The Maury Project

Total Page:16

File Type:pdf, Size:1020Kb

The Maury Project AMERICAN METEOROLOGICAL SOCIETY The Maury Project Density-Driven Ocean Circulation TEACHER’S GUIDE A The Maury Project This guide is one of a series produced by The Maury Project, an initiative of the American Meteorological Society and the United States Naval Academy. The Maury Project has created and trained a network of selected master teachers who provide peer training sessions in precollege physical oceanographic education. To support these teachers in their teacher training, The Maury Project develops and produces teacher's guides, slide sets, and other educational materials. For further information, and the names of the trained master teachers in your state or region, please contact: The Maury Project American Meteorological Society 1200 New York Avenue, NW, Suite 500 Washington, DC 20005 This material is based upon work supported by the National Science Foundation under Grant No. ESI-9353370. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. © 2018 American Meteorological Society (Permission is hereby granted for the reproduction of materials contained in this pub- lication for non-commercial use in schools on the condition their source is acknowl- edged.) i Forward This guide has been prepared to introduce fundamental understandings about the guide topic. This guide is organized as follows: Introduction This is a narrative summary of background information to introduce the topic. Basic Understandings Basic understandings are statements of principles, concepts, and information. The basic understandings represent material to be mastered by the learner, and can be especially helpful in devising learning activities and in writing learning objectives and test items. They are numbered so they can be keyed with activities, objectives and test items. Activities These are related investigations. Each activity typically provides learning objectives, directions useful for presenting and completing the activity and questions designed to reinforce the learning objectives. Information Sources A brief list of references related to the guide topic is given for further reading. ii If we except the tides, and ... those that may be creat- ed by the wind, we may lay it down as a rule that all the currents of the ocean owe their origin to difference of specific gravity between sea water at one place and sea water at another; for wherever there is such a difference, whether it be owing to difference of temperature or to dif- ference of saltiness, etc., it is a difference that disturbs equilibrium, and currents are the consequence. Matthew Fontaine Maury from The Physical Geography of the Sea. 1855. iii Introduction: Density-Driven Ocean Circulation The oceans are layered systems. Winds, waves and currents stir the ocean surface to depths of a few hundred meters to form a mixed layer having relatively uniform temperature and salinity. Below the mixed layer in the low and mid-latitudes, there are other layers which together make up the remaining 80% of the ocean’s volume. These layers include: intermediate water immediately below the mixed layer; deep water extending from below the intermediate water to near the ocean bottom; and bottom water in contact with the sea floor. Density (mass per unit volume) differences of seawater, however small, drive the layered circulation of the ocean. Surface sea water made more dense by cooling, becoming saltier, or by mixing, sinks to depths where its density is the same as surrounding water at the same level. There it spreads horizontally, leafing between waters of lesser density above and greater density below. It will continue spreading outward, at a very slow pace compared to surface ocean currents, as more water of the same density arrives from above. The densities of seawater at the ocean surface can increase by cooling when energy is lost to the atmosphere through radiation, conduction and evaporation. Densities also increase when seawater salt concentrations increase in regions where evapora- tion exceeds precipitation and runoff. Greater seawater densities also occur in isolat- ed polar regions when salt is left behind in the remaining water when sea ice forms. Since density variations driving the deep circulation are due to differences in tem- perature (thermal) and salinity (haline), the deep ocean circulation is also referred to as thermohaline circulation. There are only a few locations worldwide where surface seawater can become dense enough to sink to the ocean depths. In most of these source regions, denser water is produced by air-ocean interaction over marginal seas which have limited exchange with the moderating influence of the open ocean. The intense cooling or evaporation over these basins, partially separated from the open ocean by land or submarine barriers, produces dense seawater that sinks. The water flows over the shallow sill leading to the open ocean and descends along the continental shelf and slope to reach its final depth. During its