are adjacent if there is an edge vw joining them, and the vertices v and w are then incident with such an edge. We also say that two distinct edges e and f are adjacent if they have a vertex in common (see Fig. 1.10). Figure 1.10 The degree of a vertex v is the number of edges incident with v, and is written deg(v); when calculating the degree of v, we usually make the convention that a loop at v contributes 2 (rather than 1) to deg(v). A vertex of degree 0 is an isolated vertex and a vertex of degree 1 is an end-vertex. Thus each of the two graphs in Fig. 1.11 has two end-vertices and three vertices of degree 2, while the graph in Fig. 1.12 has one end-vertex, one vertex of degree 3, one of degree 6 and one of degree 8. The degree sequence of a graph consists of the degrees written in increasing order, with repeats where necessary. For example, the degree sequences of the graphs in Figs 1.11 and 1.12 are (1, 1, 2, 2, 2) and (1, 3, 6, 8). Figure 1.11 Figure 1.12 The earliest result on graph theory is essentially due to Leonhard Euler in 1735 (although he did not express it in the language of graphs). It is sometimes called the handshaking lemma. THEOREM 1.1 (Handshaking lemma) In any graph the sum of all the vertex- degrees is an even number. Proof. The sum of all the vertex-degrees is equal to twice the number of edges, since each edge contributes exactly 2 to the sum. It is thus an even number. ■ The handshaking lemma is so called because it tells us that if several people shake hands, then the total number of hands shaken must be even – this is precisely because just two hands are involved in each handshake. A useful corollary of the handshak- ing lemma is the following: COROLLARY 1.2 In any graph the number of vertices of odd degree is even. 1.1 Definitions 13 Proof. If the number of vertices of odd degree were odd, then the sum of the vertex- degrees would also be odd, contradicting Theorem 1.1. So the number is even. ■ Subgraphs A graph H is a subgraph of a graph G if each of its vertices belongs to V(G) and each of its edges belongs to E(G). Thus the graph in Fig. 1.13 is a subgraph of the graph in Fig. 1.14, but is not a subgraph of the graph in Fig. 1.15, since the latter graph contains no ‘triangles’. Figure 1.13 Figure 1.14 Figure 1.15 We can obtain subgraphs of a graph by deleting edges and vertices. If e is an edge of a graph G, we denote by G - e the graph obtained from G by deleting the edge e; more generally, if F is any set of edges in G, we denote by G - F the graph obtained by deleting the edges in F. Similarly, if v is a vertex of G, we denote by G - v the graph obtained from G by deleting the vertex v together with the edges incident with v; more generally, if S is any set of vertices in G, we denote by G - S the graph obtained by deleting the vertices in S and all edges incident with any of them. An example is shown in Fig. 1.16. Figure 1.16 We also denote by G \ e the graph obtained by taking an edge e and ‘contracting’ it – that is, removing it and identifying its ends v and w so that the resulting vertex is incident with all those edges (other than e) that were originally incident with v or w.
Recommended publications
  • Distance Regular Graphs Simply Explained
    Distance Regular Graphs Simply Explained Alexander Coulter Paauwe April 20, 2007 Copyright c 2007 Alexander Coulter Paauwe. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”. Adjacency Algebra and Distance Regular Graphs: In this paper, we will discover some interesting properties of a particular kind of graph, called distance regular graphs, using algebraic graph theory. We will begin by developing some definitions that will allow us to explore the relationship between powers of the adjacency matrix of a graph and its eigenvalues, and ultimately give us particular insight into the eigenvalues of distance regular graphs. Basis for the Polynomial of an Adjacency Matrix We all know that for a given graph G, the powers of its adjacency matrix, A, have as their entries the number of n-walks between two vertices. More succinctly, we know that [An]i,j is the number of n-walks between the two vertices vi and vj. We also know that for a graph with diameter d, the first d powers of A are all linearly independent. Now, let us think of the set of all polynomials of the adjacency matrix, A, for a graph G. We can think of any member of the set as a linear combination of powers of A.
