Mitochondrial Matrix Ca As an Intrinsic Signal Regulating Mitochondrial

Total Page:16

File Type:pdf, Size:1020Kb

Mitochondrial Matrix Ca As an Intrinsic Signal Regulating Mitochondrial Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons Karen T. Changa,1, Robert F. Niescierb, and Kyung-Tai Minb,1 aZilkha Neurogenetic Institute and Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA 90033; and bDepartment of Biology, Indiana University, Bloomington, IN 47405 Edited by Ronald D. Vale, University of California, San Francisco, CA, and approved August 3, 2011 (received for review April 29, 2011) The proper distribution of mitochondria is particularly vital for a passive or active role in their own transport. Aside from the neurons because of their polarized structure and high energy endoplasmic reticulum, mitochondria are another main source 2+ 2+ demand. Mitochondria in axons constantly move in response to of Ca buffering within the cell. Following intracellular Ca 2+ physiological needs, but signals that regulate mitochondrial move- elevation, mitochondria rapidly take up and accumulate Ca 2+ ment are not well understood. Aside from producing ATP, Ca2+ buff- to maintain cellular Ca homeostasis (12). Studies also have shown that Ca2+ uptake into mitochondria occurs through the ering is another main function of mitochondria. Activities of many 2+ enzymes in mitochondria are also Ca2+-dependent, suggesting that mitochondrial Ca uniporter (12, 13), and that mitochondrial 2+ fl intramitochondrial Ca2+ concentration is important for mitochon- Ca in ux can increase ATP production by activating the TCA cycle, as well as enhance the activities of the electron transport- drial functions. Here, we report that mitochondrial motility in axons – is actively regulated by mitochondrial matrix Ca2+.Ca2+ entry chain enzymes and the ATP synthase complex (14 17). Never- theless, the relationship between mitochondrial energetic status through the mitochondrial Ca2+ uniporter modulates mitochondrial 2+ and mitochondrial movement remains controversial. A report transport, and mitochondrial Ca content correlates inversely with showed that anterogradely moving mitochondria have higher the speed of mitochondrial movement. Furthermore, the miro1 pro- 2+ membrane potential than those moving retrogradely (18), yet tein plays a role in Ca uptake into the mitochondria, which sub- another group found no difference between the membrane sequently affects mitochondrial movement. potentials of mitochondria moving in opposite directions or between the stationary and mobile mitochondria (19). The itochondria are dynamic organelles that constantly move parameters within mitochondria associated with changes in the Mwithin cells and undergo morphological changes in response pattern of mitochondrial motility thus remain unclear. Because to physiological needs (1–3). In neurons, mitochondria are abun- Ca2+ in mitochondria is associated with various mitochondrial dantly present throughout different subcellular compartments. functions, we hypothesized that mitochondrial Ca2+ may act as The machineries and signals that transport mitochondria from the a signal that allows mitochondria to actively regulate their own cell body (where they are synthesized) to the terminal need to be mobility. Here, we show Ca2+ influx through the mitochondrial carefully regulated because of the highly polarized structure and Ca2+ uniporter modulates mitochondrial transport, and that lengthy axon of a neuron (4–6). Defects in transport of mito- mitochondrial Ca2+ content correlated inversely with the speed chondria can cause deleterious effects on mitochondrial functions of mitochondrial movement. Furthermore, we demonstrate that in different parts of neurons, and hence affect neuronal survival the miro1 mutant modulates mitochondrial trafficking by alter- and function (2, 3). Recent efforts to investigate mitochondrial ing the amount of Ca2+ influx into the mitochondria in axons transportation have provided significant new information re- of hippocampal neurons. Taken together, our results imply that 2+ garding mitochondrial mobility, especially the mechanical com- mitochondrial matrix Ca is an intrinsic signal that actively ponents that modulate mitochondrial transport; however, it regulates mitochondrial transportation in neurons. remains unclear whether intrinsic signals inside of mitochondria also actively regulate mitochondrial movement. Results and Discussion Mitochondrial transport is mediated by interactions of the Visualization of Mitochondrial Ca2+ in