descent along the rough bottom, the water may be physically mixed with lighter seawater, thus forming less dense intermediate and deep layers. Also, there are open ocean source regions where surface mixing produces water of greater density. The tendency of water to seek its own density level within the ocean leads to the formation of water masses. Water masses are bodies of water that are fairly uniform in their densities and are identifiable from their temperature, salinity and other char- 1 acteristics. Since waters of different density are slow to mix, water masses maintain their narrow temperature and salinity ranges. This permits their identification and tracing long after they have left their source regions. Water masses are named for both their source region and the ocean layer in which they are found. Antarctic Bottom Water, the densest water mass, forms in the cold Antarctic ice shelves and flows slowly northward along the sea floor, into all the ma- jor ocean basins. As part of a slow thermohaline, or density-driven circulation, it may not return to the surface for hundreds or even thousands of years. Scientists study the connections between density driven ocean currents and wind driven surface currents. One area of research centers on how small changes in either salt or heat content could dramatically change the direction of ocean flows and thus influence weather and climate on local, regional and global scales. These whole-ocean circulation studies should help scientists to better understand the role that the oceans play in global cycles. 2 Basic Understandings The Role of the Sun 1. The Sun is the ultimate source of energy that brings about the circulation of the ocean. 2. Because of astronomical and atmospheric factors, ocean surfaces in tropical regions receive more of the sun’s energy over the course of a year than do those at higher latitudes. 3. In tropical regions, the radiant energy received from the Sun exceeds the ra- diant energy lost from Earth to space. At higher latitudes, radiation loss from Earth is greater than the solar input. 4. The imbalance between radiant energy gains and losses at different latitudes results in a poleward flow of heat that is almost entirely accomplished by atmo- spheric motions. The Layered Ocean 1. The downward transfer of heat from the warm ocean surface is caused mainly by the physical mixing of waters. 2. The uppermost few hundred meters are well stirred by winds, waves and cur- rents to form a mixed layer having relatively uniform temperature and salinity. 3. Below the mixed layer, in low and mid-latitudes, there is a layer in which the temperature decreases rapidly with increasing depth. This permanent feature commonly extends from the base of the mixed layer to a depth of about 1000 meters and is called the thermocline. 4. Extending below the thermocline are other layers which make up 80% of ocean’s water volume and throughout which the temperatures are within a few degrees of the freezing temperature. These layers include: intermediate water, nearest to the thermocline; deep water, extending to near the ocean bottom; and bottom water, in contact with the sea floor. 3 Density-Driven Circulation 1. Small differences in seawater densities drive the circulation of the deep ocean. 2. Water that is denser than the surrounding surface water will sink until it reaches a level at which it is denser than the water above but less dense than the wa- ter below. There, it will spread horizontally as more water of the same density arrives from above. 3. This density increase can happen by cooling through energy loss to the atmo- sphere above via radiation, conduction and evaporation, by becoming more salty from water loss via evaporation to the atmosphere, or by mixing. 4. In polar regions, the formation of sea ice can also increase seawater salinity and density. Ice formation leaves behind dissolved substances which concen- trate in the seawater that remains. 5. Seawater salinity is increased in locations where water loss by evaporation from the ocean surface exceeds water gain from precipitation. This occurs most significantly in sub-tropical regions. 6. Sinking denser seawater displaces less dense seawater, which eventually returns to the surface and, once at the surface, eventually flows to a region of cooling, evaporation, freezing, or mixing. Thermohaline Circulation 1. Since the density variations driving the deep circulation are due to differences in temperature (thermo) and salinity (haline), the deep ocean circulation is also referred to as a thermohaline circulation. 2. Thermohaline circulation is initiated at the ocean surface by temperature and salinity conditions that produce higher density water, which sinks and slowly spreads horizontally at depths determined by water densities. 3. The speed of a thermohaline current is a small compared to the speed of wind-driven surface currents. 4. Water leaving the surface as part of the thermohaline circulation may not return to the surface for hundreds or thousands of years.
