Efficacy of Different Types of Therapy for COVID-19

Total Page:16

File Type:pdf, Size:1020Kb

Efficacy of Different Types of Therapy for COVID-19 life Review Efficacy of Different Types of Therapy for COVID-19: A Comprehensive Review Anna Starshinova 1,*, Anna Malkova 2 , Ulia Zinchenko 3 , Dmitry Kudlay 4,5 , Anzhela Glushkova 6, Irina Dovgalyk 3, Piotr Yablonskiy 2,3 and Yehuda Shoenfeld 2,7,8 1 Almazov National Medical Research Centre, Head of the Research Department, 2 Akkuratov Str., 197341 Saint-Petersburg, Russia 2 Medical Department, Saint Petersburg State University, 199034 Saint-Petersburg, Russia; [email protected] (A.M.); [email protected] (P.Y.); [email protected] (Y.S.) 3 St. Petersburg Research Institute of Phthisiopulmonology, 199034 Saint-Petersburg, Russia; [email protected] (U.Z.); [email protected] (I.D.) 4 NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia; [email protected] 5 Medical Department, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia 6 V.M. Bekhterev National Research Medical Center for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; [email protected] 7 Ariel University, Kiryat HaMada 3, Ariel 40700, Israel 8 Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5265601, Israel * Correspondence: [email protected]; Tel.: +7-9052043861 Citation: Starshinova, A.; Malkova, Abstract: A new coronavirus disease (COVID-19) has already affected millions of people in 213 coun- A.; Zinchenko, U.; Kudlay, D.; tries. The possibilities of treatment have been reviewed in recent publications but there are many Glushkova, A.; Dovgalyk, I.; controversial results and conclusions. An analysis of the studies did not reveal a difference in Yablonskiy, P.; Shoenfeld, Y. Efficacy mortality level between people treated with standard therapy, such as antiviral drugs and dexam- of Different Types of Therapy for ethasone, and new antiviral drugs/additional immune therapy. However, most studies describe COVID-19: A Comprehensive Review. clinical improvement and a decrease in mortality among patients with severe and critical conditions, Life 2021, 11, 753. https:// with the early initiation of additional immune therapy. Possible new targets based on viral life cycles doi.org/10.3390/life11080753 were considered. Unfortunately, the data analysis on the efficacy of different medicine and therapy Academic Editors: regimens among patients with COVID-19, showed little success in decreasing the mortality rate Dimitrios Paraskevis, in all treatment methods. Some efficacy has been shown with an immunosuppressive therapy in Maria Yavropoulou and small patient samples, but when a larger number of patients were analyzed the data did not differ Sotirios Tsiodras significantly from the control groups. Received: 5 July 2021 Keywords: coronavirus infection; SARS-CoV-2; COVID-19; antiviral therapy; immune therapy; Accepted: 26 July 2021 cytokines; plasma; intravenous immunoglobulin IgG Published: 27 July 2021 Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in 1. Introduction published maps and institutional affil- The first novel coronavirus cases were officially recorded in Wuhan, Hubei Province, iations. China (PRC) at the end of December 2019 [1,2]. At the end of 2019, the spread of the novel coronavirus caused by the SARS-CoV-2 virus led to the death of patients in 4–22% of cases [3,4], which were associated with severe manifestations of the disease, most often in adults with concomitant pathologies [5–7]. Copyright: © 2021 by the authors. There is currently no etiological treatment for coronavirus infection, and a standard Licensee MDPI, Basel, Switzerland. therapy is based on the pathogenesis of the disease. According to the pathogenesis estab- This article is an open access article lished by Chinese scientists, the process can be divided into three stages [8]. Coronaviruses distributed under the terms and entering the mucosa