Axons. Detecting small mitochondrial adaptor proteins to the kinesin and dynein changes in the level of Ca2+ within mitochondria of living neu- motors, as well as binding of the motor proteins to the cyto- rons have been challenging because of the lack of subcellular skeleton track (7, 8). It was posited that cytoplasmic Ca2+ level is specificity provided by synthetic Ca2+ indicators. To test the a key regulator of mitochondrial trafficking in axons and den- hypothesis that internal mitochondrial Ca2+ modulates mito- drites, and that intracellular Ca2+ influx impedes mitochondrial chondrial motility, we targeted a genetically encoded GFP-based movement by affecting the overall interactions between the mi- fluorescent Ca2+ indicator, Case12, to the mitochondria. This tochondrial adaptor, motor, and cytoskeleton track (9, 10). Two targeting was achieved by inserting a mitochondrial signal pep- different mechanisms for Ca2+-mediated stop in mitochondrial tide into the N terminus of the Case12 protein (mito-Case12). 2+ trafficking were proposed. Wang and Schwarz suggested that Case12 protein allows linear detection of Ca ion concentration 2+ Ca2+ binding to the EF hand motif of the mitochondrial adaptor within the physiological range and its binding to Ca is rapid 2+ protein miro1 recruits kinesin-1 motor and, hence, derails and reversible, thus making real-time detection of changes in Ca kinesin-1 from the microtubule track, thereby stopping mito- level within a cell possible (20, 21). Mito-Case12 colocalized with chondrial transportation in axons (10). Macaskill et al. proposed mito-RFP in transfected hippocampal neurons (Fig. 1A, Fig. S1 that following Ca2+ influx induced by glutamate or neuronal A and C), thus confirming that mito-Case12 is indeed targeted to activity, Ca2+ binding to the EF hand motif of the miro1 protein the mitochondria. Next, to test the ability of mito-Case12 to causes miro1 to dissociate from the kinesin-1 motor, and hence halts mitochondrial movement (11). Although the mechanisms 2+ proposed for this Ca -induced arrest in mitochondrial move- Author contributions: K.T.C. and K.-T.M. designed research; K.T.C. and R.F.N. performed ment are different, both groups agree that cytoplasmic Ca2+ research; K.T.C. and K.-T.M. analyzed data; and K.T.C. and K.-T.M. wrote the paper. elevation and its subsequent binding to the miro1 protein are The authors declare no conflict of interest. key events regulating mitochondrial motility in neurons. This article is a PNAS Direct Submission. 2+ Cytoplasmic Ca has been deemed important for mitochon- 1To whom correspondence may be addressed. E-mail: [email protected] or changkt@ drial motility in neurons; however, the relationship between usc.edu. 2+ mitochondrial Ca content and movement has not been es- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. tablished. It also remains unclear whether mitochondria play 1073/pnas.1106862108/-/DCSupplemental. 15456e15461 | PNAS | September 13, 2011 | vol. 108 | no. 37 www.pnas.org/cgi/doi/10.1073/pnas.1106862108 Downloaded by guest on September 24, 2021 respond to increases in Ca2+ content, we treated hippocampal stationary mitochondria are displayed as straight vertical lines as neurons containing mito-Case12 and mito-RFP with calcimycin, they are immobile over time, whereas the moving mitochondria aCa2+ ionophore (Fig. S1A). Following calcimycin treatment, are seen as diagonal lines. Interestingly, we noticed that compared the green fluorescence intensity of mito-Case12 increased sig- with stationary mitochondria, moving mitochondria tend to have nificantly within seconds in mitochondria, but the mito-RFP lower mito-Case12 fluorescence signal, and hence lower mito- signal remained constant (Fig. S1 A and B). Mito-Case12 signal chondrial Ca2+ content. To minimize for variability caused by is dependent on calcium influx into the cell, because calcimycin drifts in the focal plane as well as differences in size of mito- treatment in calcium-free extracellular solution failed to cause chondria, we normalized mito-Case12 labeling intensity to that of an increase in mito-Case12 signal (Fig. S1 C and D). To account mito-RFP intensity. Fig. 1 A and B and Fig. S2 show that average for the difference in the size of mitochondria and thus the mito-Case12:mito-RFP ratio is clearly lower in moving mito- amount of fluorescent protein inside of mitochondria, as well chondria (mean = 0.27 ± 0.01), but stationary mitochondria as change in focal plane that could occur over time, we exhibited higher ratio of mito-Case12:mito-RFP (mean = 0.39 ± also normalized mito-Case12 labeling intensity to that of mito- 0.01), confirming that mitochondria in motion tend to have lower RFP intensity. Similar to mito-Case12 signal, normalized mito- matrix Ca2+ content than stationary mitochondria. Case12:mito-RFP ratio increased following calcimycin treat- As mitochondria move in opposite directions (anterograde vs. ment. Together, our results suggest that (i) mito-Case12 is able retrograde) and with different speed, we next determined if the to detect Ca2+
