KAERI/TR-1997/2001

tt£ 4=83. 7]5. ^v-S-E. -SD 44 -S-4

Analysis on Experimental Results of CANDU Fuel Void Reactivity KAERI

2001. 12.

^ ^ € 4 ^ ^ f 4- all

1 2001 vi£ “Us. 4141 11 14" 44 1 14a:nla 4 ##44.

7114 : 41a 44a 7]g. ti>4a 44 14 11

2001. 12.

111 : 4 # 4

111 : Vi 4 1, Vc if 4, 1 1 31

“ 1 “ 2

44s. 7ia % #4

44&4 4& #-8-% 1343]] 4^ %4 4%4 44 4#S# 444 4 #4##44 %444. 444 4% 44/4444 4& 4#s4 44# %4 44% %44 44, 4# 44 444 44 %# 44444. 44 ZED-24 DCA44 444 s#e] 4^ 4&# 4444 4^44^4, 4 4 44 4494 444 44 44s. ig/T- 31 ^#4 44 as.4 44# 44444. ZED-24 DCA 4^# 44 44&4 4&& #4 44 44# 44% 44% 4^# 4^44, 4^44 444 4& 4#s4 44 S# 410 96 4% 444Z %4 44S 44 3J5.4 4% P0WDERPUFS-V4RFSP 4 444 44 2d&7] 4#4 %]-&# A]-§-aM 4& %s4 44 #44 8 .7] 44-4 7]-4 444 44-4/%4 ^444 44 4444 444# 4374 44, 4444 4444 44 11.9 96 4 1.6 964 %# s$ls4, 44 44 4# S44 ± 25 96 444 % 4#s 4%4.

- 2 - ABSTRACT

Analysis on Experimental Results of CANDU Fuel Void Reactivity

In case of loss of coolant accident, the void reactivity of the CANDU fuel provides a positive reactivity and increases the reactor power abruptly. Therefore it is required to secure credibility of the void reactivity in the stage of nuclear design and analysis, which has motivated this study to assess the measurement data of CANDU fuel void reactivity. First of all, the measurement data of ZED-2 and DCA were reviewed and the recent results were used for the analysis of uncertainty and validation of reactor physics codes. In principle, both the ZED-2 and DCA experiments are performed to measure moderator critical height during the substitution process by experimental lattices. The overview of the experimental results indicated that the confidence level of the void reactivity is ± 10 %. The assessment of physics codes, POWDERPUFS-V and RFSP, has been performed using Phase-B measurement data of Wolsong plant 2. However, because the void reactivity measurement data is not available from the Phase-B test, the measurement data of coolant/moderator temperature coefficient, which are believed to be close to the property of the void reactivity, were used to assess the performance of void reactivity calculation by the CANDU core physics codes. The comparison between the calculation and measurement has shown that the prediction errors of the coolant and moderator temperature coefficients are 11.9 % and 1.6 %, respectively, which are within the allowable design error of 25%.

- 3 - ABSTRACT...... 3 4 4...... 4 a # 4 ...... 5 zi# #4...... 6 41 1 # # #...... 7 41 2 # #41 4#4& #4 ## ...... 8 41 1 4 ZED-2 44& 4# ...... 8 1. ZED-2 44& 41A...... 8 2. ^#s] 4# ...... 8 3. ZED-2 4# %!-& &4...... 11 41 2 4 DCA 4# %!-&...... 16 1. DCA 41A...... 16 2. ^#s] 4# ...... 16 3. DCA 4# %!-& &4...... 20 41 3 4 #3. ##s 4#s ^7}* 44 4#4&...... 39 41 1 4 ZED-2 37-# ^ 43-# 41# ...... 39 1. 41# #4...... 39 2. 41# 4# ...... 40 3. 41# #4...... 40 41 2 4 DCA 41# 4&...... 42 1. 41# 44...... 42 2. 41# 4# ...... 42 3. 41# 44...... 43 41 4 # 4#4&# 4#B ## ...... 65 41 1 4 ZED-2 41## ^.4 4# ...... 65 1. #e 4# 4.4...... 65 2. #4#S ^7}...... 66 41 2 4 DCA #41 41## ^-4 ## ...... 67 1. DCA #41 41## ## 44# ...... 67 2. DCA #41 4# 4.4...... 68 41 5 # 4# ##4 4&* ### ## 2^4141# ##B ## ...... 76 41 1 4 #41 76 41 2 4 4# 4#- A#:...... 78 41 3 4 POWDERPUFS-V/RFSP* 4## #47H/#-4:7i] 79 3£ 3.1. Darlington 37-element, fuel bundle parameters...... 45 3£ 3.2. Critical height, data and core conditions for the substitution experiments ...... 46 3£ 3.3. Critical height data and core conditions for the substitution experiments ...... 47 3£ 3.4. Summary of buckling s derived from a CONIFERS analysis ...... 48 3£ 3.5. Summary of buckling s derived from a CONIFERS analysis ...... 49 3£ 3.6. Comparison of the buckling s derived from the initial study ...... 50 3£ 3.7. Comparison of the bucklings derived from the substitution analysis ...... 51 3£ 3.8. DCA lattice characteristics...... 52 3£ 3.9. Fuel cluster types used for experiments ...... 53 3£ 3.10. Heavy water levels at criticality for 5 experimental cases...... 54 3£ 3.11. Comparison of local power distribution calculated by WIMS-AECL with ENDF/B-V library ...... 55 3£ 3.12. Effective multiplication factor calculation with three different cross sections ....56 3£ 3.13. Effective multiplication factor calculation with fuel and reflector cross sections ...... 57 3£ 3.14. Comparison of coolant void reactivity with experimental results...... 58 3£ 4.1. Experimental value of material buckling ...... 70 3£ 4.2. Comparison between experiment and calculation for coolant void reactivity ...... 71 S 5,1 Reactor condition before the first criticality ...... 81 3£ 5.2 Trip setpoint of detector ...... 82 3£ 5.3 Predicted critical boron concentration ...... 83 3£ 5.4 Coolant temperature coefficient ...... 84 3£ 5.5 Moderator temperature coefficient ...... 85 ZLU S;X\

2.1. ZED-2 reactor layout with Bruce reactor 37-element, fuel bundle...... 29 zz. ^ 2.2. Schematic of ZED-2 reactor ...... 30 2.3. Cross-sectional view of Bruce reactor 37-element fuel bundle...... 31 zz. ^ 2.4 19-element fuel bundle of natural metal ...... 32 zz. ^ 2.5. Irradiation foil position of Bruce reactor 37-element fuel bundle...... 33 2.6. Fuel element with irradiation foil ...... 34 2.7. Schematic diagram of upper grid plate (25 cm lattice pitch)...... 35 zz. ^ 2.8. Schematic diagram of DCA core configuration ...... 36 2.9. Cross-sectional view of 28-rod 1.2 wt% UO2 fuel assembly ...... 37 2.10. Cross-sectional view of 28-rod 1.2 wt% PuCb-UCb fuel assembly ...... 38 3.1. Test fuel arrangement in substitution zone ...... 59 zz. ^ 3.2. Critical height data...... 60 3.3. Critical height difference between 43- and 37-element assemblies...... 61 zz. ^ 3.4. Moderator level change on voiding ...... 62 zz. ^ 3.5. Moderator level change difference on voiding ...... 63 3.6. Model of R-Z calculation for two-region core with 25 cm lattice pitch...... 64 4.1. Cell spectrum change for fuel...... 72 zz. ^ 4.2. Cell spectrum change for irradiated fuel...... 73 zz. ^ 4.3. Radial thermal flux for natural uranium fuel...... 74 zz. ^ 4.4. Radial thermal flux for irradiated fuel...... 75 5.1 Reactivity change due to coolant temperature...... 86 zz. ^ 5.2 Reactivity change due to moderator temperature...... 87

- 6 - n\ i 9 ai

###44 4 44 7]- 4444 4443] 444 4#4 44 % 4# #4## 44 #44 44 7]#4##7]- #44#, Mg. #4# #44 444444. z]#4### W4 444# 4 4x}#4 #4# 444# ##4 4#4#, zl a7] oi] 44 4x>g 4 q##s] 4444 4^£S, M# 4 ^ 4#4 44/<4 4444 454### 4457} 4#s]44 44, 4# 4444 44 444 4444 44444 4 4 44 444 4 44.

### 44a 444 44 4544a 444 444 AECL(Atomic Energy of Canada Limited)4 4 ZED-2 445# 4444 4444 44. ZED-2# 44 4

47} 44 44& 444# 444 ##4 444444, ## 4e 44&# 4^ 44&# #4444 444 44] 44# 444# 44# 4444. 4444 x} 44 44## 7, 19, 28, 37, ae]a 43 # 44# #44 4# 444444 44 4 #44%#, 44 #### 44## 444 #4# %#4 4-# 444# 44 #4 44.

4# JNC(Japan Nuclear Cycle Research Institute)4 4 # # # 4444 4 # 444# 4# 4# 44#44 44# 444 44 44 44# #44 4 44. JNC4 DCA# ATR(Advanced Thermal Reactor)# 4444 4#4 4#4 4 44# 44. ATR# ^.#44#(M0X)# 4#4 444^ ##44, 4# 4# 44 44 #44, 4 44 #4 44# 444 #4 457} 44# #44 4 44# 44, 4# #4 #7>4 4# 4 #44 4# # #44 #44 4# #4]z} $14, 44 44 4-4# 444 ##4 444 44# #44%4.

4 4#44# # #4: 444 %4 44# 44 44 x}### #44# 4 444 44 44# 4#44 4 2 44 444%4. 4 3 444# 4 #44# 4 ?M #44 4 4# 4# 44 4## 444%#4, 4 4 444# 44 4#o]] 44 #44 4# 44 444 44## M4%4. 4 5 444# 4## 44 #44 444# a#4 #4 444 4zl# #^4%#4, 4 6 444# MCNP-4B a## 4444 4# 44# #444, 4# 7]]44# ##5 44#4 44 4# ###44 44# ^z}4%4.

- 7 - n\ 2 & 38

fTS- 44#4 44 44 -#3# z}444x^ #S #44$1#4, 444 4 #44 4# 4 4# 7>444. # 4444 ZED-2 4x}#4 DCA*M #34 S

#4 444 7fliL ^ #7fl# -^3 %}## ^£5>JLX> 44.

4 1 ^ ZED-2 4x}# 44

1. ZED-2 31 x} 5. 7fl_a_

Z%3 2.14 2.24 ZED-2 4 4# 4 34#4 #44# 44 S4#4. 44s ### #4#44 44 #71] 444 #4#g. 44$14. 4x}#4 44^4 ## 447H# #4#444 4444 #4# 4 $1#4, #44 4444# 4## #4 ^444.

44###4 4# 4 44444 444 44# 44 ^ 41 444 #4°1 #4 4444 444 ### 444# 44444 #444. 4444 444 a 44 444444 S44 224/444- 444 44 444 #444. 4#4 44 4 44 #4# 444## ± 0.002 cm 4s 4444 443# 444. 444 ### 44 #4 #44 ^4 44# #4 Aermistor# #4#4. #4# 120 4 180 cm #4 44 4# 4 4# 15 cm4 # #7fl4 J 4 thermocouple 0! #4 44 $14.

#4 2.34 2.4# ZED# 4x}#4xl #34 444 A>#4 4#4$1 44# 44# #4 #4. #4 2.5# 44# 4# 4#4 #44# #&# #W#4 x}^. 4# ^x} 333 34 3-3# #4#4, #4 2.6# #4# ##x}# 4r## #4 44 44 44# #43 x}o]o]] 333 ^4 34# g_4#4.

2. S#4 41-g

ZED-2 4x}#4xl# 44# #4 #4# 444# 444 ##4 4## 444 4#4 4# 44# 444## #3# 4 $14.

- 8 - i) 44 4#^ #4

44 4#^ #4# ^4&4 4#^, 43= #4 4 4& 4#^# #444^1 4#44. #4 7]& 4#^4 4 #4 ^4& ^40] ^44 4 #4 2144 ^ 4 #4 ^44 44 4 #4# #444 #44 44. 444# g. #^7} 44 4#44 444 444 4# as.g_, 44 ##44 4#4 4& 4&# 444/] 4% #4# #444. 4444 44 444 &4 444 444 #^# soo°c44 444 #4# #444 444, 444 #^ 444 334 4 ^ 44 44 444 44444 444 4## 44 4 44.

2) 4444 44

444444 4# 44&4 444 4444 444 #44 3=4m^ 4 4# 4444 #4 4&# #444 44. #44## 3=44 444 ^4 44# 4444 #444 4&# 4444 444, 4# ##4 444 ^^4 (demountable) 44# ##44. 44444 #4 44 44 3=4# #3.4 47] 4 ?}| 444 #4 3=44# # #4# 4444 4444. 4# 4 300°c, 343 44 34 4 4& 344 444 #4# #4144.

3) 4471] #34#

##7ii4 33# 4444 44# 4#44 3##334 4444 #34 ## #444. 44#4 4# 44&# 4443 #4 #44 ##4 44 44# 44# #444 #444. 4444 #3# 4 io°c 43 4444 44 44 & 4# #444. 44# 44&4 4#44 444^ #3 ^7] 44 substitution 444 44# #444, 444 #4 4#4# #44 44 44 44 # #^#3, 4##4 4#44 #3 &4# #44.