Recommended publications
  • Chapter 10. Thermohaline Circulation
    Chapter 10. Thermohaline Circulation Main References: Schloesser, F., R. Furue, J. P. McCreary, and A. Timmermann, 2012: Dynamics of the Atlantic meridional overturning circulation. Part 1: Buoyancy-forced response. Progress in Oceanography, 101, 33-62. F. Schloesser, R. Furue, J. P. McCreary, A. Timmermann, 2014: Dynamics of the Atlantic meridional overturning circulation. Part 2: forcing by winds and buoyancy. Progress in Oceanography, 120, 154-176. Other references: Bryan, F., 1987. On the parameter sensitivity of primitive equation ocean general circulation models. Journal of Physical Oceanography 17, 970–985. Kawase, M., 1987. Establishment of deep ocean circulation driven by deep water production. Journal of Physical Oceanography 17, 2294–2317. Stommel, H., Arons, A.B., 1960. On the abyssal circulation of the world ocean—I Stationary planetary flow pattern on a sphere. Deep-Sea Research 6, 140–154. Toggweiler, J.R., Samuels, B., 1995. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Research 42, 477–500. Vallis, G.K., 2000. Large-scale circulation and production of stratification: effects of wind, geometry and diffusion. Journal of Physical Oceanography 30, 933–954. 10.1 The Thermohaline Circulation (THC): Concept, Structure and Climatic Effect 10.1.1 Concept and structure The Thermohaline Circulation (THC) is a global-scale ocean circulation driven by the equator-to-pole surface density differences of seawater. The equator-to-pole density contrast, in turn, is controlled by temperature (thermal) and salinity (haline) variations. In the Atlantic Ocean where North Atlantic Deep Water (NADW) forms, the THC is often referred to as the Atlantic Meridional Overturning Circulation (AMOC).
    [Show full text]
  • The Exchange of Water Between Prince William Sound and the Gulf of Alaska Recommended
    The exchange of water between Prince William Sound and the Gulf of Alaska Item Type Thesis Authors Schmidt, George Michael Download date 27/09/2021 18:58:15 Link to Item http://hdl.handle.net/11122/5284 THE EXCHANGE OF WATER BETWEEN PRINCE WILLIAM SOUND AND THE GULF OF ALASKA RECOMMENDED: THE EXCHANGE OF WATER BETWEEN PRIMCE WILLIAM SOUND AND THE GULF OF ALASKA A THESIS Presented to the Faculty of the University of Alaska in partial fulfillment of the Requirements for the Degree of MASTER OF SCIENCE by George Michael Schmidt III, B.E.S. Fairbanks, Alaska May 197 7 ABSTRACT Prince William Sound is a complex fjord-type estuarine system bordering the northern Gulf of Alaska. This study is an analysis of exchange between Prince William Sound and the Gulf of Alaska. Warm, high salinity deep water appears outside the Sound during summer and early autumn. Exchange between this ocean water and fjord water is a combination of deep and intermediate advective intrusions plus deep diffusive mixing. Intermediate exchange appears to be an annual phen­ omenon occurring throughout the summer. During this season, medium scale parcels of ocean water centered on temperature and NO maxima appear in the intermediate depth fjord water. Deep advective exchange also occurs as a regular annual event through the late summer and early autumn. Deep diffusive exchange probably occurs throughout the year, being more evident during the winter in the absence of advective intrusions. ACKNOWLEDGMENTS Appreciation is extended to Dr. T. C. Royer, Dr. J. M. Colonell, Dr. R. T. Cooney, Dr. R.
    [Show full text]
  • Lesson 8: Currents
    Standards Addressed National Science Lesson 8: Currents Education Standards, Grades 9-12 Unifying concepts and Overview processes Physical science Lesson 8 presents the mechanisms that drive surface and deep ocean currents. The process of global ocean Ocean Literacy circulation is presented, emphasizing the importance of Principles this process for climate regulation. In the activity, students The Earth has one big play a game focused on the primary surface current names ocean with many and locations. features Lesson Objectives DCPS, High School Earth Science Students will: ES.4.8. Explain special 1. Define currents and thermohaline circulation properties of water (e.g., high specific and latent heats) and the influence of large bodies 2. Explain what factors drive deep ocean and surface of water and the water cycle currents on heat transport and therefore weather and 3. Identify the primary ocean currents climate ES.1.4. Recognize the use and limitations of models and Lesson Contents theories as scientific representations of reality ES.6.8 Explain the dynamics 1. Teaching Lesson 8 of oceanic currents, including a. Introduction upwelling, density, and deep b. Lecture Notes water currents, the local c. Additional Resources Labrador Current and the Gulf Stream, and their relationship to global 2. Extra Activity Questions circulation within the marine environment and climate 3. Student Handout 4. Mock Bowl Quiz 1 | P a g e Teaching Lesson 8 Lesson 8 Lesson Outline1 I. Introduction Ask students to describe how they think ocean currents work. They might define ocean currents or discuss the drivers of currents (wind and density gradients). Then, ask them to list all the reasons they can think of that currents might be important to humans and organisms that live in the ocean.