of the upper respiratory tract are likely replicated in the cells of the conditions of the Creative Commons Attribution (CC BY) license (https:// ciliary epithelium [9] and cause rhinitis, glossitis, and a cough with possible systemic creativecommons.org/licenses/by/ intoxication, manifested by fever and arthralgia [10]. When overcoming the upper respira- 4.0/). tory tract barriers, the virus enters the lungs, where it binds to the angiotensin converting Life 2021, 11, 753. https://doi.org/10.3390/life11080753 https://www.mdpi.com/journal/life Life 2021, 11, 753 2 of 16 enzyme (ACE) using the receptor-binding domain (RBD) S1 of the subunit of the surface S (spike) protein, which initiates virion endocytosis in the cell [11–13]. From the lungs, the virus enters the systemic circulation known as the viremia phase. During this stage, the virus attacks cells that also express ACE: type 2 pneumocytes in the alveolar epithelium, heart, kidney, gastrointestinal tract cells, macrophages [14–16], as well as the endothelium of arterial and venous vessels, smooth muscle cells in the arteries [17]. The second stage is the acute phase, characterized by organ lesions due to infection. They can be explained by several mechanisms: the direct cytotoxic effect of the virus on cells, immune-mediated complications, vascular complications, and autoimmune side effects [8,18]. The SARS-CoV- 2 virus induces a weak interferon response of types I, II and III and a strong activation of the interleukin IL-1β/IL-6 pathway [19]. In the lungs, infection of type II alveolar epithe- lial cells activates the inflammasome, which induces the production of IL-1β [20]. IL-1β induces the secretion of IL-6 by endothelial cells and vascular smooth muscle cells, which enhance the inflammatory response [21]. In the lungs immune-competent cells infiltrate the tissue and cause an additional alteration due to excessive secretion of proteases and active forms of oxygen [15,22]. The diffuse alteration of alveoli is characterized by the desquamation of alveolar cells, formation of hyaline membranes, development of lung edema and fibrosis [17,23]. It is important to note that the acute phase, characterized by the development of pneumonia, with adequate treatment and normal functioning of the immune system is followed by a stage three recovery. In risk groups (advanced age, the presence of concomitant diseases), the immune system cannot effectively control the course of the diseases. For this reason, serious life-threatening complications such as cytokine storm and massive thrombosis may occur. In such cases, patients end up in a very serious condition and need intensive care [8]. Therefore, existing therapy is aimed at inhibiting viral replication, as the binding to ACE2 and the activity of viral enzymes prevent the vascular and the immune complications from functioning (Figure1). Despite the wide choice of drugs available, doubts about their efficacy, the most optimal prescription time, and patient selection criteria for certain Life 2021, 11, x FOR PEER REVIEW 3 of 18 drugs remain. Figure 1. The targets of drugs used in clinical practice and their influence on pathogenic processes. Abbreviations:Figure 1. ECThe are targetsendothelio ofcytes, drugs PC are pneumocytes, used in clinical NP are neutrophils, practice and and MP are their mac- influence on pathogenic pro- rophages.cesses. Abbreviations: EC are endotheliocytes, PC are pneumocytes, NP are neutrophils, and MP 2.are Results macrophages. and Discussion 2.1. Antiviral Therapies According to the presented data (Table 1), there is only an insignificant efficacy of hydroxychloroquine sulfate when used in conjunction with azithromycin and a low effi- cacy as a preventive monotherapy. Table 1. The results of the studies on the efficacy of antiviral drugs for COVID-19 treatment. Number Comparison Authors and of Observation The Agent Mode of Drug of Efficiency N Year of Patients Time, Days Conclusions Studied Administration with Control Publication /Control (Median) Group (%) Group Mortality 400/100 mg 99/contr Cao B. et al., lоpinаvir/ri 19.2 1 twice a day 14 ol (n = 28 No difference 2020 [24] tonavir vs. days 100) 25.0 lopinavir/ri 200/50 mg 2 Efficacy: Li Y et al., 2020 34 2 tonavir times/day 7–14 21 85.3 vs. 91.4 [25] versus umifenovir days and 200 vs 76.5 Life 2021, 11, 753 3 of 16 The purpose of this review is to analyze the efficacy of antiviral and immunological treatments of COVID-19. 