    [Show full text]
  • Constructing an Infinite Family of Cubic 1-Regular Graphs
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Europ. J. Combinatorics (2002) 23, 559–565 doi:10.1006/eujc.2002.0589 Available online at http://www.idealibrary.com on Constructing an Infinite Family of Cubic 1-Regular Graphs YQAN- UAN FENG† AND JIN HO KWAK A graph is 1-regular if its automorphism group acts regularly on the set of its arcs. Miller [J. Comb. Theory, B, 10 (1971), 163–182] constructed an infinite family of cubic 1-regular graphs of order 2p, where p ≥ 13 is a prime congruent to 1 modulo 3. Marusiˇ cˇ and Xu [J. Graph Theory, 25 (1997), 133– 138] found a relation between cubic 1-regular graphs and tetravalent half-transitive graphs with girth 3 and Alspach et al.[J. Aust. Math. Soc. A, 56 (1994), 391–402] constructed infinitely many tetravalent half-transitive graphs with girth 3. Using these results, Miller’s construction can be generalized to an infinite family of cubic 1-regular graphs of order 2n, where n ≥ 13 is odd such that 3 divides ϕ(n), the Euler function of n. In this paper, we construct an infinite family of cubic 1-regular graphs with order 8(k2 + k + 1)(k ≥ 2) as cyclic-coverings of the three-dimensional Hypercube. c 2002 Elsevier Science Ltd. All rights reserved. 1. INTRODUCTION In this paper we consider an undirected finite connected graph without loops or multiple edges. For a graph G, we denote by V (G), E(G), A(G) and Aut(G) the vertex set, the edge set, the arc set and the automorphism group, respectively.
    [Show full text]
  • On Treewidth and Graph Minors
    On Treewidth and Graph Minors Daniel John Harvey Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy February 2014 Department of Mathematics and Statistics The University of Melbourne Produced on archival quality paper ii Abstract Both treewidth and the Hadwiger number are key graph parameters in structural and al- gorithmic graph theory, especially in the theory of graph minors. For example, treewidth demarcates the two major cases of the Robertson and Seymour proof of Wagner's Con- jecture. Also, the Hadwiger number is the key measure of the structural complexity of a graph. In this thesis, we shall investigate these parameters on some interesting classes of graphs. The treewidth of a graph defines, in some sense, how \tree-like" the graph is. Treewidth is a key parameter in the algorithmic field of fixed-parameter tractability. In particular, on classes of bounded treewidth, certain NP-Hard problems can be solved in polynomial time. In structural graph theory, treewidth is of key interest due to its part in the stronger form of Robertson and Seymour's Graph Minor Structure Theorem. A key fact is that the treewidth of a graph is tied to the size of its largest grid minor. In fact, treewidth is tied to a large number of other graph structural parameters, which this thesis thoroughly investigates. In doing so, some of the tying functions between these results are improved. This thesis also determines exactly the treewidth of the line graph of a complete graph. This is a critical example in a recent paper of Marx, and improves on a recent result by Grohe and Marx.
    [Show full text]
  • Directed Graphs Definition: an Directed Graph (Or Digraph) G = (V, E) Consists of a Nonempty Set V of Vertices (Or Nodes) and a Set E of Directed Edges (Or Arcs)
    Chapter 10 Chapter Summary Graphs and Graph Models Graph Terminology and Special Types of Graphs Representing Graphs and Graph Isomorphism Connectivity Euler and Hamiltonian Graphs Shortest-Path Problems (not currently included in overheads) Planar Graphs (not currently included in overheads) Graph Coloring (not currently included in overheads) Section 10.1 Section Summary Introduction to Graphs Graph Taxonomy Graph Models Graphs Definition: A graph G = (V, E) consists of a nonempty set V of vertices (or nodes) and a set E of edges. Each edge has either one or two vertices associated with it, called its endpoints. An edge is said to connect its endpoints. Example: a b This is a graph with four vertices and five edges. d c Remarks: The graphs we study here are unrelated to graphs of functions studied in Chapter 2. We have a lot of freedom when we draw a picture of a graph. All that matters is the connections made by the edges, not the particular geometry depicted. For example, the lengths of edges, whether edges cross, how vertices are depicted, and so on, do not matter A graph with an infinite vertex set is called an infinite graph. A graph with a finite vertex set is called a finite graph. We (following the text) restrict our attention to finite graphs. Some Terminology In a simple graph each edge connects two different vertices and no two edges connect the same pair of vertices. Multigraphs may have multiple edges connecting the same two vertices. When m different edges connect the vertices u and v, we say that {u,v} is an edge of multiplicity m.