4) 44&N44 fr34#

44& 4 ^44 ^3 #-§-3 A_ 4#4 %g3o]]A] 30 o°c#4 #4444 #444. 44& 44 444 4 3.5 kw #44 44 44 a 4# 4444 44 44 4# 44&4 ^444- #44 7}#43# 44. 4#,

- 9 - 50, 100, 150, 200, 250, 300 °C ^%%4, %%% %^4 7] %7}g. #44 %444 2^4 %4^#% #4%%. 2Z.4Z 444^4% 4 4 %#4^-& 4%& ^ 4 4"7]] %#^ 4^r# f%%.

5) 7]& %#^ #4

4 4"7]] 4&%-§-^ 4^r# f%4 %% %%% substitution %4% 4#%4 %%4% #4%%. 44 4"%% 4# z^M 4# #4%z, %%4zx} e} % 4%&& a.44 zM #4% 4^%%. zz_4z 4# 47}4 c]]^] ^4# %#- %%. %%% D:04 ^4 44"4 ^447] 4^^%4 21 %4&4-4 4&%-§-^ 4 4^# f %^# %%.

44 =r%% %% M %%% %44 e^4 <8% % %%%. Z>5# %%% 4, °J7]] 44 7> #4 &4#4 ## %4& %%%% 4 o] u}^3|aM-. 44% 44 ^g]-# #4%% 7}% 4%% %4^r 4" 4" 4 %4 7:] % %%4 4# 47}4 o]7j] 44# #4%Z ^-#4 4# 47}4 444- 4a%^.g.4 4%% 44% e}4 44%. 44% 4& 44 %4% %%^ 4 444 414"7> 4444 44 444 44 444 444 4L444 44 %%%z 7>4%4. 4 7M44 444 44 444 44 44 + 44 44 - 44^44- 44 ^-^44 44 ^%&%44 44 s. 4 15 cm 44. %%44_g. 44 444 i-4 ^44 M %%^ a.4 4%%4 ^4-. 444 A}^-4 4# 4.^.4. ^o] a% 44-.

hsub - h'sub + (H c;/H'c;)’(ll,cl - h'ref) (2.1)

4474, ^ 4- hrcnr 44- %#4 ^4 ^444 4# 4z}4- 4# 4^} 44 44, hU 4- h'r«f % 4% ^444 44 44, zi4z % if_ % 4% ^44^4 4 44 4% 44 44-.

%# 4-^711 4^4- %^7} D,0 99710 wt%, 24.6 9°C). %%%% 4 4^474 ^4 % #3M_ %% 4 %%. 44% %%% 44 444 4444, 0.2 cm/°C)# 7}^e}4 44%%. 44-4] 4^4 %%% 4%% ^.4 44 444%, 21 4%4 4# 44-4 4% %%% 24 (4%

- 10 - ^4^44 4 5% 44^14 h'r=f& A}-§-# # 44-

3. ZED-2 1^ x>5. 5A>

1) Lattice Studies at Chalk River and Their Interpretation

a ] %}: R. E. Green, C. B. Bigham, I. H. Gibson, R. G. Jarvis, M. J. Halsall, F. E. Driggers, and C. H. Millar s'it: 3rd international conference on the peaceful uses of atomic energy (1964) 44: 19601# #1 ZED-2 114, ZEEP % #5 #4# 54-^31 44. 44# ZED-2 lx}g.A| 4^ 4 4 (4#^, #4#^, 414444, 314 ^4# 4 4 4^), ZEEP

^444 11 44, NRX thermal column! a ) 4 1# 1 x> #4 (exponential assembly), LATREP H# #4# 4) it 1 x> #4 44 4!. A A} #4 ^44 x}-§-% /gig #4, 44x}

14 #4 ^ H)a, 44# 4^# 4! A) 4 1^4 A} #4^4 44 444.

2) Lattice Measurements with 7-Element UO2 Clusters in ZED-2, Part I: Ducklings over a Range of Spacings with Three Coolants x] x}; G. A. Beer and D. W. Hone M: AECL-1505 (1962) 4-0-: ZED-2 4#^ #4 4^4 18-36 cm4 44# 1# 444A1-# 4 554M 7-4- UO2 4#4l! 444 4^4$M-. 444 41x11# i) D2O 444, ii) 715. #14 2-A>5>7l 4# ##, 3.El 31 iii) 471# HB-40 44.

44 11#4 444 Chalk River 4xM4 a22# a }-^#o ) 4 #4 144- 451444. 0144 ZEEP4^1 4# 7-ir uo 2 4 #41# A>#44 4^4%1 4#4 #4 141r ZED-24A-I 4^1 #4 144 144# 44.

3) Lattice Measurements with 19-Element Natural Uranium Metal Assemblies,

- 11 Part I: Sucklings for a Range of Spacings with D2O and He Coolants

4 4: K. J. Serdula and R. E. Green M: AECL-2516 (1965) •cfl-S-: ZED-2 14244 19-4 44444 44 44# 4#44 44 4#1# 444 44# #4 #44. 44 44# 20-40 cm 444 44# 4:4 4 4 414 557M 4444 4# #4414. 444 44^4 D^o 44^H 4 4a 2l# 2.444 44 ##44. 4414 &44 4444 444 ^44&4 ### 4444 44 4 #14 0,0 #44# 4#4 1#4 44 44 4444.

4) Lattice Measurements with 19 -Element Natural Uranium Metal Assemblies, Part II: Relative Total Densities and Hyperfme Activation Distributions in a Lattice Cell

4 4: K. J. Serdula M: AECL-2523 (1965) 4#: ZED-2 44&44 4444 # #44 4 44 Mn-wire ^44 #2.

# #4 414 5571] 19-# 1444# 4# 144# 4444 #444 4. 14 14# 20, 24, 28, 25)2 40 cm4 4 4 44#4 444 4 4 4 124, 4 4 444 #47]]^ o^o 447114. rg#4 21# 244- 4 44 #444. 444 #4# #4 1 444 #44 12 44 44# #47H 414 444# 4#2. 4444.

5) Lattice Measurements with 28 -Element Natural UCE Fuel Assemblies, Part I: Sucklings for a Range of Spacings with Three Coolants

4 4: K. J. Serdula M: AECL2606 (1966) 44: ZED-2 442- 4 44# #!# #4 #24# 4# 4#1# 28# 41# 4# UO: 41# 4444 444 #4#, #1 14# 20-40 cm 111 44# 4# ##4# 44 411 557H 412 4444 44 #4414. 44 444 ^47H# DoO 4#7% 42 24# 2^1-47] 44 1#, 24

- 12 - 2 44#4 HB-40 44. #44 44#4 444# ### 4-0-4

4 4# 4#4 4 d 2o 4 hb -40 444# 44# 444 44 #4 4 4 ## 4-4-44-. #4# 4#-4#4 44 44 4 44 44-4# #44 4 4 44 444 D:0 ^ HB-40 ^44# 4-0-44 44444.

6) Experimental Initial Conversion and Fast Fission Ratios for Clusters of Natural U and U02 in D20

4 4: P. W. de Fange, C. B. Bigham, R. E. Green, T. J. Manuel M: AECF-2636 (1966) 4-0-: ZED-2 #x}## 4-0-44 #4444 ^ 3.^ ^#44# 44 4x}4 444 1-# #44 44 44# 4-0-44#4, ^44# 44 #4 44 #44 4-0-444. 284 uo 2 4## 4-0-4 44444, 444 4 44, #4 ## #/|#(HB-40)# 4444 44 W #4 4444 44#4# ± 0.3 %, 44#4# ± 0.85 % 4## 44##4, #4 444 4# 44 ± 0.7 % 4 ± 1.4 %# 4444.

7) Lattice Measurements with 7-Rod Clusters of Natural Uranium Carbide in Heavy Water Moderator, Part II: Neutron Spectrum Parameters in a Lattice Cell

4 4: R. E. Kay and R. E. Green M: AECL-2651 (1966) 4-0-: ## 44 7# uc ^4# 4444 44 4444 4#-44 4 #4 #-44 4444# 4W4 44 ### ZED-2 44 4444 4. 44 4444# 471)4 4# 4# 44xH(#4, D20, Dowtherm A, HB-40)# 20-32 cm 444 44# 444 4# 4x}# 4--0-4- 44-. #4#4# Westcott #4#4 4 4 #4 r4 ##4 T.# # ##44#4, Chalk River4 44 44 ##4 LATREP4 44 444 K4 4337444-.

8) Lattice Measurements with 19-Element Rods of Th02-U2j502 in Heavy Water Moderator, Part I: Buckling, Fine Structure, and Neutron Spectrum Parameters

- 13 - xi 4: A. Okazaki and S. A. Durrani M: AECL-2778 (1967) 44: 1.5 wt%& 444 U02 (93 at% ^U)# &44W 44 44 44 194 Th02

z)%M 4% l^)- 4# 4^0411 #^5)^4. ^#1# 2# 141 1^1 HJAy MICRETE# 4441 ZED-2 14^ 44^)1 1 7]] A)% #1 (critical substitution measurements)-i: ## {1 :7) 1 $7!4. 4 1 7( 1# 1 A 1 Westcott yx>y r4 Tnl 44 41 7) m #1^ 56Mn, 116In, '^Lu 4z}4# 44 "MM. 41444 D20, #7), H20, HB-40 444, 51 e) 2 22, 24, 28, 32 cm #4 z)4 444 rj)44 4^4 %4.

9) Integral Measurements for 28-element UO2 Assemblies with Air, H20 and Air-H20 Mixture

4 4: S. L. Mehta and K. J. Serdula M: AECL-3416 (1969) 44: 30 cm #4 4%)- 1# 28# U02 444 4% #4 41# ^1 44z) #^4^4. 2# &7] 144, 1144 41z)-4# 37^ rgz)-xl] ^1(H20 1^ 1.0 g/cm\ 0.41 g/cm\ #71)41 #14^4. Westcott r4 Tn 4 H20 1# 1.0 4 0.41 g/cm 34 444 4 141#4, 44 444 LATREP 44 144 451444.

10) Lattice Measurements with 3 7-Element Bruce Reactor Fuel in Heavy Water Moderator: Detailed Lattice Cell Parameters

1 4: R. E. Kay M: AECL-5307 (1976) 4-0-: Bruce lz)-g.# 41& lz)-l, 1# 37# 41& lz}A| 4 1 444^-) 1111 44444## 1444 44 11# ZED-2 44 1 144 #W14. #1 #1# 4-7)4 ## 4471) ^l^z) 28.58 cm 4 44 44 z)4#i 44 #^414. #wz)# 0)1 H#4 44 444

444 44 44#4 44 14# 4)442 44. 1144 wims hjas )

dsn 4 pij 44 144 451444. - 444 #44 444 444

- 14 - - y#-444 #y#-44y #yy - Westcott y 4y r 4 Tn - 2:7] 4## y JL# y#yti]

11) Lattice Measurements with 36-Element Natural U02 Fuel in the ZED-2 Hot Loop Facilities: Detailed Lattice Cell Parameters

xi 7)-; R. E. Kay 44: AECL-5969 (1977) y#: 36-# yy#4# uo 2 yy& yy ###y yy yyyy y^yy yy #### yyy-y y# ### ZED-2 y%]-g. z# yyyy #^4 yy-. #y -20 °cy -300 °cy #y, s# y ## 4-0-yz, 30 cm yyy 44 yyyy #^4^4. y y y# yyy 4#4 44 4##y 4% #4# 44444. - 444 #yy #yy 444 ## - y 4-444 44 #-444 444 4444 - Westcott 4 44 r 4 Tn

- 2:7] w]## y ji# y#yy - ^Pu-^uy 4yy y## y## 44#y

12) Experiments Performed in ZED-2 in Support of the Irradiation of (Th,Pu)02 Fuel (BDL-422) in NRU

4 4: R. T. Jones 44: AECL-7918 (1984) 44: 57fly 1.4 wt%S. ##4 36# (Th,Pu)02 44# &44w 4# NRU ZED-2 yx}g.yy 2.A].e]-yy-. #^4^]^ y-#y ^ 4#

# #^444.

- #sy h 2o yyyy ##^4 - yy yyy# ##%]-4 4# - 444 y#y yy yyy# #4 ##y# y#yy y# ^4, yy& y# 4 #yyA]y 44% 4##

- 15 - *11 2 4 dca #4 4#

1. DCA 7HA

DCA# #4 4 #444 4# 444 #44# ## 44# 44^-4, 4 # 444 #4 #4# #44# ##4 4#4z, ^ 44 #444 ## # # $1## #44# #4# 10" n/cnf-s, 44#4# 1 kw# 44^4. 444 444 44# 44 4 44# 44# 444# 4#4 #44## 444 4# 444 4 #44. 4, #4 44444 444 #44# 4 4 44 444 #4# 4#44^ 4. #, DCA44# #44 4444 444# #444 # 4444 4:444 44 #4 4 #4## 4# 4444 44, #4 4#4 4 #4# £3=4(10 mm), 3.4 z 444# ##4(B4C)# 444^4. 4a_4 a.4^, #44 ##44 444# 4 444 44 44 ^ ## 4441 #44 44# 44 44 3 m, #4 3 5 m, 44 & ##44 2 m# 444^4.