    [Show full text]
  • The Global Marine Phosphorus Cycle: Sensitivity to Oceanic Circulation
    Biogeosciences, 4, 155–171, 2007 www.biogeosciences.net/4/155/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. The global marine phosphorus cycle: sensitivity to oceanic circulation C. P. Slomp and P. Van Cappellen Department of Earth Sciences – Geochemistry, Faculty of Geosciences, Utrecht University, P.O. Box 80021, 3508 TA Utrecht, The Netherlands Received: 4 September 2006 – Published in Biogeosciences Discuss.: 5 October 2006 Revised: 8 January 2007 – Accepted: 20 February 2007 – Published: 22 February 2007 Abstract. A new mass balance model for the coupled ma- stand long-term variations in marine biological activity, at- rine cycles of phosphorus (P) and carbon (C) is used to ex- mospheric composition and climate (Holland, 1984; Van amine the relationships between oceanic circulation, primary Cappellen and Ingall, 1996; Petsch and Berner, 1998; Bjer- productivity, and sedimentary burial of reactive P and partic- rum and Canfield, 2002). Important forcings include the sup- ulate organic C (POC), on geological time scales. The model ply of reactive P from the continents, oceanic circulation and explicitly represents the exchanges of water and particulate sea level fluctuations (Follmi,¨ 1996; Compton et al., 2000; matter between the continental shelves and the open ocean, Handoh and Lenton, 2003; Wallmann, 2003; Bjerrum et al., and it accounts for the redox-dependent burial of POC and 2006). the various forms of reactive P (iron(III)-bound P, particu- Upward transport of nutrient-rich water sustains biologi- late organic P (POP), authigenic calcium phosphate, and fish cal activity in marine surface waters. Vertical mixing, how- debris). Steady state and transient simulations indicate that ever, also controls the ventilation of the deeper ocean waters, a slowing down of global ocean circulation decreases pri- which in turn has a major effect on the sedimentary burial mary production in the open ocean, but increases that in the of phosphorus.
    [Show full text]
  • Ocean Storage
    277 6 Ocean storage Coordinating Lead Authors Ken Caldeira (United States), Makoto Akai (Japan) Lead Authors Peter Brewer (United States), Baixin Chen (China), Peter Haugan (Norway), Toru Iwama (Japan), Paul Johnston (United Kingdom), Haroon Kheshgi (United States), Qingquan Li (China), Takashi Ohsumi (Japan), Hans Pörtner (Germany), Chris Sabine (United States), Yoshihisa Shirayama (Japan), Jolyon Thomson (United Kingdom) Contributing Authors Jim Barry (United States), Lara Hansen (United States) Review Editors Brad De Young (Canada), Fortunat Joos (Switzerland) 278 IPCC Special Report on Carbon dioxide Capture and Storage Contents EXECUTIVE SUMMARY 279 6.7 Environmental impacts, risks, and risk management 298 6.1 Introduction and background 279 6.7.1 Introduction to biological impacts and risk 298 6.1.1 Intentional storage of CO2 in the ocean 279 6.7.2 Physiological effects of CO2 301 6.1.2 Relevant background in physical and chemical 6.7.3 From physiological mechanisms to ecosystems 305 oceanography 281 6.7.4 Biological consequences for water column release scenarios 306 6.2 Approaches to release CO2 into the ocean 282 6.7.5 Biological consequences associated with CO2 6.2.1 Approaches to releasing CO2 that has been captured, lakes 307 compressed, and transported into the ocean 282 6.7.6 Contaminants in CO2 streams 307 6.2.2 CO2 storage by dissolution of carbonate minerals 290 6.7.7 Risk management 307 6.2.3 Other ocean storage approaches 291 6.7.8 Social aspects; public and stakeholder perception 307 6.3 Capacity and fractions retained
    [Show full text]
  • Antarctic Sea Ice Control on Ocean Circulation in Present and Glacial Climates