2. Results and Discussion 2.1. Antiviral Therapies According to the presented data (Table1), there is only an insignificant efficacy of hydroxychloroquine sulfate when used in conjunction with azithromycin and a low efficacy as a preventive monotherapy. Table 1. The results of the studies on the efficacy of antiviral drugs for COVID-19 treatment. Authors and Number of Observation Comparison of The Agent Mode of Drug N Year of Patients/Control Time, Days Efficiency with Conclusions Studied Administration Publication Group (Median) Control Group (%) Mortality Cao B. et al., lopinavir/ 400/100 mg twice a 99/control 19.2 No 1 28 2020 [24] ritonavir day 14 days (n = 100) vs. difference 25.0 lopinavir/ 200/50 mg ritonavir 2 times/day 34 versus Li Y et al., umifenovir Efficacy: 2 7–14 days and 35 and control 21 2020 [25] and 85.3 vs. 91.4 vs 76.5 200 mg 3 t/day (n = 17) hydrochloride 7–14 days monohidrate Hydroxychlo- Efficacy: Gautret Ph. 600 mg/ 3 roquine 20/control (n = 16) 14 57.1 et al., 2020 [26] day 10 days sulfate vs. 12.5 600 mg/ hydroxychlor- day 10 days + Gautret P, et al., Efficacy: 4 oquine sulfate 500 mg on 1-st day, 80/no ≥6 2020 [27] 93.0 + azithromycin further 250 mg 2nd–5th day hydroxychlo- 600 mg on 1-st day, Efficacy: Geleris J. et al., 811/control 5 roquine further 22.5 45.8 2020 [28] (n = 565) sulfate 400 mg/day (no data) Grein J. et al., 200 mg on 1-st day, Efficacy: 6 2020 further 100 mg 53/no 19 47.0 (no data) [29] 2nd–10th day remdesivir 200 mg on 1-st day, Efficacy: WangY.
Recommended publications
  • Update on Diagnosis and Treatment of Idiopathic Pulmonary Fibrosis
    J Bras Pneumol. 2015;41(5):454-466 http://dx.doi.org/10.1590/S1806-37132015000000152 REVIEW ARTICLE Update on diagnosis and treatment of idiopathic pulmonary fibrosis José Baddini-Martinez1, Bruno Guedes Baldi2, Cláudia Henrique da Costa3, Sérgio Jezler4, Mariana Silva Lima5, Rogério Rufino3,6 1. Divisão de Pneumologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil. 2. Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas, ABSTRACT Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil. Idiopathic pulmonary fibrosis is a type of chronic fibrosing interstitial pneumonia, of 3. Disciplina de Pneumologia e Tisiologia, unknown etiology, which is associated with a progressive decrease in pulmonary Faculdade de Ciências Médicas, function and with high mortality rates. Interest in and knowledge of this disorder have Universidade do Estado do Rio de grown substantially in recent years. In this review article, we broadly discuss distinct Janeiro, Rio de Janeiro, Brasil. aspects related to the diagnosis and treatment of idiopathic pulmonary fibrosis. We 4. Ambulatório de Pneumologia, Hospital list the current diagnostic criteria and describe the therapeutic approaches currently Ana Nery, Salvador, Brasil. available, symptomatic treatments, the action of new drugs that are effective in slowing 5. Ambulatório de Doenças Pulmonares Intersticiais, Hospital do Servidor the decline in pulmonary function, and indications for lung transplantation. Público Estadual de São Paulo, São Keywords: Idiopathic pulmonary fibrosis/diagnosis; Idiopathic pulmonary fibrosis/therapy; Paulo, Brasil. Idiopathic pulmonary fibrosis/rehabilitation. 6. Programa de Pós-Graduação em Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil.