2^4-444 ^4# 444 444# 4 4## 4# #4 #4 44 # 444^4. 44# 4##4 44 44 44# 444 #4 ^ #4 44#4 # 44444. 44## ##4 ^44 ^.4^ ^-§-^4 #4### ^44 #4 #4# 4# 444## #444 444 #4 #4# 4## 4## # 44. ^ 4# 4441# ##7} /I-## ##44, MOX 44# #441 44# #4 44# 44# 4 4#4, 4# 44 ### 4#7} #444 44. 71 4 ####4 44 ### #4, 4144# 4-4, ## ^ 4# ### so °C44 4#4# # 4# 4 4, 44## 600 °c#4 4#4# # 4# 7}# #4 ## #44# 44-. 214 2.74 2.8# dca 4 4^44 ### #4 #4-.

2. ##4 #"3

DCA44 #44# 4444 ##4 #4 #4# zed-2 44#44 ### #44 #444. 4e 44## #44 #4 44 4 4 4# 4 4# 44## #4 4 7M4 44 #4# #44# #4# 4444 ##4 #4# #44.

l) 44 44

- 16 - 4-0-% ### ^4^1 ^41 4 a. 4### 4# #17} /]

#4 144 44 414 4444 4144. dca #1# l cm 44# 41 44 11 3 m, 41 3 ml trp4 1# 41 #114. #! 11 1# 111# 1 41M 44 ^## 22.5 cm ## 25 cm 44 !4& 141144. #4# 14 441 14#! ## 114 2 ml4. #4! 441 14## 37^4 ### #4 1 28-4 4111, 411 454 #4 2.94 2.101 U024 Pu02-U02 14#1 1 I 44 #1444. 1 11# 414 111, 41 4 44#!44! 14 44 4l7i]4 144144.

14# 111# 441 41# 1441 5442, 441 41 111 114 II 11 ± 0.1 mm! 44## #414. 444 99.45 mol%# 444# 4#4 # &44# 41 %M-. 11 44 441, 441! ##4 4 ± i.o °c 14 1 414, 1 4# 14 141 1444 441 1# 44#! 44144 414 4 4# 44 44. 41114 44, 41, ## #44 44! #4#1 441# 4414. 4111! 441! 41# 441! 414 1! 41 #414. 44 1 !&# #14441 111, 1 ##### #44! 44 41! 441 !& 44# so, 70, 87 %4 #441 !## #444. #111 !!! 44 444# #441 14! #4! ##7} 47}4 4 44.

44 44!!# 1.2 wt% #44 144 44# 14## 44 4## 4 #44. 14! 444 le #41! 4444# 444## Pu02-U02 14# 4 4# 1141! 44# 44411, 44 111! i, 5, 9, 13, 21, 2514 14# 44 111 14114. 11# #4 4 411 44## 41 111 !#4 4 144. 44 #44## 14! #411 141 1# 4##4 14 11# 44 4! #4#l 444 44## #4!4. !#! 11#!! 11 #4## 1 1# !##! #4##! 1# 14 ##(S) 91 % ## !7}#4(R) 74 % 1 4. o.54(S) Pu02-U02 !!#!! 1444 #4! !## 1.2 uo 2 !!#! 44.

44 #47} 41 4-44 4# #17} 411! #4# 4#4! #4# 4

!!14. Cockcroft-Walton-Type 7}#!# a >441 D(T,u)n 4#! 11 #1! 4# #17}4 #!## 4!!#, #17} 4#! 414 14 0.5 41! 41 BF2 4 #7]l ll #4!4. 4 #7] 40]4 4#!7} 44 4471] 444 444! 4 #4 #4!4. 4 4 #41 14# n(t)# 1#7>4^1 11 44 n(t)=A exp(-ut)

- 17 - + c 4 %#443, ## ##x} #4 #4Xu)7} #4^#. "4 ## ^# 3## 4### 444 #44 #4314, 4 7H4 u# ###4 4444. ^4 #444 3## 2 % 4444.

444 44# 44# 4 #^33 4#44. 4/44 #3#4 44 4441 #4] 4# #4# &44 #3 44# 4# 44# 4444 444, 44 44 3 4# 4## 4 #3 #44# ## #44 4# 344 ##4#3 444 344 4 44444. 443 444 4# 4 #444 #44 ### #44# ### 4 #3 #3 #4# 4#44 44 cosine ##4 4#4# #4 #3 s.444. 4# 4# #444# 34 #3 #4# #44 4# ^4 #4# 4144 34 44 4 4444 4&# 4#4#3 ##444. #44 4:# 4#xil 4, 44 4 #4 ^# #, 44 44444 4 ## 44, 443 ## 3513 44 444 4 #44 04. #3 ### 4# 44# 444 4##4 ioo % (#4) 3# 3#4 4:# 4#4, 11.3 ± 0.6 s# 10.2 ± 0.6 cm3 #4444. 4# 3444 443 444 #444 #44 #4## #44# ### 4#4 444 #444 4#4 # 4444 44 #3# #3 34 #4# 4#44 444 Jo ##4 4#4# #4 #3 #4444.

2) x}& ^4

444 444 44 44 444 4#44 44 4# #4 4# ##4 43 5144. 3.514, 344 # ##44# #44# ### #444. 444, 44 4 #4 444 axM 4444, # 4# ### 44 4444 4#44 4414 4 44 cosine #3# 44. 35]jl ## #4 4 44 4# u3 #44AS 444

3444 4# # 4# 4#4 Bz24 ##4 44. 4 44, u# bz24 x}3# 3#

444 34 4 4# 4# 44 4#4# 4433 4#4 44,

a (B^)= a,+ 6 (B^-BU + c (2.2)

44 #4 #4 4 44 4# uc, 44 4# 4# b 343 44 44 4# c4 1 444. 4 444 Bz2# # 4# 44 4#4 44. ##433 4## 3# 34 4 4# 44 44 g# 4# 4## 4##334, 444 444 34(4# 44)4 4 u„, 6 3513 c# 4# # 4#. 44 4## ####4 4# (i) #4# 444

- 18 - 5## 5 (ii) 5# ##-# 5445, 3.El 31 (hi) 4# 54# 4 4 4-# 4 $)45 44# 4 #4.

% 444 444 4 4# 44 #44 #5 444 4#4# ^#4. 4 4445, #44 4# ^4 44# 4" 4# 4#- 44. 444 44 444# # 444 4#4 44 4# 4# 4 44.

._2 _ < < (2.3)

4444 #4444 #45 #4# 4444 44 4444, Bz"# 4#4 4:4 4 4.

^ % 4 - ^ (2 4)

4 444 4 4 44 ^4 444 444 r05 444 44 5444.

A = 41 - rf^vEgfp 1 4> *,-§Z-\ 4> fi 4> * + 82 M

<^(4, tF(rWn(r)> <^(4,^o(4> (26)

444 444 54(44 44)44, i.o4 44. 444 a/# 4 (2.4) 44 v44 4444 44 4444. 44445, 444 444 54 44 44 4# 4 a=/4 4444. 5.45 u4 g/ A}o]4 ##7} ####-. & ^,4 444 44 4 544 #4.,4 4### 4 44455 #444. 44 444 #4 4#4 #,,-(= ^,,)4 4 (2.4)44 4## f%4] 4#44 4#4, ^4 44 444 4# #444.

3) 45 44-5 45

444 y]& #-§-5 ^.(dollar)# 44444 444 7i&&o] v %#4

- 19 - V % (V

_ a (Bj,) A(B L) ^ (2-7)

4444, "o = 4## V %4 44 2444 ^ ##, _\o = 4## v %4 44 2444 #4 ##x} 44 44, 242 Bzv" = 4## v %4 2444 44 4 4# 4#4. 44 444 ## #4# 44 444 44 #4# ##4 44.

^(B L) / ( B U [l-^( Ac lr (28)

444 24 44# #44, .V.\o4 4# 4 444 4444 7 % g# 4# 42g 4444. zz.4s.g_ 4 (2.8)4 4#4 44 #4# 4 44.

/KB L) Ac (29)

4444, 2«g = ##27} #44 # #2 44 #44#, 4 = 44244 #4 #44 #4, 242 = a/4 44# #44 #44 4# 4#. 4 (2.7)4 (2.9)# 4#44, #44 ^(dollar)# 4# 444 4# 44# 4.

3. DCA ## 45. S4

dca # 1969 4 4& 44 4# 44 3044 #4444. 4444# atr 4 2#4 4# 7i]## #422, 2 44# 442 '#4'4 444 #4 ^ 4# g #44 444# # 444 4# #44 444 44. #4 2 44 24 4 44 4#?1]4- ^ ##s# 4#4 #4 444 #4 #4# ##442, ### 24 # 4 #4# #4 ## FBR 44444# 2## #4 444 44 #44#

- 20 - si 4## 41 444. 4# 4# #444 47114 DCA 44 44# 4# #4.

1) Lattice Parameter Measurements on Cluster-Type Fuel for Advanced Thermal Reactor

4 4: Yuuki Hachiya, Nobuo Fukumura, Akito Nishi, Kazuyoshi Iijima and Hajime Sakata 4i£: Journal of Nuclear Science and Technology, 13 [11] (November 1976) 4-0-: D:0 444, H:0 444 3.42 28-4 #2 44# 2### 44444 #44 4## 4 44 ##£, 4 /Ml #44 42 4# zz.e]z 4 444 44 444 44, 44 ## #4# #4 ###^4. #4 44 4 4 #44 44 ##4 #24 4# 22.5 cm 444 44 444 #24 4- 44 4#4# 422 444#4, 4# #4 444 4444 H:04 4# 4#4 2 4 ##27> 3.? 11 44# #7] 4#44. 7144 25.0 cm 444 4# #444 4 2 ##244 # 4444 #444 ^##4, 4# 44 2444 HoO #444 4# # ^#4- #42 4% 44 24# 422

47>4#4. 44 d 2o #44 44 ##4 44 Methuselah -n 222 44# 44, 4447]- 0, so 3.43. 70 % 4 4& ##2 444 4#4 ##422 ##424 4 #4#4. #444 444 44 (100 % 4 & 4#), 44 ## #4 -'"'4 44# 4# 4& 4#44 #44 444 45144 2 4 ##£44 4: 1 % &4#4.

2) Reactivity Worths of Annular Control Rods in a Pressure-Tube-Type Heavy Water Lattice

4 4: Makoto Ueda, Mistuo Matsumoto and Tohru Haga #i£: Nuclear Science and Engineering: 62, 559-570 (1977)

4#: FUGEN 44#4 44## 2-4# w4 2-4=4 ##4# 4#44 dca 4 4 44# 24# ##422 ##4^4. 4 ##4 4# DCA 2## 1.2 % #44 23-# UO2 442# 22.5 cm 442 44444. ### 44# 44# ##4 #44 42## ##4444 4^^ 4 $14. ## #4## "## #4 4#"4 44 #44%4. 4#4 ##2 4# ± 10 % 444

- 21 4M 44^4. 44 44# 4^7)- Jg/M ^ 3447)# ^44 4# # W 4# 4447} 4^3, 7]&7} ^4 3447)# 4#^7} 4$}4. 4 44 4 44 44 4 4-S] migration area0!) Ai 4 #4 44 44# 3.4 4 4 34 4444 4 4# 4## 444^4. logarithmic derivative 444 44 #4# 44 444 44#7} 4 ^4444, #4# ^4444 44 7}# #&# 4 34!&4.

3) Thermal-Neutron Behavior in Cluster-Type Lattices

xi 4: T. Wakabayashi and Y. Hachiya 4i£: Nuclear Science and Engineering: 63, 292-305 (1977) 44: 4444 44 444 #### 44# 44444 # ^^7} 7)## 4 7% 4 #### 4#, 4 44 444 4&&, 4 i0) 47} 444 44 44 ###4# #-§-# 4444 ^7}4^4. 44# 4 <^o ]]4 # 7>44 4## 444 4 7HH #4 #### 44# 47>4Ai 4 3.4. 44# #### 44#4 4# 0.3 eV 44471 ^*Pu ^ ^'^4 4 ^#7} 444 4 #4 4. 34, ####4 4# i/v 4444 #4 44 444 #4 4 #4. #### 4#4 4 44 #4# 100 % 7)3# 4Ai 43444 4444. #44 0 % 471# h 2o 4444 44## 3

44 4 444## 44-44. lamp -dca 334 444 444 44 44 ## 4447) #44 444 4#44 5 % 44471 4 444# 4## 4444.