    [Show full text]
  • Adjacency and Incidence Matrices
    Adjacency and Incidence Matrices 1 / 10 The Incidence Matrix of a Graph Definition Let G = (V ; E) be a graph where V = f1; 2;:::; ng and E = fe1; e2;:::; emg. The incidence matrix of G is an n × m matrix B = (bik ), where each row corresponds to a vertex and each column corresponds to an edge such that if ek is an edge between i and j, then all elements of column k are 0 except bik = bjk = 1. 1 2 e 21 1 13 f 61 0 07 3 B = 6 7 g 40 1 05 4 0 0 1 2 / 10 The First Theorem of Graph Theory Theorem If G is a multigraph with no loops and m edges, the sum of the degrees of all the vertices of G is 2m. Corollary The number of odd vertices in a loopless multigraph is even. 3 / 10 Linear Algebra and Incidence Matrices of Graphs Recall that the rank of a matrix is the dimension of its row space. Proposition Let G be a connected graph with n vertices and let B be the incidence matrix of G. Then the rank of B is n − 1 if G is bipartite and n otherwise. Example 1 2 e 21 1 13 f 61 0 07 3 B = 6 7 g 40 1 05 4 0 0 1 4 / 10 Linear Algebra and Incidence Matrices of Graphs Recall that the rank of a matrix is the dimension of its row space. Proposition Let G be a connected graph with n vertices and let B be the incidence matrix of G.
    [Show full text]
  • Chapter 7 Planar Graphs
    Chapter 7 Planar graphs In full: 7.1–7.3 Parts of: 7.4, 7.6–7.8 Skip: 7.5 Prof. Tesler Math 154 Winter 2020 Prof. Tesler Ch. 7: Planar Graphs Math 154 / Winter 2020 1 / 52 Planar graphs Definition A planar embedding of a graph is a drawing of the graph in the plane without edges crossing. A graph is planar if a planar embedding of it exists. Consider two drawings of the graph K4: V = f1, 2, 3, 4g E = f1, 2g , f1, 3g , f1, 4g , f2, 3g , f2, 4g , f3, 4g 1 2 1 2 3 4 3 4 Non−planar embedding Planar embedding The abstract graph K4 is planar because it can be drawn in the plane without crossing edges. Prof. Tesler Ch. 7: Planar Graphs Math 154 / Winter 2020 2 / 52 How about K5? Both of these drawings of K5 have crossing edges. We will develop methods to prove that K5 is not a planar graph, and to characterize what graphs are planar. Prof. Tesler Ch. 7: Planar Graphs Math 154 / Winter 2020 3 / 52 Euler’s Theorem on Planar Graphs Let G be a connected planar graph (drawn w/o crossing edges). Define V = number of vertices E = number of edges F = number of faces, including the “infinite” face Then V - E + F = 2. Note: This notation conflicts with standard graph theory notation V and E for the sets of vertices and edges. Alternately, use jV(G)j - jE(G)j + jF(G)j = 2. Example face 3 V = 4 E = 6 face 1 F = 4 face 4 (infinite face) face 2 V - E + F = 4 - 6 + 4 = 2 Prof.
    [Show full text]
  • Exclusive Graph Searching Lélia Blin, Janna Burman, Nicolas Nisse
    Exclusive Graph Searching Lélia Blin, Janna Burman, Nicolas Nisse To cite this version: Lélia Blin, Janna Burman, Nicolas Nisse. Exclusive Graph Searching. Algorithmica, Springer Verlag, 2017, 77 (3), pp.942-969. 10.1007/s00453-016-0124-0. hal-01266492 HAL Id: hal-01266492 https://hal.archives-ouvertes.fr/hal-01266492 Submitted on 2 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Exclusive Graph Searching∗ L´eliaBlin Sorbonne Universit´es, UPMC Univ Paris 06, CNRS, Universit´ed'Evry-Val-d'Essonne. LIP6 UMR 7606, 4 place Jussieu 75005, Paris, France [email protected] Janna Burman LRI, Universit´eParis Sud, CNRS, UMR-8623, France. [email protected] Nicolas Nisse Inria, France. Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France. [email protected] February 2, 2016 Abstract This paper tackles the well known graph searching problem, where a team of searchers aims at capturing an intruder in a network, modeled as a graph. This problem has been mainly studied for its relationship with the pathwidth of graphs. All variants of this problem assume that any node can be simultaneously occupied by several searchers.