    [Show full text]
  • Product List March 2019 - Page 1 of 53
    Wessex has been sourcing and supplying active substances to medicine manufacturers since its incorporation in 1994. We supply from known, trusted partners working to full cGMP and with full regulatory support. Please contact us for details of the following products. Product CAS No. ( R)-2-Methyl-CBS-oxazaborolidine 112022-83-0 (-) (1R) Menthyl Chloroformate 14602-86-9 (+)-Sotalol Hydrochloride 959-24-0 (2R)-2-[(4-Ethyl-2, 3-dioxopiperazinyl) carbonylamino]-2-phenylacetic 63422-71-9 acid (2R)-2-[(4-Ethyl-2-3-dioxopiperazinyl) carbonylamino]-2-(4- 62893-24-7 hydroxyphenyl) acetic acid (r)-(+)-α-Lipoic Acid 1200-22-2 (S)-1-(2-Chloroacetyl) pyrrolidine-2-carbonitrile 207557-35-5 1,1'-Carbonyl diimidazole 530-62-1 1,3-Cyclohexanedione 504-02-9 1-[2-amino-1-(4-methoxyphenyl) ethyl] cyclohexanol acetate 839705-03-2 1-[2-Amino-1-(4-methoxyphenyl) ethyl] cyclohexanol Hydrochloride 130198-05-9 1-[Cyano-(4-methoxyphenyl) methyl] cyclohexanol 93413-76-4 1-Chloroethyl-4-nitrophenyl carbonate 101623-69-2 2-(2-Aminothiazol-4-yl) acetic acid Hydrochloride 66659-20-9 2-(4-Nitrophenyl)ethanamine Hydrochloride 29968-78-3 2,4 Dichlorobenzyl Alcohol (2,4 DCBA) 1777-82-8 2,6-Dichlorophenol 87-65-0 2.6 Diamino Pyridine 136-40-3 2-Aminoheptane Sulfate 6411-75-2 2-Ethylhexanoyl Chloride 760-67-8 2-Ethylhexyl Chloroformate 24468-13-1 2-Isopropyl-4-(N-methylaminomethyl) thiazole Hydrochloride 908591-25-3 4,4,4-Trifluoro-1-(4-methylphenyl)-1,3-butane dione 720-94-5 4,5,6,7-Tetrahydrothieno[3,2,c] pyridine Hydrochloride 28783-41-7 4-Chloro-N-methyl-piperidine 5570-77-4
    [Show full text]
  • (ACIP) General Best Guidance for Immunization
    8. Altered Immunocompetence Updates This section incorporates general content from the Infectious Diseases Society of America policy statement, 2013 IDSA Clinical Practice Guideline for Vaccination of the Immunocompromised Host (1), to which CDC provided input in November 2011. The evidence supporting this guidance is based on expert opinion and arrived at by consensus. General Principles Altered immunocompetence, a term often used synonymously with immunosuppression, immunodeficiency, and immunocompromise, can be classified as primary or secondary. Primary immunodeficiencies generally are inherited and include conditions defined by an inherent absence or quantitative deficiency of cellular, humoral, or both components that provide immunity. Examples include congenital immunodeficiency diseases such as X- linked agammaglobulinemia, SCID, and chronic granulomatous disease. Secondary immunodeficiency is acquired and is defined by loss or qualitative deficiency in cellular or humoral immune components that occurs as a result of a disease process or its therapy. Examples of secondary immunodeficiency include HIV infection, hematopoietic malignancies, treatment with radiation, and treatment with immunosuppressive drugs. The degree to which immunosuppressive drugs cause clinically significant immunodeficiency generally is dose related and varies by drug. Primary and secondary immunodeficiencies might include a combination of deficits in both cellular and humoral immunity. Certain conditions like asplenia and chronic renal disease also can cause altered immunocompetence. Determination of altered immunocompetence is important to the vaccine provider because incidence or severity of some vaccine-preventable diseases is higher in persons with altered immunocompetence; therefore, certain vaccines (e.g., inactivated influenza vaccine, pneumococcal vaccines) are recommended specifically for persons with these diseases (2,3). Administration of live vaccines might need to be deferred until immune function has improved.