4) Substitution Measurements on 28-Fuel-Rod Critical Clusters in D2O and Their Analysis by the Second-Order Perturbation Method

4 4: Kiminori Shiba 4i£: Nuclear Science and Engineering: 65, 492-507 (1978) 44: #4 4#^# UO2 (0.7, 1.2, 1.5 wt% ^U), PuOo-UO: (0.54, 0.87 wt% Pu02), #### (91, 75 % Pu-fissile), 4 7> 44 (Vmod/V&ei = 7.4, 9.9), 35)

3 ^4-7)) 7)3^4 4# #W44. L2 Wt% #4# 7]e 44#7} 44 4 4447) 444## 44 44## 4444 44# #4444. 4# ## 444# 4#4 44##, #7g x)- 440) #4443 4 7}x) 47}

- 22 - #444 4#4#4 #47} ^4-# /M 444, 4^#, 2# ^# #44 44 44444. 444 444 1# 44 4444 44433 3#4# 44-44 44 ^43 444 344 44 44 4444 #&4 44# #4433 #4 #4-. 3#, 4 44444 4 44 44 44444 343 ^ #44# z444 44 ##433 344# 44 444 4#44 ^ 4. 44 444 4# 44 444 #4 4 #4 4 44# -10.244 9.1 m" 4 444 434, ###3# 3 % 4344-.

5) Measurements of Moderator Temperature Coefficients of Reactivity for Pressure- Tube-Type Reactors

4 4: T. Otsuka, N. Fukumura, and Y. Hachiya 4i£: Nuclear Science and Engineering: 74, 95-105 (1980) 44: D:0 444, H:0 ^44, 32]3 28-# 44& 4"#3 #44 444 4# 4 4#4 #3 4## #4 #44-. 4 4444 ### #3 44 44 4 4 ##4 44 4 44#4 44# 4 4# 4&# 44 44# 7]]#e}4

4. 4 4444, d 2o #4444 h 2o #4434 4444 4 444 4 #344 #3 4W 4#3 44-4 #4 4#433 #444. #44& ## 4 #4 ##3 4#^}# 3## e}4 ^4 5]^# 44# ^4- 34 ##4 #3 4## #37} #7}#4 4-4 #3## #344 #3 4#4# #44. ##44 3## , ^# 71)3# 1.2 wt% uo 2 4 43471, #34## - 40 °c #4471 #37} ^=44 #33 4#4-. 4: # 4^}4^1 ##4] 3# #37} 3.9 ppm44, #34## 4=4 4##3 #44 4 ##4-. WIMS 334 4# 4## ##4 #34 #4 #3 4# 4# 4# # 4##4-. 344- 444 44 &## ^4 4##4 4- # #4-.

6) Fuel Temperature Coefficients of Reactivity for Heavy-Water-Moderated, Cluster- Type Fuel Fattices

4 7}; Hajime Sakata. Yuuki Hachiya and Hiroyuki Kadotani #i£: Journal of Nuclear Science and Technology, 17 [10] (October 1980) 4#: #34## 7]] 7}x] 235u ##34 SUS 4#44 4-#4 44, 3# 1#

- 23 - ### xHMM #2# 600 °c44 4^444 #44^4. 4# % 4 #2 44 #4 4

7) Measurement of Local Power Peaking Factors in Heavy-Water Moderated Plutonium Lattices

4 4: Nobuo Fukumura 44: Journal of Nuclear Science and Technology, 18 [4] (April 1981) 44: 44- 2# 44##- 4#4 #4 44 44# 4444 v-scanning 44# 4444 ##s# 444 44 #4 ^44# #^444. 444 444 44^4 4 i % 4^44. 4 444 44, #4, 444 #4 2 ##2 44M1 44 #4 4444 44# 4444 44444. ^4 a 44 444 1#4 44 44# #44 4&M1 44 ###4 4#M1

4 3.7] 1 4444. 4 44 44# h 20 44 21 #4 44 44 21MM 4# 444M1 4444. 4# 444# 4# ##2# 44444 #4 ^

44# 44 #4## 4# 444 44 4Ml 4444. #4 h 2o 44 2 4M144 #4 ^#4 42# 4/1 rg 4 24M14 24 44. 444# a 2 WIMS-D4 444# 22 MERHUSELAH-n# 4#4 44 444 Ml 4 # 44 1.5 %4 2.4 % 4 Ml4 4444 4444.

8) Analysis of Heavy-Water-Moderated, Cluster-Type Fuel Lattices By Cluster Physics Code MESSIAH

4 4: Hiroyuki Kadotani and Yuuki Hachiya 4ii: Journal of Nuclear Science and Technology, 19 [9] (September 1982) 4#: 4 224# 444 #4 44 4M1 4444 #44 2#4 44# 4

## 44 44 224 'Messiah # #44 1444. Messiah 22# #

- 24 - 44 ## 444# #7] 444 ##4# 4-0-44, #4 4#4 4

44# 2-4 444 4 44 4# 244 4# 444 4 444 444 4 4 444 4 44 444 44 4444. 44 444# ##44

4# #44#, ^4m4 4 ###4 4## 4444. messiah 4 44

#47} ## 44 IN# Monte Carlo 44# #4 4#4M. 444 2: #4 4#, #4 444 444 44^##4#4 44 ^4- 44# 4^4

4 4 44444. MESSIAH44 "344 #4## 4#4 4444# 0 % 4# ^44 4#^# 4 4#44#4 (<0.12 %), 100 % 4# ^444# 444 4#^/} 444 2.4 44 444 (-0.74 %).

9) Critical Experiments on Gadolinium-Poisoned Cluster-Type Fuel Assemblies in Heavy Water Lattices

4 4: Toshio Wakabayashi and Isao Minatsuki 4i£: Nuclear Science and Engineering: 83, 50-62 (1983) 4#: 1.5 wt% U02 0.1, 0.5 3.42 1.0 wt% Gd2027l- #44 444 #

#4 4&4 ##4 4## 4## 44, 444 4# 4##, #4 ##

42 | #4 4 # ##4 44 44444. #4# 44 4#4# #4

## 444 #44 4444 ##4# 4 #4 ^44 44

GdoOa ##44 0.5 wt% #4 # 4, ### #4# ##4 4&4 # #4

xM &4 44 aMl ##444. 4# #44 #44 #4#4 #4 444# 4# #4444, 444 #444 4##4 ^44

4# 4## 4144 #44 4 4## 4444. wims-d 44 44 #4. #4 ## # #4^1- x}^i M 41#4 ##41 444 57H &1 #4 447} _s_#444.

10) Study in Coolant Void Reactivity of Pressure-Tube-Type Heavy Water Lattice by the Substitution Method

4 x}; Yasuki Kowata and Nobuo Fukumura 4i£: Nuclear Science and Engineering: 99, 299-312 (1988) 4#: #44 4#4- ##4 4# 44# 4#44, Pu02-uo 2 ^4&4 44 4 4# 4#22# Pu02-U02 # Pn02 4# (0.54 3.42 0.87 wt%), 4##

- 25 - ## (91 32] 3 75 %), 44 (Vm/Vf-7.4, 9.9) 3 2] 3 4 zM 1&# (0, 30, 70, 87 32] 3 100 %)4 444 #1414. 1## 1.2 wt% uo 2 44a 4tt? 11133 Pu02-uo 2 44 4fts 4444 4^414. 1& l#a## 4# 44 z} 44 44# 444# Simmons & King's 44# 4#44 #414. #4 4-### 4# #444 444 ^3aa, 4 #4 4 44##, lz}#o] 1443 # 7}4 44 444 44 4# 44# #444 4#4# 44 44, 44 4# 444 44 #44 14. 1# 444 la l#ai 4# 4a 444 #4 4# 444 - 5 % 4 4 - io %4 44a# z]-43 11414. Pu02-uo 2 44&44 # 4 44 #3 4##4 ##3#4 44 #444 la 4#a# 4 4 4 #4 1:33 444 4# 41414.

11) Neutron Absorber Effect on Coolant Void Reactivity in a Pressure-Tube-Type Heavy Water Reactor

4 4: Yasuki Kowata and Nobuo Fukumura 4i£: Nuclear Science and Engineering: 108, 308-318 (1991) 4#: 4444 ##14 #4444 H4#4 44# 4 447]] la 4#a4 44# 44# 114 4## #4 #4414. ##1 #44# ### 4 #4134, 41& 44 444 #133 1#7]]4 444# 44## # #-44#44. 4a 4#a# ##1 #44 44 44 ##33 444, 3 4 a# ##14 #4 4444. 4] 4 #4 444 4# ?H 4#a4 44# 44 44. 343 43 4#a #7> 43 44# #4 #44 44 1#44. 144 WIMS-D44 44 41 14# ± 1 $ 444 1444. #44 ##7]] 4 4# 4 a ##3 4## 4# #44 44 344 $M-. #4z}#^ 7]a 4#4 4 #44 4 144 44 4M 1 #4^]-# 44, 1## 444 443a 4144. la 4#4 #1 1#4 4 a# 4, ##7]]4 ###44 134 447]] 4444 1 #14 ##1 #7]-# 4.

12) Axial Dependence of Partial Void Reactivity in a Light Water-Cooled, Heavy Water-Moderated, Pressure-Tube Reactor

- 26 - xi 7']-: Nagafumi Aihara, Nobuo Fukumura, Hiroyuki Kadotani and Yuuki Hachiya 1SL: Nuclear Science and Engineering: 109, 158-170 (1991) 4#: 4## 4 a 5&4 "0% #457] 4#, 1411 55 ^#7]] 544 41# #1455 545^4. 14.4 7] a ^a# DCA4 #1# 11] #55 I##!! 5A}e]-H. 1# H^]] 7] a 1#55 25.0 cm 44 44 5#4 4# 51414. 147]] 444 115 414 1#5 4 44 14 55 544 1154 51414. 4 5#z]-5^ ^ H 5a 4 44 44 ^44 4# #1414. 4 4444, 44 55 51# 44 44 4 #4# 444 4444 44# 5! 514. zz.43. ^44 44/} 444-5.5. 444 44, 0 % 4 100 % 44 44 444 445 5.4 4

44 445.4 4444 444 44444. 444 444 wims-atr /

citation 5IE# 4444 51514. 44 144 1444 44]5 44 514. 3.43. ^44 44 11 5 111 4454 1# ^3).^ Ill 4 5#4 444 444 5444 14 5#4 4444 44444. 4 4 1 44 144 1 44 z} ##5 1141 S-41 144 147]] 4 444 144 45 55 4 5# 115 44 4 4141 s-41 14?} 1444 441 1444.

13) Influence of Burnable Gadolinia Poison on Coolant Void Reactivity in a Pressure-Tube-Type Heavy Water Reactor

4 4: Yasuki Kowata and Nobuo Fukumura 15: Nuclear Science and Engineering: 115, 205-218 (1993) 44: 4444 .45444 444 45 1554 41 45# DCA444 44 114 WIMS-D4/CITATION 2£| 4#1 4514 54# 54 l7>14 4. 1144 411 la l#a# ± 0.2 $ 444 14444. 5#4#

# 511 445 41## 11 uo 2 44# 414 14 dca 5 4 54 54 51 14444. 114 7>#41 445 41# 11 445 54 3~47fll Gd2035 #11 U02 445 555 4144. 7>5l# #55 0 54 l.o wt%44 414. all 7]a 1554 7}#44 47}4 14 4 1# #4 11 441, GdoOa 557} - 0.5 wt% 45 41 la 1555 4114. 5144 7>544 415 51 471-551 3.431 7}#4 4 4 15 51 414 414 441 55 la l#55 54 11#5 11

- 27 - 7]2. ti>-g-J£Sl 3.7]^, 239 Pu4 241 Pu-S] 0.3 eV s #4&

#^e4.

- 28 - O 37-Element Bruce U00 Fuel ® Assembly Containing Demountable Bundle • 19-Element U Metal Fuel Lattice Pitch = 28.58 cm #000000000# •000080000# A NORTH

ZED-2 Calandria Wall

Thermal Pit Region

32^) 2.1. ZED-2 reactor layout with Bruce reactor 37-element fuel bundle

- 29 - ZED-2 REACTOR

- Beam III III III: - Chain Fuel Rods - Aluminum Calandria (336 ID by 0.64 Wall 2.2 Thick Bottom) - Gap (3.1 cm) - Graphite Reflector (340 ID, 460 OD, 90 Thick Bottom) Heavy Water

Dump Valve (1 of 3) (46.4 D by 259 PCD) - Shut-off and Drain Valve

Fill Pump

2.2. Schematic of ZED-2 reactor

- 30 - UCX FUEL Zr-4 SHEATH I.D. 1.22 cm DIAMETER 1.21 cm O.D. 1.31 cm DENSITY 10.50 g/cn?