    [Show full text]
  • Q(A) - Balance Super Edge Magic Graphs Results
    International Journal of Pure and Applied Mathematical Sciences. ISSN 0972-9828 Volume 10, Number 2 (2017), pp. 157-170 © Research India Publications http://www.ripublication.com Q(A) - Balance Super Edge Magic Graphs Results M. Rameshpandi and S. Vimala 1Assistant Professor, Department of Mathematics, Pasumpon Muthuramalinga Thevar College, Usilampatti, Madurai. 2Assistant Professor, Department of Mathematics, Mother Teresa Women’s University, Kodaikanal. Abstract Let G be (p,q)-graph in which the edges are labeled 1,2,3,4,…q so that the vertex sums are constant, mod p, then G is called an edge magic graph. Magic labeling on Q(a) balance super edge–magic graphs introduced [5]. In this paper extend my discussion of Q(a)- balance super edge magic labeling(BSEM) to few types of special graphs. AMS 2010: 05C Keywords: edge magic graph, super edge magic graph, Q(a) balance edge- magic graph. 1.INTRODUCTION Magic graphs are related to the well-known magic squares, but are not quite as famous. Magic squares are an arrangement of numbers in a square in such a way that the sum of the rows, columns and diagonals is always the same. All graphs in this paper are connected, (multi-)graphs without loop. The graph G has vertex – set V(G) and edge – set E(G). A labeling (or valuation) of a graph is a map that carries graph elements to numbers(usually to the positive or non- negative integers). Edge magic graph introduced by Sin Min Lee, Eric Seah and S.K Tan in 1992. Various author discussed in edge magic graphs like Edge magic(p,3p-1)- graphs, Zykov sums of graphs, cubic multigraphs, Edge-magicness of the composition of a cycle with a null graph.
    [Show full text]
  • Graph Homomorphisms with Complex Values: a Dichotomy Theorem ∗
    SIAM J. COMPUT. c 2013 Society for Industrial and Applied Mathematics Vol. 42, No. 3, pp. 924–1029 GRAPH HOMOMORPHISMS WITH COMPLEX VALUES: A DICHOTOMY THEOREM ∗ † ‡ § JIN-YI CAI ,XICHEN, AND PINYAN LU Abstract. Each symmetric matrix A over C defines a graph homomorphism function ZA(·)on undirected graphs. The function ZA(·) is also called the partition function from statistical physics, and can encode many interesting graph properties, including counting vertex covers and k-colorings. We study the computational complexity of ZA(·) for arbitrary symmetric matrices A with algebraic complex values. Building on work by Dyer and Greenhill [Random Structures and Algorithms,17 (2000), pp. 260–289], Bulatov and Grohe [Theoretical Computer Science, 348 (2005), pp. 148–186], and especially the recent beautiful work by Goldberg et al. [SIAM J. Comput., 39 (2010), pp. 3336– 3402], we prove a complete dichotomy theorem for this problem. We show that ZA(·)iseither computable in polynomial-time or #P-hard, depending explicitly on the matrix A. We further prove that the tractability criterion on A is polynomial-time decidable. Key words. computational complexity, counting complexity, graph homomorphisms, partition functions AMS subject classifications. 68Q17, 68Q25, 68R05, 68R10, 05C31 DOI. 10.1137/110840194 1. Introduction. Graph homomorphism has been studied intensely over the years [28, 23, 13, 18, 4, 12, 21]. Given two graphs G and H, a graph homomorphism from G to H is a map f from the vertex set V (G)to V (H) such that, whenever (u, v)isanedgeinG,(f(u),f(v)) is an edge in H. The counting problem for graph homomorphism is to compute the number of homomorphisms from G to H.Forafixed graph H, this problem is also known as the #H-coloring problem.