Recommended publications
  • Mt-Atp8 Gene in the Conplastic Mouse Strain C57BL/6J-Mtfvb/NJ on the Mitochondrial Function and Consequent Alterations to Metabolic and Immunological Phenotypes
    From the Lübeck Institute of Experimental Dermatology of the University of Lübeck Director: Prof. Dr. Saleh M. Ibrahim Interplay of mtDNA, metabolism and microbiota in the pathogenesis of AIBD Dissertation for Fulfillment of Requirements for the Doctoral Degree of the University of Lübeck from the Department of Natural Sciences Submitted by Paul Schilf from Rostock Lübeck, 2016 First referee: Prof. Dr. Saleh M. Ibrahim Second referee: Prof. Dr. Stephan Anemüller Chairman: Prof. Dr. Rainer Duden Date of oral examination: 30.03.2017 Approved for printing: Lübeck, 06.04.2017 Ich versichere, dass ich die Dissertation ohne fremde Hilfe angefertigt und keine anderen als die angegebenen Hilfsmittel verwendet habe. Weder vorher noch gleichzeitig habe ich andernorts einen Zulassungsantrag gestellt oder diese Dissertation vorgelegt. ABSTRACT Mitochondria are critical in the regulation of cellular metabolism and influence signaling processes and inflammatory responses. Mitochondrial DNA mutations and mitochondrial dysfunction are known to cause a wide range of pathological conditions and are associated with various immune diseases. The findings in this work describe the effect of a mutation in the mitochondrially encoded mt-Atp8 gene in the conplastic mouse strain C57BL/6J-mtFVB/NJ on the mitochondrial function and consequent alterations to metabolic and immunological phenotypes. This work provides insights into the mutation-induced cellular adaptations that influence the inflammatory milieu and shape pathological processes, in particular focusing on autoimmune bullous diseases, which have recently been reported to be associated with mtDNA polymorphisms in the human MT-ATP8 gene. The mt-Atp8 mutation diminishes the assembly of the ATP synthase complex into multimers and decreases mitochondrial respiration, affects generation of reactive oxygen species thus leading to a shift in the metabolic balance and reduction in the energy state of the cell as indicated by the ratio ATP to ADP.
    [Show full text]
  • Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T
    Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T. Bourgeron,* D. Chretien,* J. Poggi-Bach, S. Doonan,' D. Rabier,* P. Letouze,I A. Munnich,* A. R6tig,* P. Landneu,* and P. Rustin* *Unite de Recherches sur les Handicaps Genetiques de l'Enfant, INSERM U393, Departement de Pediatrie et Departement de Biochimie, H6pital des Enfants-Malades, 149, rue de Sevres, 75743 Paris Cedex 15, France; tDepartement de Pediatrie, Service de Neurologie et Laboratoire de Biochimie, Hopital du Kremlin-Bicetre, France; IFaculty ofScience, University ofEast-London, UK; and IService de Pediatrie, Hopital de Dreux, France Abstract chondrial enzyme (7). Human tissue fumarase is almost We report an inborn error of the tricarboxylic acid cycle, fu- equally distributed between the mitochondria, where the en- marase deficiency, in two siblings born to first cousin parents. zyme catalyzes the reversible hydration of fumarate to malate They presented with progressive encephalopathy, dystonia, as a part ofthe tricarboxylic acid cycle, and the cytosol, where it leucopenia, and neutropenia. Elevation oflactate in the cerebro- is involved in the metabolism of the fumarate released by the spinal fluid and high fumarate excretion in the urine led us to urea cycle. The two isoenzymes have quite homologous struc- investigate the activities of the respiratory chain and of the tures. In rat liver, they differ only by the acetylation of the Krebs cycle, and to finally identify fumarase deficiency in these NH2-terminal amino acid of the cytosolic form (8). In all spe- two children. The deficiency was profound and present in all cies investigated so far, the two isoenzymes have been found to tissues investigated, affecting the cytosolic and the mitochon- be encoded by a single gene (9,10).