AI PRESSURE TUBE I.D. 10.39 cm O.D. 11.02 cm AL CALANDRIA TUBE I.D 12.70 cm AIR ANNULUS O.D 13.34 cm

2.3. Cross-sectional view of Bruce reactor 37-element fuel bundle AL SHEATH U-METAL FUEL 1.38 cm DIAMETER 1.31 cm 1.59 cm DENSITY 18.93 g/cid

COOLANT SPACE AL COOLANT TUBE I D 8.58 cm O.D 8.89 cm

-Yl 2.4 19-element fuel bundle of natural uranium metal

- 32 - CELL BOUNDARY CELL CORNER

NORTH ALUMINUM SECTOR FRAMEWORK TOIL

COPPER WIRE

CELL EDGE

FOILS BETWEEN FUEL PELLETS

FOIL

^ 2.5. Irradiation foil position of Bruce reactor 37-element fuel bundle UO, PAIRS OF THIN ALUMINUM^^ BARE NATURAL CATCHER FOILS URANIUM

28.5 mm

THIN ALUMINUM DEPLETED URANIUI CATCHER FOILS FOIL WRAPPED IN THIN ALUMINUM

2.6. Fuel element with irradiation foil

34 270° 245° CH-5 (B-10) o o o

o o o o o 330°CH-2 (CIC) o o o o o o o o o o

F.M.M o o o o o o o o o o 0°(PNS) o o o o o o o o o o o o o o o o o o o o

o o o 55° CH-4 (B-10) 65°CH-3(CIC)

-Yl 2.7. Schematic diagram of upper grid plate (25 cm lattice pitch)

- 35 - Upper Grid Plate (Al)

Calandria Tube

Pressure Tube Al Support 50(T)*355(W) x25,000(Total)

Fuel Cluster

Heavy Water Level

Lower Grid Plate (Al)

Al Spacer 50(W)xl00(L) Absorber Sandwitch (30 Pieces)

Void Tank (Al) (SUS)

Ciy! 2.8. Schematic diagram of DCA core configuration

- 36 - 16.73 15.03 ----- Moderator (D.O) ----- Calandria Tube (Al) ----- Air Gap ------Pressure Tube (Al) ^ Clad (Al)

Fuel Pellet (UCfc) Coolant

120.8 136.5

2.9. Cross-sectional view of 28-rod 1.2 wt% UO2 fuel assembly

37 16.68

Moderator (D20) CalandriaTube (Al) Air Gap Pressure Tube (Al) Clad (Ziy-21) Fuel Pellet (PuOz-UOz) Coolant

-2.0------

2.10. Cross-sectional view of 28-rod 1.2 wt% PuCb-UCb fuel assembly

38 n\ 3 y ?\s.

4 1 4 ZED-2 37--§- ^ 43--§- #«]

KAERI4 AECL# 44]##4#a CANFLEX 44a# yfl^ai ##4, 44a yfliMl ### t#4 44# ZED-2 4#a44 4^4914. ZED-2 4#a 4444# 44 444 CANFLEX 44a# 37-4 uo 2 44a4 #4 4##4 #a 4#a# #444 44 #4# #W9ia4, 44 444 substitution 444 44 D204 #4# 4-0-4914. #4 4### D204 #4 ^44 a# 44 4 44 44a4 44 444 4 44. 444 4#4 4a# 44a4 4# 4#a 444 4-0-44 44a^(4, WIMS-AECL)4 ##a# #z}4#4 4-0-# 4 914.

4# CANFLEX 44S 44(19964^)444 444 444 ##(99.15 wt% 020)44 4## #^491#4, 4#4 4#(i9974a)44# CANDU a#4 a 4 #-44 99.71 wt% D2O #44 #^44 44# 444914. Substitution 4# 4 4-0-4 44&4 37-4 uo 2 Darlington 4 «j°jas canflex 44a#4 4a 4 44 #324 Z1444.

l. 4# #4

#4a# 55 44# 31 cm 4444# ### 4#a 4#4914. Substitution 44# 4# 4a/T- 4# 4aa 444# a# ##4 ?7i] 44a 4 4a ##4914. a.4 3.1# substitution #4444 44a 44# a4#4. #4 a4 444 44 44a# 28-4 uo 2 44. 4# 44a44# 4444 1^4 914 ##44 #4a ##a#4a #4# 4 ##4 #4#aa #4# # 914. 444 4# 4## ## ##7H# ##7i)4 ^ ea# z}#4. a# 4 4# 4 # ##7i] 44# ##7i]a#4 ^444 $)4 A)g. 4.# #a# 4#4.

44 4## zed -2 a# 444 444 54 44a 4#a 4444. 37-4- uo 2 44a 44# 43-4- canflex 44a 444 #444, 444 4-0-4 Darlington 4 4 4#4 5 3.14 #444 914.

- 39 - 5. 3.24 3.34 44 37-4 444 CANFLEX 444 44 44 444 44 44, #4 4 ^-44 4&# ^.4#4. 44- #^@44#, 44& 7}^ 444 4 D:0 #4 ^-7] 4^ #S& 4# #44444. S#, /jig 7^4

444 44 4 44 44 23} 4 444 4444 44 900 ml4 d 20 444 4 4-4# &##s 44.

2. 44 4^

ZED-2 4444# 4444 4444 WIMS_AECL(version 2-5B-2) S3# a } 444 44 44# 444z, CONPACK ^2.3^# A^eM s4 44# 44 44 4## 444^, i-4 S3 confiers # Ai~g-sM 44&# 4444. S. 3.2 4 3.344 444 44 44# 444 4441 44 444 44 3.4# 4444. 4# 44 4444# 4 4# 44 444  2.# 44(4# 4& 4 booster 4&)4 44 #44 444# 4#44#4 ### 4-## 4444. 4# 444 4#, 444 4# 44 44 #44 #44# #& #444 "2# 4:4 444^ # 4-4 44^4# ##44. 34a. booster 4#4 4^4 ^444, 4# 4#44 #4 4#44 #44^# #4.

7-4- 44 4#4 A}_§.^ #e} 44 ^# 44 444 44 #44 #4 4-4 #444 4# SM- #44^# #444. 4^ 44&# # 44 444 #44 444# 444 44 44 444 #44 ^4# 4#^# 4# 444. #44 44# 4 4#4# #447]-4 ##2. ^4^3, ^.^44/1- 44 4^# 44"#4. 444 4^ 4#^4&44 #s### # 44# 4^# 4-#44, 4.4444 44 4# 4# 44^4&4 ^444 #& 4# 4# 444s, 44# #4 4#4# #^4#4 4#44.

3. 44 44

3^ 3.2# # 3.24 3.34 44 #4 %}&# ##4 4-^4 #^4 #^2. ^.44 # 4# 4:44. 34 3.3# 37-# 44&4 CANFLEX 444 44 #4 44# #4#4. 4 34 4A^ D2O-444 # 7>4 44# #4 4 44, 4 4 #44 44 444 #4 44 44 4 44#4, 343. 444 37-# 44&4 4344 CANFLEX 44#44 4 #4# #4#4. 34 3.344 344 454

- 40 - 44 #444# ± 0.04 cm 44, dj^ 7# y# 4 x} x}d]yx^ #d] yy x>d]7> 0.7 cm 4 44 42# # %4. 44# CANFLEX 44a7> 37-# 44 y#27> yy yy# y# yyyy, yyy #^# canflex yyy uo 2y w #47> #4# 44 4444 (CANFLEX 44 20.938 kg/bundle, 37-# 4# 21.917 kg/bundle). S# *1 4 4 ### 43-# ^'$.3- 4# fa^T] #4 ##4 yy ^ #44 ^y}## 44a #444.

24 3.4# yyw %# y # 7>4y qya yyy 4# y#y y y #47} 44# y# 4242 %ay, 2^ 3.5# 3. yy# ay#2 %4. # 4 4 ^yay 4# #4 44# #4 ^# /M4, 44# ^4-4 4# 4#a7} y yy# % 4444. canflex yyay yy #47> 24 yy# y# canflex yya 7]5 y#27> 37-# yyay 44 4 24# y# yyyy. 2^ 3.54y 4&4 4% #44## y ± 0.06 cmyy, yy# 7-# y# 47}# yy ay = y y# 0.25 cmy yy.yy yy 7> yyyy #yy# 4444.

5. 3.4y 3.54 CANFLEX 44## 37-4 44&4 yy yy #y yy# 44 ay%4. ayyy/i- yy y# y# 4# y^ yyy gyyyz 7} yyy y# yyy. o 2o-^4 CANFLEX yyay 4% ## 4#^# 3.327 m-a y^gy%2, yy.igy ayyyy 4#4# 3.710 m'a y^gy%4. yayy y# 4#4 yy# 0.333 m-ya, yy# #yy yy ay 44 y 13.4 mky y# y #ay #444. 37-4 4y&4 444^ (a 3.5) D20-^4 #44 44.^4 4 yy 44 4#^ yy yy 3.355 m-y 3.732 m- 24 44424, yayy y# 4 #4 #y# o.367 m" 44 4aa 4444. yy# 4 12.6 mky 7]a 44a 4 #yyy, yy# yy## 2y 3.2,3.3,3.4,3.544 444 yyy yyyyy yy y yy 44.

a 3.64 a7] y yy 4444 444 canflex yy# yayy. wims-aecl yy# a7] yy ya # yyy #ay ##444 yy# #yy# 4 444^4. # 7}ayy y#4 yy# y 0.6 mka y# #yy, yy yay 4 y#y yyy yy# 0.2 mka y yy. yyy ya# canflex 444 44 4#a 444 yyxi] e#4 4# ya 4## 44# 444# 47} aa# 4#4 A>#4 # 44. 5. 3.7# ENDF/B-V# ^>#4# WIMS-AECL# 444 #M4 4# % ay #4. 44# D2o4 44 444%# 4 # 44

- 41 4#4 4% 4-0-# 14# 1W4 441# 44. #14 !#4 !%# 4 ^9 4# 4# 444 44 44# 44# 0.79 mk (0.022 m2) 4#44 44. 4 44

4#44# 37-4 444 432.44 canflex 44# 4444 444 4444# #4 4444, # 4# ± 0.18 mk (± 0.005 m"2)44.

4 2 4 DCA 4#

4 #2444# 44 JNC4 4# ^#44 44#4 DCA44 ^ 44 44 44 444## 4-0-44 LPF(Local power peaking factor), keff4 444

4# 4### 44444. 4414 444# 4 4 ##4 wims-atr 4 #4 # #4 CITATION# 44444. 144## 4#4 1# #1 ##44 14444. '28 44# #1# #14 1.2 wt% #4 UO: 44# 44 #1 '28 44# H# #14 5SPu4 1.2 Wt% #4 UO: 44# 2-44 #1 '28 44# H# #14 8SPu 4 1.2 wt% #4 UO: 44# 2-44 #1

i. 11 14

44 ## 114 144 44 44# candu #14 44 444 44# 25.0 cm4 #144#4, 444 1# 4&# o %4- 100 %44. 114 10-4 4 4# 444 414- #11 44 # 3.84- 3.94 #44 44. #4# 5794 44#/ $94# #14 4# 111 44 #4 4## # 3.io*9 1444 44.

44# 114# 4#4# 4144 14#!4 4## #114 4#! 4 44# 1## 10-14. 14 417} 25 cm4 #14# 97794 44#! 0} 44 4114 4#!, 1 4#4! 10-1 0.71 wt% UO:, 1.5 wt% UO: #!# PuO:-UO: $94## 2571] 444 441# 444# 1.2 wt% UO: $9!## 4414. 1.2 wt% ## UO: 4 PuO:-UO: $94# 4441 44## #4 2.94 2.104 4144 44.

2. $91 44

1441# 111## WIMS-D4# 441 WIMS-ATR ### 1-0-144. 44111# Winfrith 69-1 $94## 14-### 441#. 4#4 44 41 2, 3

- 42 - Sir 4 ^22 44# f 44. If #44 a24 WIMS-AECLf 4 4 204 #4 AECL f# Chalk River Iff 44 7flf5]4, 3 2#4 4 MM 4 CANDU f #4 #4 4 1 444 Iff# 4444 44. WIMS-AECL 44# Winfrith 69-4 4A}24 ENDF/B-V 89-4 4A}2# 4444.

2-44 DCA44 444 wims-atr 4 44 sit 444444, 44#, 444, ^44, 444, H24444 444 442. 4444 44.

44 444 Oak Ridge National Laboratory 4 4 /]] 44 CITATION 44# 4f4^4. 1444 f 11 44 44 f4# *1444 4s #44f# 4-4 2# 4 2.4(451 3.6, R-Z 2.#)# f#4# 444 2_#1] 44# 444424, 44 7]&44s# fs4# 441 2#4 444 444w 4^44 44 424# 4.

3. #4 44

1) 4# #4 If 4 (EPF)

4# 4444 1.2 Wt% 444, 5SPu 8SPu 44#4 4 44 WIMS-AECL (ENDF/B-V) 3Efi 4444 3 14# 5. 3.114 14444. 44? 41&4 14, 4^47} ^222 444 4# 44444. 5SPu 41&4 If 2.1 % 3.4a. ssPu 41&4 If 2.6 % 4444 1442 44. 14Ai] 4 4 0 %4 If 4 44 100 %4 Ifz} 4 144 #4 #2# 244 If # 4M444 ^12 44224 #4 7} 2#4 ?7}44 442 #4f#4 1 #4 4.4 4 444 4 4444.

2) fs #4 4f

f S 44 4 fir WIMS-ATR4 CITATION as# 4444 14444. 4 4 CITATION 2If 2.44# 444444, 444 44#, 444, 424# 2.# t#4 4442 444^24 3 14# a 3.124 444%4. 2 s.isf 424# 42 4424 444 4# 4444 444 1444. 5. 3.124 444 2#4 44 5. 134 4f4 2#4 4444 4 7>4f if f#44 4444 444 I22 4444. 344 2# if 1444 1 % 4444 144# 14# 24

- 43 - 4.