    [Show full text]
  • Mechanisms of Resistance to P-Lactam Antibiotics Amongst 1993
    J. Med. Microbiol. - Vol. 43 (1999, 30G309 0 1995 The Pathological Society of Great Britain and Ireland ANTI MICROBIAL AGENTS Mechanisms of resistance to p-lactam antibiotics amongst Pseudomonas aeruginosa isolates collected in the UK in 1993 H. Y. CHEN, ME1 YUAN and D. M. LIVERMORE Department of Medical Microbiology, The London Hospital Medical College, Turner Street, London El 2AD Summary. Antimicrobial resistance among 199 1 Pseudomonas aeruginosa isolates collected at 24 UK hospitals during late 1993 was surveyed. Three-hundred and seventy-two of the isolates were resistant, or had reduced susceptibility, to some or all of azlocillin, carbenicillin, ceftazidime, imipenem and meropenem, and the mechanisms underlying their behaviour were examined. Only 13 isolates produced secondary p-lactamases : six possessed PSE- 1 or PSE-4 enzymes and seven had novel OXA enzyme types. Those with PSE types were highly resistant to azlocillin and carbenicillin whereas those with OXA enzymes were less resistant to these penicillins. Chromosomal p-lactamase derepression was demonstrated in 54 isolates, most of which were resistant to ceftazidime and azlocillin although susceptible to carbenicillin and carbapenems. p-Lactamase-independent “ intrinsic” resistance occurred in 277 isolates and is believed to reflect some combination of impermeability and efflux. Two forms were seen : the classical type, present in 195 isolates, gave carbenicillin resistance (MIC > 128 mg/L) and reduced susceptibility to ciprofloxacin and to all p-lactam agents except imipenem; a novel variant, seen in 82 isolates, affected only azlocillin, ceftazidime and, to a small extent, meropenem. Resistance to imipenem was largely dissociated from that to other p-lactam agents, and probably reflected loss of D2 porin, whereas resistance to meropenem was mostly associated with intrinsic resistance to penicillins and cephalosporins.
    [Show full text]
  • Intravenous Immunoglobulin Fails to Improve ARDS in Patients
    Prohaska et al. Journal of Intensive Care (2018) 6:11 DOI 10.1186/s40560-018-0278-8 RESEARCH Open Access Intravenous immunoglobulin fails to improve ARDS in patients undergoing ECMO therapy Stefanie Prohaska1, Andrea Schirner1, Albina Bashota1, Andreas Körner1, Gunnar Blumenstock2 and Helene A. Haeberle1* Abstract Background: Acute respiratory distress syndrome (ARDS) is associated with high mortality rates. ARDS patients suffer from severe hypoxemia, and extracorporeal membrane oxygenation (ECMO) therapy may be necessary to ensure oxygenation. ARDS has various etiologies, including trauma, ischemia-reperfusion injury or infections of various origins, and the associated immunological responses may vary. To support the immunological response in this patient collective, we used intravenous IgM immunoglobulin therapy to enhance the likelihood of pulmonary recovery. Methods: ARDS patients admitted to the intensive care unit (ICU) who were placed on ECMO and treated with (IVIG group; n = 29) or without (control group; n = 28) intravenous IgM-enriched immunoglobulins for 3 days in the initial stages of ARDS were analyzed retrospectively. Results: The baseline characteristics did not differ between the groups, although the IVIG group showed a significantly reduced oxygenation index compared to the control group. We found no differences in the length of ICU stay or ventilation parameters. We did not find a significant difference between the groups for the extent of inflammation or for overall survival. Conclusion: We conclude that administration
    [Show full text]
  • Antibacterial Drug Usage Analysis
    Department of Health and Human Services Public Health Service Food and Drug Administration Center for Drug Evaluation and Research Office of Surveillance and Epidemiology Drug Use Review Date: April 5, 2012 To: Edward Cox, M.D. Director Office of Antimicrobial Products Through: Gerald Dal Pan, M.D., MHS Director Office of Surveillance and Epidemiology Laura Governale, Pharm.D., MBA Deputy Director for Drug Use Division of Epidemiology II Office of Surveillance and Epidemiology Hina Mehta, Pharm.D. Drug Use Data Analysis Team Leader Division of Epidemiology II Office of Surveillance and Epidemiology From: Tracy Pham, Pharm.D. Drug Use Data Analyst Division of Epidemiology II Office of Surveillance and Epidemiology Drug Name(s): Systemic Antibacterial Drug Products Application Type/Number: Multiple Applicant/sponsor: Multiple OSE RCM #: 2012-544 **This document contains proprietary drug use data obtained by FDA under contract. The drug use data/information in this document has been cleared for public release.** 1 EXECUTIVE SUMMARY The Division of Epidemiology II is providing an update of the drug utilization data in terms of number of kilograms or international units of selected systemic antibacterial drug products sold from manufacturers to various retail and non-retail channels of distribution for years 2010-2011 as a surrogate for nationwide antibacterial drug use in humans. Propriety drug use databases licensed by the FDA were used to conduct this analysis. Data findings are as follows: During years 2010 and 2011, the majority of kilograms of selected systemic antibacterial drug products sold were to outpatient retail pharmacy settings. Approximately 3.28 million kilograms of selected systemic antibacterial drug products were sold during year 2010, and around 3.29 million kilograms were sold during year 2011.