    [Show full text]
  • Mitochondrial Protein Quality Control Mechanisms
    G C A T T A C G G C A T genes Review Mitochondrial Protein Quality Control Mechanisms Pooja Jadiya * and Dhanendra Tomar * Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA * Correspondence: [email protected] (P.J.); [email protected] (D.T.); Tel.: +1-215-707-9144 (D.T.) Received: 29 April 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases. Keywords: mitochondria; proteome; ubiquitin; proteasome; chaperones; protease; mitophagy; mitochondrial protein quality control; mitochondria-associated degradation; mitochondrial unfolded protein response 1. Introduction Mitochondria are double membrane, dynamic, and semiautonomous organelles which have several critical cellular functions.
    [Show full text]
  • Nerve Tissue-Specific Human Glutamate Dehydrogenase That Is Thermolabile and Highly Regulated by ADP , I *P
    Fordham University Masthead Logo DigitalResearch@Fordham Chemistry Faculty Publications Chemistry 1997 Nerve tissue-specific umh an glutamate dehydrogenase that is thermolabile and highly regulated by adp / P. Shashidharan, Donald D. Clarke, Naveed Ahmed, Nicholas Moschonas, and Andreas Plaitakis Department of Neurology, Mount Sinai School of Medicine, New York; Department of Chemistry, Fordham University, Bronx New York, USA; and Department of Biology and School of Health Sciences, University of Crete, Crete, Greece P. Shashidharan Mount Sinai School of Medicine. Department of Neurology, [email protected] Donald Dudley Clarke PhD Fordham University, [email protected] Recommended Citation Shashidharan, P.; Clarke, Donald Dudley PhD; Ahmed, Naveed; and Moschonas, Nicholas, "Nerve tissue-specific umh an glutamate dehydrogenase that is thermolabile and highly regulated by adp / P. Shashidharan, Donald D. Clarke, Naveed Ahmed, Nicholas Moschonas, and Andreas Plaitakis Department of Neurology, Mount Sinai School of Medicine, New York; Department of Chemistry, Fordham University, Bronx New York, USA; and Department of Biology and School of Health Sciences, University of Crete, Crete, Greece" (1997). Chemistry Faculty Publications. 13. https://fordham.bepress.com/chem_facultypubs/13 This Article is brought to you for free and open access by the Chemistry at DigitalResearch@Fordham. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of DigitalResearch@Fordham. For more information, please contact [email protected]. Naveed Ahmed Mount Sinai School of Medicine. Department of Neurology Nicholas Moschonas University of Crete. Department of Biology Follow this and additional works at: https://fordham.bepress.com/chem_facultypubs Part of the Biochemistry Commons Journal of Neurochemistry Lippincott-Raven Publishers, Philadelphia © 1997 International Society for Neurochemistry Nerve Tissue-Specific Human Glutamate Dehydrogenase that Is Thermolabile and Highly Regulated by ADP , I *P.
    [Show full text]
  • Mitochondrial Enzyme Activities in Liver Biopsies from Patients with Alcoholic Liver Disease
    Gut: first published as 10.1136/gut.19.5.341 on 1 May 1978. Downloaded from Gut, 1978, 19, 341-344 Mitochondrial enzyme activities in liver biopsies from patients with alcoholic liver disease W. J. JENKINS AND T. J. PETERS From the Department ofMedicine, Royal Pnvtgraduate Medical School, London W12 OHS SUMMARY The hypothesis that mitochondrial damage is a significant factor in the pathogenesis of alcoholicliverdisease (ALD) was investigated by enzymic analysis ofmitochondrial fractions isolated from needle biopsy specimens from control patients, patients with fatty liver due to chronic alcoholism, and from patients with other forms of liver disease. Enzymes associated with the inner and outer mitochondrial membranes showed normal levels in ALD. Enzymes associated with the mitochondrial matrix, glutamate dehydrogenase, malate dehydrogenase and aspartate amino- transferase showed significantly raised levels in ALD, but the levels in patients with non-alcoholic liver disease were normal. In addition, analysis of the mitochondria by sucrose density gradient centrifugation revealed no differences between control tissue and liver from patients with alcoholic liver disease. These results do not indicate that there is significant mitochondrial damage in ALD. The raised mitochondrial matrix enzymes may represent an adaptive response to the ethanol load. Alcoholic liver disease (ALD) is a major clinical alcoholics the levels of marker enzymes for mito- problem of increasing importance, and alcoholic chondrial inner and outer membranes, and matrix cirrhosis is now the third main cause of death were assayed in liver biopsies from patients with http://gut.bmj.com/ between the ages of 25 and 65 years in the USA ALD, and compared with controls and with patients (Lieber, 1975).