3) igzM 44#

igzM 4444 444# a 3.144 144^4. 44 -9-4# 4 1# W4 4 a. 4##7} 3.38 %Ak/k& ?M- a4 14 4#4. ### 44 7] 5 4#a# e 414 444 44-4 #445.4 4 44 44- 4^4. 4 # '^Pu :40p^ ^ gv ^44 114 444 44, ###? 44S7> 444 44&4 4ai44 1&4### 4# 4444 444 44 44- 44. 4, #4?4 1#5_4 ####4 1#4, 4& 44 #4#1 44 7> 0.3 eV 444444 44 4 44 44# 4 a4 44. 44#4 ###w 44 4 a 4### #4 #4. 144##, 4 a 44## 4445.4 14 4 4# W 444.

- 44 - it 3.1. Darlington 37-element fuel bundle parameters

Pellet OD 12.16 mm Sheath wall thickness (minimum) 0.38 mm Sheath OD (maximum) 13.12 mm Pellet stack length 480 mm Total axial gap 3.0 mm UO2 mass/bundle 21.917 kg (Average of 37 bundles) Zircaloy-4 mass/bundle 2.3 kg Bundle length 495.3 mm Note: Dimensions are nominal as quoted in the Darlington GSA Design Manual

- 45 - 3.2. Critical height data and core conditions for the substitution experiments using 37-element UO2 assemblies

Mod. No. sub Test fuel Core temp, Corrected Date Time purity Hc (cm) channels coolant (degree C) Hc (cm) (wt%D20)

96-10-30 9:10 reference - 99.726 24.89 216.302 217.717

10.20 1 d 2o 24.92 217.201 218.578 11:46 3 24.96 218.756 220.152 13:08 5 24.99 220.418 221.837 14:40 7 25.01 222.028 223.472

16:32 reference - 25.04 216.426 217.717

96-11-06 9:15 reference - 99.721 24.87 216.812 217.717

10:29 1 Air 24.87 216.559 217.397 11.46 3 24.85 216.012 216.848 13:30 5 24.84 215.554 216.388 14:50 7 24.83 215.044 215.874 15:07 7 D20 24.83 222.626 223.538

17:17 reference - 24.85 216.935 217.717

Note: Corrected critical heights are adjusted to a moderator purity of 99.710 wt% D20 and a temperature of 24.69 °C

- 46 - 3.3. Critical height data and core conditions for the substitution experiments using 43-element CANFLEX assemblies

Mod. No. sub Test fuel Core temp, Corrected Date Time purity Hc (cm) channels coolant (degree C) Hc (cm) (wt%D20)

96-11-20 9:04 reference - 99.710 24.69 217.717 217.717

10:15 1 Air 24.68 217.551 217.507 10:35 1 D20 24.68 218.762 218.717 12:09 3 Air 24.66 217.155 217.115 13:31 5 Air 24.66 216.766 216.726 14:50 7 Air 24.66 216.355 216.315 15:10 7 d 2o 24.66 224.261 224.217

17:03 reference - 24.64 217.800 217.717

96-11-21 9:01 reference 99.709 24.66 217.842 217.717 d 2o 10:13 1 24.65 218.878 218.718 11:37 3 24.64 220.678 220.517 12:52 5 24.64 222.515 222.350 14:15 7 24.64 224.343 224.174

16:14 reference - 24.62 217.903 217.717

Note: Corrected critical heights are adjusted to a moderator purity of 99.710 wt% D20 and a temperature of 24.69 °C

- 47 - it 3.4. Summary of bucklings derived from a CONIFERS analysis of substitution experiments using CANFLEX assemblies

Bucklinkg(m" 2) No. Substitution Contamination Parameter D20 Increase on Rods Air coolant coolant voiding

0 - 3.734 - -

1 6 3.316 3.694 0.378 3 4 3.319 3.699 0.380 5 3.6 3.321 3.701 0.380 7 2.571 3.322 3.703 0.381

Extrapolated 0 3.327 3.710 0.383 value Note: Bucklings correspond to a moderator purity of 99.710 wt% D20 and a temperature of 24.69 °C. Coolant purity is 99.74 wt% D20.

- 48 - it 3.5. Summary of bucklings derived from a CONIFERS analysis of substitution experiments using 37-element assemblies

Buckling(m" 2) No. Substitution Contamination Parameter Rods d 2o Increase on Air coolant coolant voiding

0 - 3.734 - -

1 6 3.383 3.754 0.371 3 4 3.380 3.750 0.370 5 3.6 3.373 3.742 0.369 7 2.571 3.372 3.741 0.369

Extrapolated 0 3.365 3.732 0.367 value Note: Bucklings correspond to a moderator purity of 99.710 wt% D20 and a temperature of 24.69 °C. Coolant purity is 99.74 wt% D20.

- 49 - it 3.6. Comparison of the bucklings derived from the initial study using CANFLEX fuel to the results of the present study

Moderator Moderator WIMS-AECL Buckling at Buckling AB2 Reference Purity Temperature Coolant k-eff Current (m"2) (nf2) (wt%D20) fC) (ENDF/B-V) Conditions Initial 99.151 25.76 D20 2.738 0.99951 3.345 0 376 study Air 3.232 0.99933 3.721

Present 99.710 24 69 D20 3.327 1.00010 3.327 0.383 Study Air 3.710 0.99973 3.710

- 50 - 3.7. Comparison of the bucklings derived from the substitution analysis to WIMS-AECL calculations

B2 WIMS-AECL Fuel Coolant (m"2) k-effective D20 3.365 1.00017 37-Element Air 3.732 E00052

D20 3.327 1.00009 CANFLEX Air 3.710 0.99965

- 51 it 3.8. DCA lattice characteristics

Cluster Radius of each layer 1st 13.13.mm 2nd 30.00 mm grd 47.58 mm Hanger wire Diameter 2.0 mm Material A1 Spacer Diameter 114.4 mm Material A1 Cluster length 2223 mm Standard fuel meat length 2000 mm Pressure tube Outer diameter 121.0 mm Inner diameter 116.8 mm Material A1 Calandria tube Outer diameter 136.5 mm Inner diameter 132.5 mm Material A1 Moderator Material d 2o Purity 99.4 mol% Core tank Outer diameter 3025 mm Inner diameter 3005 mm Height 3500 mm Material A1 Lattice pitch 25.0 cm (square lattice) Upper and lower grid plate material A1 Temperature 20 °C

- 52 - it 3.9. Fuel cluster types used for experiments

5SPu 8SPu 1.2 wt% 0.7 wt% 1.5 wt% Fuel type (PuCE-UCE) (PUO2-UO2) U02 U02 U02

Fuel pellet Density (g/cnf) 10.17 10.17 10 36 10 36 10.38 Diameter (mm) 14.69 14.72 14.80 14.80 14.77

0.54 0 84 Enrichment (wt%) PuCE PuCE E203 0.711 1.503 PuCE+UCE PUO2+UO2

Composition U-235 0.6214 0.6194 1.057 0 625 1.317 U-238 86.782 86.503 86.793 87.255 86 563 Pu-238 0.000102 0.000145 Pu-239 0.4304 0.6819 Pu-240 0.04115 0.06584 Pu-241 0.004359 0.00696 Pu-242 0.000303 0.00051 0 12.12 12.12 12.15 12.12 12.12

Fuel pin (mm) Clad material Zircaloy-2 Zircaloy-2 A1 A1 A1 Cald FD. 15.06 15.06 15.03 15.03 15.03 Clad O.D. 16.68 16.68 16 73 16 73 16.73 Gap material He He Air Air Air

- 53 - it 3.10. Heavy water levels at criticality for 5 experimental cases (Lattice pitch = 25 cm)

Coolant void Heavy water height Core type fraction (He)

1.2 wt% UO: (97) 0 107.05 (Uniform Core) 100 105 59

5SPu (25) and 1.2 wt% U02 (72) 0 91.64 (2-region core) 100 9663

8SPu (25) and 1.2 wt% UO: (72) 0 7796 (2-region core) 100 87.02

0.7wt% UO: (25) and 1.2wt% UO: (72) 0 169.76 (2-region core) 100 140.25

1.5wt% U02 (13) and 1.2wt% U02 (84) 0 94.01 (2-region core) 100 97.72

- 54 - it 3.11. Comparison of local power distribution calculated by WIMS-AECL with ENDF/B-V library

Fuel pin position Coolant Fuel void Inner ring Middle ring Outer ring enrichment fraction (%) Exp. Cal. C/E-l Exp. Cal. C/E-l Exp. Cal. C/E-l (E) (C) (%) (E) (C) (%) (E) (C) (%)

1.2U/1.2U/ 0 - 0.675 - - 0 829 - - 1.167 - 1.2U 100 - 0.829 - - 0.883 - - 1.101

2.12 5SPu/5SPu/ 0 0.640 0.607 -5.16 0 820 0 787 -4.02 1.180 1.205 5SPu 100 0.760 0.756 -0.53 0 860 0 849 -128 1.130 1.135 0.44

0 0.610 -7.38 -4.43 1.200 1.231 8SPu/8SPu/ 0 565 0 790 0.755 2.58 8SPu 100 0.710 0.718 1.13 0 810 0.815 062 1.170 1.163 -0.60

- 55 - it 3.12. Effective multiplication factor calculation with three different cross sections

keff calculated by CITATION Coolant void Hc Cross section calculated by Core type fraction (cm) MESHUSELAH code by (%) Mondal et al. (4-group) keff (%)

1.2 wt% UO: (97) 0 107.05 1.00190 0.19 (Uniform core) 100 105 59 1.00614 0.61

5SPu (25) and 1.2 wt% U02 (72) 0 91.64 1.00435 0.43 (2-region core) 100 96 63 1.01053 1.04

8SPu (25) and 1.2 wt% U02 (72) 0 77 96 1.00537 0.53 (2-region core) 100 87.02 1.01247 1.23

- 56 - it 3.13. Effective multiplication factor calculation with fuel and reflector cross sections

Coolant ke±f calculated by void He CITATION Core type fraction (cm) (4-group) (%) keff (%)

1.2wt% UO: (97) 0 107.05 0.99627 -0.37 (Uniform core) 100 105.59 0.99739 -0.26

0.7wt% UO: (25) and 1.2wt% UO: (72) 0 169.76 0.99383 -0.62 (2-region core) 100 140.25 0.99508 -0.49

1.5wt% UO: (13) and 1.2wt% UO: (72) 0 94.01 0.99317 -0.69 (2-region core) 100 97.72 0.99563 -0.44

5SPu (25) and 1.2wt% UO: (72) 0 91.64 0.99827 -0.17 (2-region core) 100 96.63 1.00203 0.20

8SPu (25) and 1.2wt% UO: (72) 0 77.96 0.99635 -0.37 (2-region core) 100 87.02 1.00933 0.92

- 57 - it 3.14. Comparison of coolant void reactivity with experimental results

Void reactivity Calculated keff Hc ( %k/k ) Core type (cm) 0% 100% Cal. Exp. E-C void void value value

1.2wt% UO2 (97) (Uniform core) 107.05 0.99627 0.99736 0.11 -0.34 -0.45

0.7wt% UO2 (25) and 1.2wt% UO2 (72) 169.76 0.99383 1.02836 3.38 - - (2-region core) 1.5wt% U02 (13) and 1.2wt% U02 (72) 94.01 0.99317 0.97529 -1.85 - - (2-region core) 5SPu (25) and 1.2wt% U02 (72) 91.64 0.99827 0.97600 -2.29 -2.41 -0.57 (2-region core) 8SPu (25) and 1.2wt% UO2 (72) 77.96 0.99635 0.95718 -4.11 -4.98 -0.87 (2-region core)

- 58 - o o o o ooo ooo o o o o Reference Lattice 1-Rod Substitution o o o o ooo ooo o o o o 3-Rod Substitution 5-Rod Substitution oo Reference Channel ooo Test Channel oo 7-Rod Substitution

-Yl 3.1. Test fuel arrangement in substitution zone

- 59 - Moderator Critical 216- 217- 218-1 219- 220 221 222 223- 224-

- - - ▼ a # ■ — - — —

43-element 43-element 37-element 37-element Number 3.2.

voided flooded voided flooded

Critical -

of 60

Substitution

-

height

data Rods Critical Height Difference (cm) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 3.3. 0

Critical • ■

1 Air D20 height

coolant

coolant

difference Number 2

- of

3 between 61

Substitution

4 43-

and Rods

5 37-element

6

assemblies 7 37-element assembly 43-element assembly

Number of Substitution Rods

3.4. Moderator level change on voiding

- 62 - Level Change Difference (cm) -0.30 -0.25 - -0.15 - -0.05 0.20 0.10 -

- - - - - Yl

3.5.