    [Show full text]
  • Human Intravenous Immunoglobulin (IVIG) Replacement Therapy Fact Sheet
    Human Intravenous Immunoglobulin (IVIG) Replacement Therapy Fact Sheet Brand Names: US Bivigam; Carimune NF; Cuvitru; Flebogamma DIF; GamaSTAN S/D; Gammagard; Gammagard S/D Less IgA; Gammagard S/D [DSC]; Gammaked; Gammaplex; Gamunex-C; Hizentra; Hyqvia; Octagam; Privigen Brand Names: Canada Cuvitru; Gamastan S/D; Gammagard Liquid; Gammagard S/D; Gamunex; Hizentra; IGIVnex; Octagam 10%; Panzyga; Privigen Key Points • IVIG is not a panacea; it’s a treatment used only under a doctor’s care for recurrent, serious infections • It’s expensive and scarce • It can have serious side effects (see below) • It is a good option for some patients with WM Introduction Waldenstrom’s macroglobulinemia (WM) is a non-Hodgkin lymphoma and cancer of the immune system that is defined by high levels of IgM in the blood and WM cells (also known as lymphoplasmacytic cells) in the bone marrow. There are five basic immunoglobulins (Ig) or antibodies, proteins that help the body fight infections: IgG, IgA, IgM, IgD, and IgE. Many patients with WM have low levels of the “uninvolved” immunoglobulins IgA and IgG, which persist despite treatment of the disease. These low immunoglobulin levels do not always result in repeated, serious infections, but lower levels of IgA and IgG might be associated with disease progression to WM in individuals who have IgM-MGUS. Furthermore, recurrent or severe infections, especially sinusitis or pneumonia, can be seen in many patients with WM. How does this happen in patients with WM and what are these immunoglobulins? IgM is the first antibody to respond during infection. Even though high levels of monoclonal (identical antibodies from one cell line) IgM are found in WM, it is not totally understood if these clones of IgM still respond to infection in the usual manner.
    [Show full text]
  • WO 2010/025328 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 4 March 2010 (04.03.2010) WO 2010/025328 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US2009/055306 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 28 August 2009 (28.08.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/092,497 28 August 2008 (28.08.2008) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): FOR¬ GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, EST LABORATORIES HOLDINGS LIMITED [IE/ ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, —]; 18 Parliament Street, Milner House, Hamilton, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, Bermuda HM12 (BM).
    [Show full text]
  • Medicare Part C Medical Coverage Policy Immunoglobulin Therapy
    Medicare Part C Medical Coverage Policy Immunoglobulin Therapy (Intravenous and Subcutaneous) in the Home Origination : June 17, 2009 Review Date : May 20, 2020 Next Review: May, 2022 ***This policy applies to all Blue Medicare HMO, Blue Medicare PPO, Blue Medicare Rx members, and members of any third-party Medicare plans supported by Blue Cross NC through administrative or operational services. *** DESCRIPTION OF PROCEDURE OR SERVICE Intravenous Immunoglobulin (IVIG) is a solution of human immunoglobulins specifically prepared for intravenous infusion for the treatment of primary immune deficiency disease. It is considered medically necessary for use as replacement therapy in patients with primary immunodeficiency in which severe impairment of antibody capacity is present. Covered diseases include congenital hypogammaglobulinemia, common variable immunodeficiency, Wiskott-Aldrich syndrome, X-linked immunodeficiency with hyper-IgM, chronic inflammatory demyelinating polyneuropathy, and severe combined immunodeficiency. POLICY STATEMENT Coverage will be provided for IVIG when it is determined to be medically necessary because the medical criteria and guidelines shown below are met. BENEFIT APPLICATION Please refer to the member’s individual Evidence of Coverage (E.O.C.) for benefit determination. Coverage will be approved according to the E.O.C. limitations if the criteria are met. Coverage decisions for will be made in accordance with: • The Centers for Medicare & Medicaid Services (CMS) National Coverage Determinations (NCDs); • General coverage guidelines included in Original Medicare manuals unless superseded by operational policy letters or regulations; and • Written coverage decisions of local Medicare carriers and intermediaries with jurisdiction for claims in the geographic area in which services are covered. Benefit payments are subject to contractual obligations of the Plan.