    [Show full text]
  • Involvement of Mitochondrial Dynamics in the Segregation of Mitochondrial Matrix Proteins During Stationary Phase Mitophagy
    ARTICLE Received 5 Aug 2013 | Accepted 17 Oct 2013 | Published 18 Nov 2013 DOI: 10.1038/ncomms3789 Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy Hagai Abeliovich1,2, Mostafa Zarei3,4,5,*, Kristoffer T.G. Rigbolt3,4,5,*, Richard J. Youle2 & Joern Dengjel3,4,5 Mitophagy, the autophagic degradation of mitochondria, is an important housekeeping function in eukaryotic cells, and defects in mitophagy correlate with ageing phenomena and with several neurodegenerative disorders. A central mechanistic question regarding mitophagy is whether mitochondria are consumed en masse, or whether an active process segregates defective molecules from functional ones within the mitochondrial network, thus allowing a more efficient culling mechanism. Here we combine a proteomic study with a molecular genetics and cell biology approach to determine whether such a segregation process occurs in yeast mitochondria. We find that different mitochondrial matrix proteins undergo mitophagic degradation at distinctly different rates, supporting the active segregation hypothesis. These differential degradation rates depend on mitochondrial dynamics, suggesting a mechanism coupling weak physical segregation with mitochondrial dynamics to achieve a distillation-like effect. In agreement, the rates of mitophagic degradation strongly correlate with the degree of physical segregation of specific matrix proteins. 1 The Institute for Biochemistry, Food Science, and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, P.O. Box 12, Rehovot, Israel 76100. 2 Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Porter Neuroscience Research Center Building 35, Room 2C-917 35 Convent Drive, Bethesda, Maryland 20892-3704, USA. 3 FRIAS, Albertstr.
    [Show full text]
  • Oxoglutarate Dehydrogenase Feng Qi1,2, Ranjan K Pradhan1, Ranjan K Dash1 and Daniel a Beard1*
    Qi et al. BMC Biochemistry 2011, 12:53 http://www.biomedcentral.com/1471-2091/12/53 RESEARCHARTICLE Open Access Detailed kinetics and regulation of mammalian 2- oxoglutarate dehydrogenase Feng Qi1,2, Ranjan K Pradhan1, Ranjan K Dash1 and Daniel A Beard1* Abstract Background: Mitochondrial 2-oxoglutarate (a-ketoglutarate) dehydrogenase complex (OGDHC), a key regulatory point of tricarboxylic acid (TCA) cycle, plays vital roles in multiple pathways of energy metabolism and biosynthesis. The catalytic mechanism and allosteric regulation of this large enzyme complex are not fully understood. Here computer simulation is used to test possible catalytic mechanisms and mechanisms of allosteric regulation of the enzyme by nucleotides (ATP, ADP), pH, and metal ion cofactors (Ca2+ and Mg2+). Results: A model was developed based on an ordered ter-ter enzyme kinetic mechanism combined with con- formational changes that involve rotation of one lipoic acid between three catalytic sites inside the enzyme complex. The model was parameterized using a large number of kinetic data sets on the activity of OGDHC, and validated by comparison of model predictions to independent data. Conclusions: The developed model suggests a hybrid rapid-equilibrium ping-pong random mechanism for the kinetics of OGDHC, consistent with previously reported mechanisms, and accurately describes the experimentally observed regulatory effects of cofactors on the OGDHC activity. This analysis provides a single consistent theoretical explanation for a number of apparently contradictory results on the roles of phosphorylation potential, NAD (H) oxidation-reduction state ratio, as well as the regulatory effects of metal ions on ODGHC function. Background deamination of glutamate. OGDHC is a crucial target of The 2-oxoglutarate (a-ketoglutarate; aKG) dehydrogen- reactive oxygen species (ROS) and also able to generate ase complex (OGDHC, EC 1.2.4.2, EC 2.3.1.61, and EC ROS, which make it distinctly important for bioener- 1.6.4.3) is a multi-enzyme complex which catalyzes the getics [1].