Moderator Number

level -

of 63 change

Substitution

- 43-element

difference

Rods

-

on 37-element

voiding (2) (l) (16) 11.3341.0 4------138.916

4------70.524------

Upper grid plate (with A1 support) 40(2)

Vacant A1 tubes 82.3(3) I Bare fuel part 200-H A

200 D20 (or H20) level (20) £ I1 o Q Inner core , Outer core ^ f (Pu fuel) (1.2% U fuel) r ' r Ak Lower grid plate 6.5(1)

Absorber 1.3(1) -+ A1spacer 10(1)

Steel base

H : Critical D20 level ( ) : Mesh number Unit: cm

3.6. Model of R-Z calculation for two-region core with 25 cm lattice pitch

- 64 - X fa J|)J' 2b [$ Jiy 2d [$ X X 2i ob X & w 2l ojni [22 _oV, ob ob ti|o X oil 22 rlo X m2 22 oS2 v Jl> mb jb r$ d$ a [UBrfiUl *& # j2 M _oV, rti J|> cAL d2 X 22 V, X j|> ri ny o(fi r.2 22 d2 =& ob X a a [$ ny Jin o)y no m2 >o n2, r$ 22 b r$ x ob r£ no & x _x^ _x^ cAL J^' X On M r$ i mb. 2d nr jb X r2 to X n> X r$ cAL r£ nr riy ny 22 ny ny X M oi r2 & 22 M _x^ W m)o b2 Ji°!! [22 N mb jb _x^ w H- rlo mb \o _oV, X r-2, X mb m2 f 2 X M nr * nr X ny X ny r-2, d& O >, X X 22 A M o H- tflj nr X X Ui to nr Jl> n> jb Jin' jb \o X 22 nr & o a b 0$, Jb nt x. a \o 03y ob X. ob X X Jb A o 2l Xf tub >, 021 d$ o 4^ mb ny & 22 22 1° r* fa X 3 to nn J^' 1° x d& A mlm mb M Jin- fa .2,, tflj r$ (%L ItJltU blS 1> 22 _x, jd ob ^1 ob ny Jl> fa o|N 2A 3 o[» 22 & rti ob m2 °? =S uLd \z\i 22 ob, rti 2d o|d N X & _oli _x^ 22 rb ^ 22 n ny H> [It ir rnj nn -o 22 r|r 22, nr O^ J^' fa r$ 22 rti 22 X X _oV, ny r2 ni> [$ mliu 42 mi X a 2L o|d ob 2d Jb X a mlm X & jb _a M nr a r|o r-2, ob 2i u f\TL 22 r2 J^' X ny 8 X _x, [$ 22 >2 ;;$r2 ^ 22 Ji 21 >b rlo .2, O^ ob _3, 2i X fa v nj X X, W nr 22 Jl> X jy, mb r|r ^ I, J£ & o X a a r2 d2 m2 _oii X & w $ ^ r-2, 22 dN ^ mb 2d °b rC J2 42 ^ r2 X A a o(f1 o|» rfa X 4y n db r$ 2d 2d ny n> mlm r^ _oV, J|> X ^ [A [Ufc n> r|o ti^L nn M n> X M OIL a 22 N ti2 & 4y 22 # j|> <$ 1° 2d W? 22 ^ ^ ^ ^2 r2 42 o[» K1 mb cAL tb 2d o)y _OV, rti ny x r|o X nr * 22 X ''' 2^L ^ t M m mlm n<4' _oli ' r-2, r^ nr no mb a r2 ^ ^ r2 # X d2 ji a X 2^1 >b ny ny M r$ lo ^ h M X r£ o[f1 a m2 rlo o rb B ny X X X UlSi VI ^ o2 -a b2 ny 22 rti H- d4 N X mlm M ny K1 a X M a nr X w X X O (X £ a 22 22 mb rti 22 o ^ J2 oj2 h » 22 -2 22 Ul X % a 2d db d2 w X nr _OV, a _g 1$ X 42 mb djo ny d|o r$ J]tf Jiy X nr j2 nr mb ri 3 'o t*z X 21 nr jb mb J2 o [d r£ X o|d A X tflj ny ny ri 1° d2 X oji d9t X _oli o2 q 2 rti M M ny A lb r2 & 22 22 nr X ^ ^ ny r|o >2 o2 [Hjo 22 c}. !!4 ## #1# 11 #11# #4# 44 44# 4444 #444 4 1# ## #4#3, 3. #4# #3#33# ^ ^ #!- ### 4# 1 4 4. 199743 4444 444 3 3.24 3.3# 44# 4# #4 #4# 3Hz 44. ##1 4# #44 444:4 3# 44# 3###, 44#44 4 ± 0.03 cm# 133 414444.

2. #113 44

199743 14443 4444 #3 44# 1414#. 1#344 3## 11 H 7]^ ^7} &^# #3 41# #1#(#4 #4)4 4# 4 a. 4# 444 ^3 444 4444. 4# #44 444# 3l# 4# 313 & 111# #4 113 111 1 44. 444 1133 31 1 4 4^1 3 44 1414 44. #, 1-# 4 3-# 444 41 31 HI# 4# #4 44 4 44 44 #2, 5-4 4 7-4 444 44 31 4# 44 #4 4444. 3#

4 #44 3.4# 4#4 (44 4 0.04 cm), #4# 37-4 4 canflex 44# 4 44 44 ##133 #444.

4 4 4# 4444 #3# #### #44# 4## ± o.i m'34, 4# #4 4 ### #44 444# ± 0.033 m"241. 444 4## 44 44 14 4 #4 #44# #344 444 ##41 #34 4# 4444 144 141. 4# 44 4 4444 ###37} #4 4444 #443 3# 4# 4##, 1 4 444 ##434 4##4 #4 4^44 44#4 4###. # 434 3# # 41 #4# #3 #4 #44 &# !##z 41. 41# #7114 #A}% #14 44 44 #4 14# 43## l 3 41. #4 434 44 4^4 3 1# #11 4## 1#14 #4-! 4134 44 # 4 #414 #441 # 41. 114, 43# 14 1## 37-## CANFLEX #43 #44 41 3# 1 11 #3# 4 #1 #4#.

CANFLEX# 37-# 443# ##-#3# 4144 #4# 4# 3l# 4 3 314 44 11 0.038m" 2 # 0.022 m"24#. #44 37-# 4437} 4# 3# #444 CANFLEX 4437} 4#37} ## 1# 1414#. 11433, CANFLEX# 37-# 443# 7-# ##4 41 44 3# 14# 4# 31# #3 314 44 11 0.7 cm# 0.4 cm##, 44 l7}# 3## ± 0.04 cm ##. ##

- 66 - 4 14 "9-4 #4% ± 0.10 % 4#, ^}o]# 1% #4# ^ o^c} #1-# #44 #1, ±0.005 m' (±0.25 %) !#4 #4^1- ##44 #44% 1 # 44. 444 4 44 44% 111 44 4 444 #4# 441 4 44. 1%# 4144 #4, 4 !#4 #%### ± 0.18 mk4 4414.

CANFLEX4 37-% ^4# 444 !%. #4 4 414 %44 44% 0.016 m2# 4444. 44 %%%% 44 44 4#%, 44% 4#4 ^@4 #41 #(± 0.06 cm)4 4#% 4, ±i 44% %!44 444 44 #4# ± 25 %4 41%4. #% 44% 4#4 444 4% 4% #4# 4444. 144# 44% #4# #4, ± 0.004 m'(± 0.25 %)4 #4% 1144, 44% CANFLEX4 37- % $94# 444 4# %%# 444 0.8 ± 0.2 mk 4% 4% 44%4.

1414 14# #444, canflex 4 4#4 37-% 44# #4 !%# .4 44. CANFLEX 44#4 4% #1 414% 37-% 44#4 4#44 0.038 ± 0.005 m - 4% 1## 4444. 41% 1%# 4444 -1.25 ± 0.82 mk4 44%4. 1% CANFLEX 4 4#4 4% 4 414 444 0.016 ± 0.004 m"2# 44 % 1## 4444. 41% 1% 1%## 4444 + 0.82 ± 0.20 mk 4 4 !%4.

4 2 1 dca 4 41 1%4 #4 #4

1. dca 411 !%4 1% 444

dca % 414 44## 4%4# 14 4444 44# 4 44 #444 4 #44 44%%# 4%%4% 144 CANDU $94# 444 %4%4. #%

144 4%1 44## 44%4% 1 %%44##4, 4% candu 44#4 4 4 &4 %4 1 4% %4# #4 % # 4% %44# 4# 44. 44% #1% 111## 4#41 44 44# 144 4% #44 %4#4# #1 4.14 4.24 &1 %4 1 4% %44 44 44 4#444. #444 ##4 44# 41 1 # 14 4 #4#11 %%4 candu $94#4 dca 4%#44 %444 144 % 1% 1 4 14. 44 4% DCA 1% 144 #4% 4%4 44 #4% 4 44.

- 67 - •41# 4411 1 47> #14 14. • 1#4 tfl 41 #4 ti]7> ##4 h 4. '41& A}44 #4#4 ^l^A) ^4^14 41& ##4 44S14 ##4 14 4 4 $14-

##& sg^&oiH 44 4& 1### 44?}# #2_! 11 #4 44# 1 #^x}^i 7i] #&44. 1112.2. iiAi]/} #141 41& 444714 ^ #4 41 114 ^1442 1 #lx}y} ^1& 4# #1#2. 4#4 #4414. 441 %## DCA 41#47]# 444# 4, DCA# 4## ## 414 41 4 4" 4447} #142.2., 114 4% 1 #1^} ##/} 1A:4# 114 #412. 2. 1412.2. 444# 1 #14^ 7i]#4^ #7}# 2.14. 2.1 4.34 4.4# &4 #-4 1 1A: #-4 41&4 41 4& l^g 4 <@ #i%}^ #&4 1 4# 44 2.4 #2 n. zi# 4.1, 4.2, 4.3, 4.444 # 4 $1#4 DCA# 7}## 7]# 1## 4# 144 7]e CANDU 41#4 &7] 4 44# 2-4 4 4 $1# #4# 12 $14, ##2. 41& 4& 1#^ 444 1# x}&g. #-§-44 4 111 12-2- 41414.

2. dca 4 4 11 2.4

44 11# #44, %4 Bz" 7}o]A| 44# u4 Bz"4 1:# 4 (2.2)# 7} #44 !#%}# 412-2. 2.144 1# 4 $14. 44 414 14 44 "d u # 44 !#! Bz/4 4444 114. 44 c# 44 b4 42141# 4 2 % 4 42. ##4 42-4, !#%}# 114 44 u,4 b4 2.4# # 4 14 2 %44. 144 41447] Wo 4 41 &bz21 lei# 444# 4141 14## 42 4 2.1 4 (2.4)7} ##4 m# 1 # 14. 1 14! 14 4 44 4#1 bzc2# u4 Bm24 14 5. 4.14 4444 $14. dca ^144, Bm24 444 bz24 11# 70 % 4444. 41 1%}4 B# 1# 14 147] 3 %4 144# 7}4w 114$14.

Bm"# 114 7] #7}11 l#4z, 1%} 7)17} #7}4! 1A: S # #71-14. o.54(S) PUO2-UO2 41#1 4#1# 1.2 uo 2 41#4 43741# 4, 0 %4 7]A) 1 40 % #7}l$l2, 100 % 7]A) 1 20 % #7}1# 1# # 4.147] # # $14. # #44 PUO2-UO2 41&4 !#! 1# 1

- 68 - 444 ^ %g _ 26 %4 44# 7}44.

x}a #141, 444 4ia4 44 ^ #,^4 44 14 144 Bm" 4] 4#14 544, 4#4# 4## i % 4447^ 4# 1:4 a#44. 44# 14 4ia4 #44 #4^4 44 44a 4444 -5 %/} 4 44 4, !44 la 4#a7} 10 %4 441# 7M]2 #4# # ^ 444. 14 1## 1#4 441# ^A}e}7] 4#1, X|ig ^X}^ Bm^l 1# 1 %} a4441, 44 1##4 44 144 4#44 4am. 14laa, 4xi] 4 14aa#4 144 4 x]^ 4x}^ 4#^^ 4^iaa ± 3 % 444, 44 444 4#44 14414.

44 4444 la 4#a4 44 14## 1# 444 4a44 a 4.2 4 4444 44. ia#4 # 44( o - 100 %)# #1# 4, 4# DCA 2^444 4a 4#aa 4 e a# #4 444 # 44 44 44. 44a all 4a 4

#al 44 a i#a ^x}sj^4. 1.2 UO: 44&4 o.54(S) PUO2-UO2 44a 44 #4 4a 44a# 4^4 14, ##a# 44&4 14, 444 44&4 4a# 4, 4a 44a# 4 a.4 #4 4#aa 44444. a! # #44 o.s?

PUO2-UO2 44a 4a 44a# 4ml 14, 4411 #4S44 444 a#4 # la 4#a7} #4 4#aa a4 4 #4# 4# 1 # 14.