    Antarctic sea ice control on ocean circulation in present and glacial climates Raffaele Ferraria,1, Malte F. Jansenb, Jess F. Adkinsc, Andrea Burkec, Andrew L. Stewartc, and Andrew F. Thompsonc aDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; bAtmospheric and Oceanic Sciences Program, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08544; and cDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 Edited* by Edward A. Boyle, Massachusetts Institute of Technology, Cambridge, MA, and approved April 16, 2014 (received for review December 31, 2013) In the modern climate, the ocean below 2 km is mainly filled by waters possibly associated with an equatorward shift of the Southern sinking into the abyss around Antarctica and in the North Atlantic. Hemisphere westerlies (11–13), (ii) an increase in abyssal stratifi- Paleoproxies indicate that waters of North Atlantic origin were instead cation acting as a lid to deep carbon (14), (iii)anexpansionofseaice absent below 2 km at the Last Glacial Maximum, resulting in an that reduced the CO2 outgassing over the Southern Ocean (15), and expansion of the volume occupied by Antarctic origin waters. In this (iv) a reduction in the mixing between waters of Antarctic and Arctic study we show that this rearrangement of deep water masses is origin, which is a major leak of abyssal carbon in the modern climate dynamically linked to the expansion of summer sea ice around (16). Current understanding is that some combination of all of these Antarctica. A simple theory further suggests that these deep waters feedbacks, together with a reorganization of the biological and only came to the surface under sea ice, which insulated them from carbonate pumps, is required to explain the observed glacial drop in atmospheric forcing, and were weakly mixed with overlying waters, atmospheric CO2 (17).
    [Show full text]
  • Ocean Circulation and Climate: an Overview
    ocean-climate.org Bertrand Delorme Ocean Circulation and Yassir Eddebbar and Climate: an Overview Ocean circulation plays a central role in regulating climate and supporting marine life by transporting heat, carbon, oxygen, and nutrients throughout the world’s ocean. As human-emitted greenhouse gases continue to accumulate in the atmosphere, the Meridional Overturning Circulation (MOC) plays an increasingly important role in sequestering anthropogenic heat and carbon into the deep ocean, thus modulating the course of climate change. Anthropogenic warming, in turn, can influence global ocean circulation through enhancing ocean stratification by warming and freshening the high latitude upper oceans, rendering it an integral part in understanding and predicting climate over the 21st century. The interactions between the MOC and climate are poorly understood and underscore the need for enhanced observations, improved process understanding, and proper model representation of ocean circulation on several spatial and temporal scales. The ocean is in perpetual motion. Through its DRIVING MECHANISMS transport of heat, carbon, plankton, nutrients, and oxygen around the world, ocean circulation regulates Global ocean circulation can be divided into global climate and maintains primary productivity and two major components: i) the fast, wind-driven, marine ecosystems, with widespread implications upper ocean circulation, and ii) the slow, deep for global fisheries, tourism, and the shipping ocean circulation. These two components act industry. Surface and subsurface currents, upwelling, simultaneously to drive the MOC, the movement of downwelling, surface and internal waves, mixing, seawater across basins and depths. eddies, convection, and several other forms of motion act jointly to shape the observed circulation As the name suggests, the wind-driven circulation is of the world’s ocean.
    [Show full text]
  • What Is the Thermohaline Circulation?