    [Show full text]
  • On the Group-Theoretic Properties of the Automorphism Groups of Various Graphs
    ON THE GROUP-THEORETIC PROPERTIES OF THE AUTOMORPHISM GROUPS OF VARIOUS GRAPHS CHARLES HOMANS Abstract. In this paper we provide an introduction to the properties of one important connection between the theories of groups and graphs, that of the group formed by the automorphisms of a given graph. We provide examples of important results in graph theory that can be understood through group theory and vice versa, and conclude with a treatment of Frucht's theorem. Contents 1. Introduction 1 2. Fundamental Definitions, Concepts, and Theorems 2 3. Example 1: The Orbit-Stabilizer Theorem and its Application to Graph Automorphisms 4 4. Example 2: On the Automorphism Groups of the Platonic Solid Skeleton Graphs 4 5. Example 3: A Tight Bound on the Product of the Chromatic Number and Independence Number of Vertex-Transitive Graphs 6 6. Frucht's Theorem 7 7. Acknowledgements 9 8. References 9 1. Introduction Groups and graphs are two highly important kinds of structures studied in math- ematics. Interestingly, the theory of groups and the theory of graphs are deeply connected. In this paper, we examine one particular such connection: that which emerges from the observation that the automorphisms of any given graph form a group under composition. In section 2, we provide a framework for understanding the material discussed in the paper. In sections 3, 4, and 5, we demonstrate how important results in group theory illuminate some properties of automorphism groups, how the geo- metric properties of particular embeddings of graphs can be used to determine the structure of the automorphism groups of all embeddings of those graphs, and how the automorphism group can be used to determine fundamental truths about the structure of the graph.
    [Show full text]
  • An Introduction to Graph Colouring
    An Introduction to Graph Colouring Evelyne Smith-Roberge University of Waterloo March 29, 2017 Recap... Last week, we covered: I What is a graph? I Eulerian circuits I Hamiltonian Cycles I Planarity Reminder: A graph G is: I a set V (G) of objects called vertices together with: I a set E(G), of what we call called edges. An edge is an unordered pair of vertices. We call two vertices adjacent if they are connected by an edge. Today, we'll get into... I Planarity in more detail I The four colour theorem I Vertex Colouring I Edge Colouring Recall... Planarity We said last week that a graph is planar if it can be drawn in such a way that no edges cross. These areas, including the infinite area surrounding the graph, are called faces. We denote the set of faces of a graph G by F (G). Planarity You'll notice the edges of planar graphs cut up our space into different sections. ) Planarity You'll notice the edges of planar graphs cut up our space into different sections. ) These areas, including the infinite area surrounding the graph, are called faces. We denote the set of faces of a graph G by F (G). Degree of a Vertex Last week, we defined the degree of a vertex to be the number of edges that had that vertex as an endpoint. In this graph, for example, each of the vertices has degree 3. Degree of a Face Similarly, we can define the degree of a face. The degree of a face is the number of edges that make up the boundary of that face.
    [Show full text]
  • Blast Domination for Mycielski's Graph of Graphs
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-8, Issue-6S3, September 2019 Blast Domination for Mycielski’s Graph of Graphs K. Ameenal Bibi, P.Rajakumari AbstractThe hub of this article is a search on the behavior of is the minimum cardinality of a distance-2 dominating set in the Blast domination and Blast distance-2 domination for 퐺. Mycielski’s graph of some particular graphs and zero divisor graphs. Definition 2.3[7] A non-empty subset 퐷 of 푉 of a connected graph 퐺 is Key Words:Blast domination number, Blast distance-2 called a Blast dominating set, if 퐷 is aconnected dominating domination number, Mycielski’sgraph. set and the induced sub graph < 푉 − 퐷 >is triple connected. The minimum cardinality taken over all such Blast I. INTRODUCTION dominating sets is called the Blast domination number of The concept of triple connected graphs was introduced by 퐺and is denoted by tc . Paulraj Joseph et.al [9]. A graph is said to be triple c (G) connected if any three vertices lie on a path in G. In [6] the Definition2.4 authors introduced triple connected domination number of a graph. A subset D of V of a nontrivial graph G is said to A non-empty subset 퐷 of vertices in a graph 퐺 is a blast betriple connected dominating set, if D is a dominating set distance-2 dominating set if every vertex in 푉 − 퐷 is within and <D> is triple connected. The minimum cardinality taken distance-2 of atleast one vertex in 퐷.
    [Show full text]