    [Show full text]
  • Rapid Evidence Review
    Rapid Evidence Review Clinical evidence for the use of intravenous immunoglobulin in the treatment of COVID- 19 Version 2, 14th May 2020 1 Prepared by the COVID-19 Evidence Review Group with clinical contribution from Dr. Niall Conlon, Consultant Immunologist, St. James Hospital, Dr. Mary Keogan, Clinical Lead National Clinical Programme for Pathology & Consultant Immunologist, Beaumont Hospital. Key changes between version 1 and version 2 (14th May 2020) A number of case reports describing the use of IVIG are included in this version and 2 additional studies which focused specifically on the use of IVIG in patients with COVID-19 – one case series and one retrospective cohort study (available as a pre-print). A number of guidelines have included a reference to IVIG, but the general consensus is not to use IVIG. The recent reports of Kawasaki Disease in children with COVID-19 highlight the role of IVIG and aspirin to treat this condition and supporting evidence of its benefit are available from 2 case reports and one case series. The COVID-19 Evidence Review Group for Medicines was established to support the HSE in managing the significant amount of information on treatments for COVID-19. This COVID-19 Evidence Review Group is comprised of evidence synthesis practitioners from across the National Centre for Pharmacoeconomics (NCPE), Medicines Management Programme (MMP) and the National Medicines Information Centre (NMIC). The group respond to queries raised via the Office of the CCO, National Clinical Programmes and the Department of Health and respond in a timely way with the evidence review supporting the query.
    [Show full text]
  • Comparative Activity of Newer Antibiotics Against Gram-Negative Bacilli
    CONTRIBUTION • Comparative activity of newer antibiotics against gram-negative bacilli CYNTHIA C. KNAPP, MS AND JOHN A. WASHINGTON, MD • The in vitro activities of cefoperazone, cefotaxime, ceftriaxone, ceftazidime, azlocillin, mezlocillin, piperacillin, ticarcillin/clavulanate, aztreonam, imipenem, and ciprofloxacin were concurrently deter- mined against over 1,000 isolates of gram-negative bacilli from clinical specimens of patients at the Cleve- land Clinic. Cephalosporins, penicillins, and aztreonam were active against species of Enterobacteriaceae other than Citrobacter freundii, Enterobacter aerogenes, and Enterobacter cloacae. Ceftazidime was the most active cephalosporin against Pseudomonas aeruginosa. Against the Enterobacteriaceae, the rank order of activity of penicillins was ticarcillin/clavulanate > piperacillin > mezlocillin > azlocillin. Against P. aer- uginosa, the rank order of activity of penicillins was piperacillin > ticarcillin/clavulanate > azlocillin > mezlocillin. Aztreonam was less active v P. aeruginosa than ceftazidime, cefoperazone, or piperacillin. The most active antimicrobials against all isolates tested were imipenem and ciprofloxacin. • INDEX TERMS: ANTIBIOTICS, LACTAM; GRAM-NEGATIVE BACTERIA • CLEVE CLIN J MED 1989; 56:161-166 HE RECENT introduction of ciprofloxacin for and penicillins, as well as the monobactam, aztreonam, clinical use follows closely a period of active re- and the carbapenem, imipenem.1-3 search in and development of expanded spec- We compared the susceptibility of more than 1,000 trum p-lactam antibiotics, including cephalo- clinical bacterial isolates to four expanded spectrum Tsporins, penicillins, monobactams, and carbapenems. cephalosporins (cefoperazone, cefotaxime, ceftriaxone, Although numerous published studies compare the ac- and ceftazidime), four expanded spectrum penicillins tivity of ciprofloxacin with other quinolones, only a (azlocillin, mezlocillin, piperacillin, and ticarcil- limited number of studies compare the activity of ci- lin/clavulanate), aztreonam, imipenem, and ciproflox- acin.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]