    [Show full text]
  • Mitochondrialα-Ketoglutarate Dehydrogenase Complex
    The Journal of Neuroscience, September 8, 2004 • 24(36):7779–7788 • 7779 Neurobiology of Disease Mitochondrial ␣-Ketoglutarate Dehydrogenase Complex Generates Reactive Oxygen Species Anatoly A. Starkov,1 Gary Fiskum,2 Christos Chinopoulos,2 Beverly J. Lorenzo,1 Susan E. Browne,1 Mulchand S. Patel,3 and M. Flint Beal1 1Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York, New York 10021, 2Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland 21202, and 3Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214 Mitochondria-produced reactive oxygen species (ROS) are thought to contribute to cell death caused by a multitude of pathological conditions. The molecular sites of mitochondrial ROS production are not well established but are generally thought to be located in complex I and complex III of the electron transport chain. We measured H2O2 production, respiration, and NADPH reduction level in rat brain mitochondria oxidizing a variety of respiratory substrates. Under conditions of maximum respiration induced with either ADP or ␣ carbonyl cyanide p-trifluoromethoxyphenylhydrazone, -ketoglutarate supported the highest rate of H2O2 production. In the absence of ADP or in the presence of rotenone, H2O2 production rates correlated with the reduction level of mitochondrial NADPH with various substrates, with the exception of ␣-ketoglutarate. Isolated mitochondrial ␣-ketoglutarate dehydrogenase (KGDHC) and pyruvate dehy- ϩ drogenase (PDHC) complexes produced superoxide and H2O2. NAD inhibited ROS production by the isolated enzymes and by perme- abilized mitochondria. We also measured H2O2 production by brain mitochondria isolated from heterozygous knock-out mice deficient in dihydrolipoyl dehydrogenase (Dld).
    [Show full text]
  • Role of PGC-1 in the Mitochondrial NAD+ Pool in Metabolic Diseases
    International Journal of Molecular Sciences Review Role of PGC-1α in the Mitochondrial NAD+ Pool in Metabolic Diseases Jin-Ho Koh * and Jong-Yeon Kim * Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Korea * Correspondence: [email protected] (J.-H.K.); [email protected] (J.-Y.K.) Abstract: Mitochondria play vital roles, including ATP generation, regulation of cellular metabolism, and cell survival. Mitochondria contain the majority of cellular nicotinamide adenine dinucleotide (NAD+), which an essential cofactor that regulates metabolic function. A decrease in both mitochon- dria biogenesis and NAD+ is a characteristic of metabolic diseases, and peroxisome proliferator- activated receptor γ coactivator 1-α (PGC-1α) orchestrates mitochondrial biogenesis and is involved in mitochondrial NAD+ pool. Here we discuss how PGC-1α is involved in the NAD+ synthesis pathway and metabolism, as well as the strategy for increasing the NAD+ pool in the metabolic disease state. Keywords: mitochondria; PGC-1α; NAD+, SIRTs; metabolic disease 1. Introduction Mitochondria are powerhouses that generate the majority of cellular ATP via fatty acid oxidation, tricarboxylic acid (TCA) cycle, electron transport chain (ETC), and ATP synthase. Mitochondrial dysfunction is linked to metabolic diseases and health issues, including Citation: Koh, J.-H.; Kim, J.-Y. Role insulin resistance and type 2 diabetes, cancer, Alzheimer’s disease, and others [1–3]. α of PGC-1 in the Mitochondrial Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor that regulates NAD+ Pool in Metabolic Diseases. Int. metabolic function, and it is an electron carrier and signaling molecule involved in response J. Mol. Sci. 2021, 22, 4558.
    [Show full text]
  • Biochemical Phenotypes Associated with the Mitochondrial ATP6 Gene Mutations at Nt8993
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1767 (2007) 913–919 www.elsevier.com/locate/bbabio Biochemical phenotypes associated with the mitochondrial ATP6 gene mutations at nt8993 Alessandra Baracca a, Gianluca Sgarbi a, Marina Mattiazzi b, Gabriella Casalena a, Eleonora Pagnotta a, Maria L. Valentino b, Maurizio Moggio c, Giorgio Lenaz a, ⁎ Valerio Carelli b, Giancarlo Solaini a, a Dipartimento di Biochimica “G. Moruzzi”, via Irnerio 48, Università di Bologna, 40126 Bologna, Italy b Dipartimento di Scienze Neurologiche, via U. Foscolo 7, Università di Bologna, Italy c Fondazione Ospedale Maggiore IRCCS-Centro Dino Ferrari, Università di Milano, Italy Received 20 November 2006; received in revised form 7 May 2007; accepted 11 May 2007 Available online 18 May 2007 Abstract Two point mutations (TNG and TNC) at the same 8993 nucleotide of mitochondrial DNA (at comparable mutant load), affecting the ATPase 6 subunit of the F1F0-ATPase, result in neurological phenotypes of variable severity in humans. We have investigated mitochondrial function in lymphocytes from individuals carrying the 8993TNC mutation: the results were compared with data from five 8993TNG NARP (Neuropathy, Ataxia and Retinitis Pigmentosa) patients. Both 8993TNG and 8993TNC mutations led to energy deprivation and ROS overproduction. However, the relative contribution of the two pathogenic components is different depending on the mutation considered. The 8993TNG change mainly induces an energy deficiency, whereas the 8993TNC favours an increased ROS production. These results possibly highlight the different pathogenic mechanism generated by the two mutations at position 8993 and provide useful information to better characterize the biochemical role of the highly conserved Leu-156 in ATPase 6 subunit of the mitochondrial ATP synthase complex.