    S CIENCE’ S C OMPASS PERSPECTIVES 65 flow thus appear to be driven by thermal 64 PERSPECTIVES: OCEANOGRAPHY and evaporative forcing from the atmo- 63 sphere. The ocean seems to act like a heat 62 engine, in analogy to the atmosphere. 61 What Is the Some authors apparently think of this 60 convective mode of motion as the thermo- 59 haline circulation. But results of the past 58 Thermohaline Circulation? few years suggest that such a convectively 57 Carl Wunsch driven mass flux is impossible. There are 56 several lines of argument. The first goes 55 he discussion of today’s climate and mass affect the movements of all other back to Sandström (4), who pointed out that 54 its past and potential future changes properties, such as heat, salt, oxygen, car- when a fluid is heated and cooled at the 53 Tis often framed in the context of the bon, and so forth (1, 2), all of which differ same pressure (or heated at a lower pres- 52 ocean’s thermohaline circulation. Wide- from each other. For example, the North sure), no significant work can be extracted 51 spread consequences are ascribed to its Atlantic imports heat, but exports oxygen. from the flow, with the region below the 50 shutdown and acceleration—a deus ex It seems most sensible to regard the ther- cold source becoming homogeneous. 49 machina for climate change. mohaline circulation –8 –2 The ocean is both 48 But what is meant by this term? In in- as the circulation of 0 heated and cooled ef- 500 47 terdisciplinary fields such as climate temperature and salt.
    [Show full text]
  • The Role of Thermohaline Circulation in Global Climate Change
    The Role of Thermohaline Circulation in Global Climate Change • by Arnold Gordon ©&prinlfrom lAmonl-Doherl] Ceologicoi Observatory 1990 & /99/ &PorI Lamont-Doherty Geological Observatory of Columbia University Palisades, NY 10964 (914)359-2900 The Role of • The world ocean consists of 1.3 billion cu km of salty water, and covers 70.8% of the Earth's suiface. This enormous body of Thermohaline water exerts a poweiful influence on Earth's climate; indeed, it is an integral part of the global climate system. Therefore, under­ Circulation in standing the climate system requires a knowledge of how the ocean and the atmosphere exchange heat, water and greenhouse gases. If Global Climate we are to be able to gain a capability for predicting our changing climate we must learn, for example, how pools of warm salty Change water move about the ocean, what governs the growth and decay of sea ice, and how rapidly the deep ocean's interior responds to the changes in the atmosphere. The ocean plays a considerable features for the most part only role in the rate of greenhouse move heat and water on horizon­ warming. It does this in two tal planes. It is the slower ther­ ways: it absorbs excess green­ mohaline circulation, driven by house gases from the atmos­ buoyancy forcing at the sea sur­ phere, such as carbon dioxide, face (i.e., exchanges of heat and methane and chlorofluoro­ fresh water between ocean and methane, and it also absorbs atmosphere change the density • some of the greenhouse-induced or buoyancy of the surface water; by Arnold L.
    [Show full text]
  • Lecture 4: OCEANS (Outline)
    LectureLecture 44 :: OCEANSOCEANS (Outline)(Outline) Basic Structures and Dynamics Ekman transport Geostrophic currents Surface Ocean Circulation Subtropicl gyre Boundary current Deep Ocean Circulation Thermohaline conveyor belt ESS200A Prof. Jin -Yi Yu BasicBasic OceanOcean StructuresStructures Warm up by sunlight! Upper Ocean (~100 m) Shallow, warm upper layer where light is abundant and where most marine life can be found. Deep Ocean Cold, dark, deep ocean where plenty supplies of nutrients and carbon exist. ESS200A No sunlight! Prof. Jin -Yi Yu BasicBasic OceanOcean CurrentCurrent SystemsSystems Upper Ocean surface circulation Deep Ocean deep ocean circulation ESS200A (from “Is The Temperature Rising?”) Prof. Jin -Yi Yu TheThe StateState ofof OceansOceans Temperature warm on the upper ocean, cold in the deeper ocean. Salinity variations determined by evaporation, precipitation, sea-ice formation and melt, and river runoff. Density small in the upper ocean, large in the deeper ocean. ESS200A Prof. Jin -Yi Yu PotentialPotential TemperatureTemperature Potential temperature is very close to temperature in the ocean. The average temperature of the world ocean is about 3.6°C. ESS200A (from Global Physical Climatology ) Prof. Jin -Yi Yu SalinitySalinity E < P Sea-ice formation and melting E > P Salinity is the mass of dissolved salts in a kilogram of seawater. Unit: ‰ (part per thousand; per mil). The average salinity of the world ocean is 34.7‰. Four major factors that affect salinity: evaporation, precipitation, inflow of river water, and sea-ice formation and melting. (from Global Physical Climatology ) ESS200A Prof. Jin -Yi Yu Low density due to absorption of solar energy near the surface. DensityDensity Seawater is almost incompressible, so the density of seawater is always very close to 1000 kg/m 3.