    [Show full text]
  • Respiration with Pyruvate, Glutamate and Malate
    O2k-Protocols Mitochondrial Physiology Network 11.04: 1-9 (2011) 2007-2011 OROBOROS Version 6: 2011-12-11 Mitochondrial Pathways to Complex I: Respiration with Pyruvate, Glutamate and Malate Erich Gnaiger Medical University of Innsbruck D. Swarovski Research Laboratory A-6020 Innsbruck, Austria OROBOROS INSTRUMENTS Corp, high-resolution respirometry Schöpfstr 18, A-6020 Innsbruck, Austria [email protected]; www.oroboros.at Section 1. Malate ......................................................... 2 Page 2. Pyruvate+Malate: PM ..................................... 3 3. Glutamate ...................................................... 4 4. Glutamate+Malate: GM .................................. 5 5. Boundary conditions ..................................... 8 6. Notes - Pitfalls .............................................. 9 Introduction Mitochondrial respiration depends on a continuous flow of substrates across the mitochondrial membranes into the matrix space. Glutamate and malate are anions which cannot permeate through the lipid bilayer of membranes and hence require carriers, which is also true for pyruvate. Various anion carriers in the inner mitochondrial membrane are involved in the transport of mitochondrial metabolites. Their distribution across the mitochondrial membrane varies mainly with ΔpH and not Δψ, since most carriers (but not the glutamate-aspartate carrier) operate non- electrogenic by anion exchange or co-transport of protons. Depending on the concentration gradients, these carriers also allow for the transport of mitochondrial metabolites from the mitochondria into the cytosol, or for the loss of intermediary metabolites into the incubation medium. Export of intermediates of the tricarboxylic acid (TCA) cycle plays an important metabolic role in the intact cell. This must be considered when interpreting [email protected] www.oroboros.at MiPNet11.04 MitoPathways to CI 2 the effect on respiration of specific substrates used in studies of mitochondrial preparations (Gnaiger 2009).
    [Show full text]
  • Succinate Dehydrogenase and Fumarate Hydratase: Linking Mitochondrial Dysfunction and Cancer
    Oncogene (2006) 25, 4675–4682 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc REVIEW Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer A King, MA Selak and E Gottlieb Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow, UK The phenomenon of enhanced glycolysis in tumours has complexes (I–IV) of the electron transport chain been acknowledged for decades, but biochemical evidence (ETC) and ATP synthase (complex V) (Figure 1). to explain it is only just beginning to emerge. A significant Electron transport from NADH and FADH2 along hint as to the triggers and advantages of enhanced the ETC generates a proton gradient across the glycolysis in tumours was supplied by the recent discovery mitochondrial inner membrane – the mitochondrial that succinate dehydrogenase (SDH) and fumarate membrane potential – that is harnessed by the enzyme hydratase (FH) are tumour suppressors and which ATP synthase to convert ADP þ Pi to ATP, with each associated, for the first time, mitochondrial enzymes and molecule of NADH or FADH2 resulting in three or two their dysfunction with tumorigenesis. Further steps molecules of ATP, respectively. Thus, under normal forward showed that the substrates of SDH and FH, oxygen and glucose conditions and continuous energy succinate and fumarate, respectively, can mediate a requirements, most of the ATP in most cell types is ‘metabolic signalling’ pathway. Succinate or fumarate, produced by oxidative phosphorylation. which accumulate in mitochondria owing to the inactiva- Energy metabolism denotes the reactions from which tion of SDH or FH, leak out to the cytosol, where they the cell obtains and expends energy.
    [Show full text]