    [Show full text]
  • Deep Ocean Water Concentrate Changes Physicochemical Characteristics, the Profile of Volatile Components and Consumer Acceptance for Taiwanese Rice Shochu
    foods Article Deep Ocean Water Concentrate Changes Physicochemical Characteristics, the Profile of Volatile Components and Consumer Acceptance for Taiwanese Rice Shochu 1, 2, 3,4 1, , Ming-Kuei Shih y , Qiao-Yu Hsu y , Bo-Kang Liou , Yu-Han Peng * z and 2, , Chih-Yao Hou * z 1 Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812, Taiwan; [email protected] 2 Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; [email protected] 3 Department of Food Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan; [email protected] 4 Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 406, Taiwan * Correspondence: [email protected] (Y.-H.P.); [email protected] (C.-Y.H.); Tel.: +886-917545098 (Y.-H.P.); +886-985300345 (C.-Y.H.); Fax: +886-7-3640364 (Y.-H.P. & C.-Y.H.) These authors contributed equally to this study and share the co-first authorship. y These authors contributed equally to this study and share the co-corresponding authorship. z Received: 2 November 2020; Accepted: 1 December 2020; Published: 4 December 2020 Abstract: To study the effects of deep-ocean water concentrate (DOWC) on sake quality, Taichung No. 10 indica rice (Oryza sativa subsp. indica) and Tainan No. 11 japonica rice (O. sativa subsp. japonica) were used as raw materials, and basic physicochemical property parameters in shochu were analyzed differentially. Sake fermentation mash analysis results revealed that DOWC addition did not significantly affect the basic physicochemical properties during sake brewing, but it significantly reduced citric acid and malic acid contents in Taichung No.
    [Show full text]
  • Ocean Thermal Energy Conversion and the Utilization of Deep Ocean Water – Michel A
    THEORY AND PRACTICES FOR ENERGY EDUCATION, TRAINING, REGULATION AND STANDARDS – Ocean Thermal Energy Conversion and the Utilization of Deep Ocean Water – Michel A. P. Gauthier OCEAN THERMAL ENERGY CONVERSION AND THE UTILIZATION OF DEEP OCEAN WATER Michel A. P. Gauthier Acting Chairman of the International Ocean Thermal Energy Conversion (OTEC) and Deep Ocean Water Association (DOWA), Taiwan Keywords : Ocean, Thermal energy, deep ocean, DOWA Contents 1 Introduction 2 Deep Ocean Water (DOW) 3 Deep Ocean Water Application (DOWA) 3.1 Ocean Thermal Energy Conversion (OTEC) 3.2 Energy Saving and Air-conditioning 3.3 Aquaculture 3.4 Freshwater and Agriculture Production 4 DOW Resource and OTEC/DOWA Environmental Issues 5 DOWA Economic and Political Issues Bibliography Biographical Sketch Summary Ocean thermal energy conversion (OTEC) is the process in which the solar thermal energy accumulated in the water of the surface layer of the tropical ocean is used to produce useful energy. Warm surface water and cold water pumped from the ocean depth are, respectively, the hot and cold sources of this thermodynamic process. The OTEC principle was described more than a century ago, and several experiments have since demonstrated its feasibility. OTEC is a recruit to the panel of clean and renewable energy resources that are needed to supply the future world demand in primary energy. Results of research on OTEC have revealed that the characteristics of deep ocean water make it an interesting resource not only for energy production but also for producing freshwater, seafood, and other valuable products. This opens new opportunities for OTEC commercialUNESCO developments and other– deepEOLSS ocean water applications, but implies careful assessment of their environmental issues.
    [Show full text]