- 69 - it 4.1. Experimental value of material buckling

Material buckling (m2) Lattice pitch Void fraction Fuel type (cm) (%) B\ B2m

0 8.59i0.18 11.07i0.18 30 8.49±0.17 10.96i0.17 1.2 U02 70 7.77±0.15 10.24t0.15 87 7.66±0.15 10.13i0.15 100 6.47±0.11 8.83t0.11 0 12.87±0.32 15.34i0.33 30 12.04±0.30 14.51i0.30 0.54(S) 22.5 70 10.48t0.24 12.95i0.24 PUO2-UO2 87 9.96i0.23 12.43i0.23 100 8.49t0.18 10.85i0.18

0.87(S) 0 18.95t0.65 21.42t0.66 PUO2-UO2 100 10.86t0.26 13.23i0.26

0.87(R) 0 13.27t0.35 15.74t0.35 PUO2-UO2 100 8.43i0.17 10.79i0.17

0 7.27i0.14 9.71i0.14 1.2 U02 100 7.25i0.14 9.56i0.14

0.54(S) 0 10.86t0.25 13.30i0.26 25.0 PUU2-UU2 100 9.35t0.20 11.66i0.20

0.87(S) 0 15.79i0.47 18.24i0.47 PUO2-UO2 100 12.05i0.29 14.36i0.29

- 70 - 4.2. Comparison between experiment and calculation for coolant void reactivity

Void reactivity Change in void (dollar) Lattice pitch (cm) Fuel type fraction (%) Experiment

-6.31±0.43

1.2 UO

-6.OOtO.41 -0.30i0.09 -3.96i0.33

-9.36i0.88

-4.49±0.63 0.54(S) Pu02-U0 -6.79t0.76

-1.74i0.46 -8.63i0.86

0.87(R) Pu02-UO 0.87(S) Pu02-UO 1.2 UO 0.54(S) Pu02-UO 0.87(S) Pu02-UO -14.21il.46

- 71 DCA-N U-flood DCA-N U-void CANDU-NU-flood CANDU-NU-void

Energy (MeV)

-Yl 4.1. Cell spectrum change for natural uranium fuel

- 72 - 10 -

DCA-5SPU-flood DCA-5SPU-void CAN DU-Equilibrium-flood CAN DU-Equilibrium-void

Energy (MeV)

4.2. Cell spectrum change for irradiated fuel

- 73 - Thermal Flux 0.10 0.15 0.20 0.25 0.30

------Yl

4.3. CANDU-NU-void CAN DCA-NU-void DCA-NU-flood

Radial

DU-NU-flood

thermal Normalized -

flux 74

- for

Radius

natural

uranium

fuel Thermal Flux - Yl

4.4.

Radial

Normalized thermal -

75

flux -

Radius

for CAN C A N D U - E q u i l i b r i u m - f l o o d DCA-5SPU-flood D C A - 5 S P U - v o i d

irradiated

D U - E q u i l i b r i u m - v o i d

fuel

n\ 5 A|^5! 3E^|?||9J A|5|E

44-a 444 4e 4444 powderpufs -V(ppv )4 kfsp aa# a >^^> a #a4, 4 aa#a 44a(ZED-2) # ##a ##44 44 44 4^4 4 #4. # aa444a 44 -@4 23a]44 #44 4## 44 #4# 4-0-44 44/44 aa# 4## ^7}4z4 44.

Phase-B 444 444 44a #4 0.5 % 4444 44-444 44# # a# #44# 4# ^4 #444 4444 4 a 44 ##, 4/1-4 a#4 44 44 # 444 444## 444 #444. #4#44# 4#44 #444 4 4 44 444 444 44 aa# powderpufs -v 4 RESP# 4444 #4a 44# 444 444a, 444 444 # a44 4&# 4-0-4 #4a 44# 44 s.a\ 4444 44 aas) 44a# 47>44. 4#4 44# 4 4 7>4 4 4a a#4 444 #444, ##a4 #44 4& 4#a# #4444 44# 4 #4. 444 4 aa444# 44 23aM4 444 #4 44 aa4# 44 44 4444 44 aaa) 44# 47}4zx} 44. 44 #4 #4# 44 44 44a a# 44# 4##a, 44 44# _s_444#4, 4& 4#a4 444 4 # 44-7i] ^a 4 #4 44 44 44# 44444.

41 1 4 4 a 4 41 4#

1) &4 #x]-a a#

4#4#44 a## 4444 444 4# a##4 4711a a# 44, #11 # 7}#4# 44# 4# #44#4. 44 &4 7}#4#4 a#4 #a# a 14 4 a#4 44 0 ppm 4 34.8 ppm 4 44.

2) 44 ##4 4 4a #4##

### 44# 55 % #44 #444 a## 444 44# 4 44 #44 4 #4 ##4 #444, a# 44# 444a ### 4## 4#4 #4 444 # 4a##4. 17:384 ### 4## 0.5 % 4# (57.85 % #4#4)4## 4 4

- 76 - _ &4 4 ^4 #7}#5.4 18:054 44 44#444. 44 4 0.19 cps/sec4 4 . 44 :£44 44#4#4 44. 0 44 #4 A-14 '97.01.29 18:05 0 37% 4#4 4##4 9.0 ppm S).0 ppm 9.0 ppm 4##4#(44) 2881.' 6 cps © 44 £444 #4 16.94 % W4 #z r= #4 99.63 wt% 444 #% r= #4 99.84 wt% 0 ^44 #4 34.96 °C 444 #4 29.5 °C ###44 #4 55% 44 ® 44#4 ~10" 11 FP

444# £# 4#£##44 44 £#££ 444 444 £#4#4 # 43 4 44 #^_%44. 4 7]1 4 e #4 47M4# 7)4 2.^ 4 #4 20 # 4 4-0.2. #4# #444 Tll^rl- #7} 4 44 7]# 4 #7] esJ 2] 44# a 24 44 4# %%44 444 4444- # #444# 44 #^44 4.

44 4444 ##4 #£# 7}#4# 0 ppm# £# 9.0 ppm££ #44 44. 44# 4#4 4: 9.12 ppm (44£%44 #4, 4#4/4444 %£ 4 # £ 4 #2 4# 4#£# 5-44 #4 9.04 ppm) # 0.04 ppm 4 442 4##44 ± 0.5 ppm4 a.4 #44 4#44 4#44 # # 444 (# 3).

3) 10 " FP44 #4##

444 £##44- 4 44£ #4# 4 10"11 fp£ #444 4 #4# # 444# 4# 4#7]4 4e#4°> #4. 10"6 fp#4 #4 4# #4# ### 44 # 44£ #££ % 4#44 ^ 4#£# 4#% # #4#4 (a 2 #£)# 4 ##4 £## # 44. 44£ 444#4 £%# 44% 444 #### 4# ££2. ## #4 ##%# 4#££ 4#44£ 44£%44 #4# 15 %44 30 %£ #7M%£4, 4444 £# 4# %#£ 444#4 44 44444.

- 77 - 4) 4#4#4 #444

2:7] oil 34.8 ppm il# Efl ^ a ^| i^tfl 7]^4&4 E4# 4## 4 9.67 cps 4%#4, ^1&7]# 100 cm 4##2 4## 4### 3.5 cps4%#. 44 444 #4 &7l 4#4#4 (-%4& #4444 200 cm 44) 4### 4 7800 (=2807x 9.67/3.5) cps a] % 4.

741 2 4 41# 44 ##

Phase-B# 4## ##44 44# 4## 44^4 44-4 4# 4# #4 # 4# 4 2 444# A]^l 44^4^. # 19#4 ## 4^0]^ 4. 4 # 4 # ## #4# 4 #4 a#4 4 #4 44 ### ### 44.

1) 44 2#4# 19974 14 294 18:054 4&# 444 ##^4. 444 5-4 44 444 44 #444 5,44 4#574 4444- 4444 444 44 ###4 4#4##4, #4 ## ### 34.8 ppm4%4. RFSP aa# 4-0-4 4 4 ## ### 9.12 ppm4%a, 4#4/##4 ## # 44 #4 44# a4# 4444 :&# ### 9.04 ppm4%#4, 44# 44# 9.0 ppm (4-8-4 ± o.5 ppm) 4 4 4#4##.

2) 44 #44-# #-8-# #4# #44 4##4 #4# B2O3 44# 4# 4 44 4####4 4-8-# 4:# #4#^#. 20-80 % 444 4-8-# #4 ## 4 0.20 % 4%#4, 4-# #44 %4 4# 20-60 % 444 4-8-# ### -0.27 %#4, 44# 0.072 mk/%AVZL (4-8-# ± io %)4 4 4a 4## #4#M.

3) #4#, 44#, 3.42 #### 44 #44-# 4-8-# 4# 0.072 mk/%AVZL# 4### 4-8-# &## 44#^#. 4-8-# 4: #4 44##4 4 4 -3.403 % (#4#), -5.74 % (44#), a4a -6.9 % (###)& a# 4-8-## (±15 %) 44 44 4#4 44 #4# 4^4.

4) #4##, ##### #4" 0.072 mk/%AVZL# 4### 4## 4:4 # 44^4. 4-8-# & #4 44### ## -4.02 % (#4# 4#), -n.89 % (## 4- 4#)# ## 4-8-4 (± 15 %) 44 44 444 44 44# #4#4, 4 4

- 78 - 4# #444 #4 #4 #44^4.

5) #444 #4# #4, #4 4#4 ^##4 (#444 #47l #19 4 #4 44 #471 #M4)# 4-§-4^^4, 444# ^#7] #4 44 4 #4 X}4 #2. 4:3 # 2.4 Pico Ampere Meterg. 444^4. #4^1-4 #& #4# 4 4 7M 4;#a 4444 44 4^(57}4 4#)4 444 #4sl%#4, RFSP a a# 444 444 4 44444. #4/#4 44 #444 #4 44 4 44 4 444 444 #44 aaa 4#4 #44 44^ 44 RMS #47> 10.9 %#

444a 44 4# 444 15 % rms 44 44 #a 44. 444# 4#44 #4 44 44a 57M 4^-# 444^#4, 444 #.#7} -o.67 %, - 5.28 %, 1.5 %, -5.73 %, 0.21 %& ± 15 % 44 44 #4 4#7] 4#a 44444.

6) 444 #a 4#a# 35-260 °c 444^1, 447i] ^a 4#a# 69- 35 °c 444^1 #44^4. 444 ^a 4#a 4# 37H a4# 4a#4 4^4 aa 4#447l #44##4, 4#7i] ^a 4#a 4 #4# 3?!] a4# 4a/l- 4#4 4444 #44^4. 44^1 447i]/4-a^ ^a 4#a 4 #4# 44-4- 444 44444# 4444 RFSP aa# 444 a 44# 4444 44 4# 4^0.4, 44 a## 44 -11.92 % ^ -1.57 %a a# 44-44 ±25 %4 a# 44# 444.

7) 4 1, 2 4431# 44# 4 1 4431# 44# # 71-4- a#?} e 27% (44, 84), 4 2 444# # 7>4 a47> # a# (Li-2), a4a 47fl #### 4 4 4444 4444 #4444. 444 4444 4#4#4#a (ROP) 4#4 44 #44 #4# RFSP47) 4## 444 4a44a4, 4#4 445.4 #4 444# 44# # 444.

41 3 4 POWDERPUFS-V/RFSP# 4~§-4: ^4^/44^ a a

4r#a 414

44"7l] fra# 35.25 °C4Mi 259.84 °C& 444447) #^l#a a45. 4 44# 44^444 #4 4#4 4# 4#a % #4444. 44 44"7i] 4a # 1.10117 g/crn 44 0.86362 g/cm'aa 444, a 4 44# 4#aa 21.6 % 4# 4 4444. #4#4 4#7i] 4a# 4 35 °ca 44431 #44 4444, a4

- 79 - # 3444 4#444 44^44-4 4^4# 4^4^a ^44 #^# 15 °C# 4^4444 #^ 4#^ W #44^4- 4444 4^4 4# 4# a444 444 4#a 44# 44 & 44 a4 14 4444#4, RFSP 444 4 4374^4. ^44 4#^ 44 4# ^4# Dga/l- 34 4#4 4444 -9.368 mkg. 444 -8.25 mk4 -11.92 %4 44# ^_4 44 _&4- 44 44.

444# 69.0 °c44 34.99 °c& 4^# 4#44a, 44 4# 44#^ &4# 44^444 44 4#44 44 4#^ 4W44. 44 444 4^# 1.08508 g/cm 44 1.10151 g/cm^g. ^7}44, &4 44# 4#^g. 4 1.5 % 444 #444. 444 4#^ 4 44# 4# 444 #^# 4 260 °c& 4444 444a ^4# 4a 34# 4#4 4444 444 #^# 5 °C4 4#4444 44^444 44# 4#4^4. 4444 444 4# 44^444 444 4#^ 44# 44 a 54 a^ 24 444^^4, RFSP 4 #44 4a4^4. 444 4#^ 44 4# -1.299 mk& 444 -1.297 mk4 # -1.57 %4 4.4-# ^.4 44^.4 (± 25 %) 44 4# 4 O-g. 4444.

- 80 - it 5.1 Reactor condition before the first criticality

7]]-ft 44 ^4 #444

Rate Log N, %/sec 10 OK SDS-1 Lin N, %FP (ROP) 20 OK Rate Log N, %/sec 15 OK SDS-2 Lin N, %FP (ROP) 30 OK

High Log N, CPS 3 OK ?14 Low Log N, CPS 7} 4 4 OK 7114/1 Rate Log N, %/sec 10 OK High Voltage 1850±5% OK Demand Power Rate %/sec 0.1 OK Demand Power, Decades -5.7 OK

LZC System (%Full) < 15% Full 15.3% | #4 55% #4(44) MAC'S OK 44^ 7]f Adjuster Rods OK Shutoff Rods 2-4 11# (44) OK

Temperature, °C - 35.8 °C Level, mm - 7513 mm

Isotopes, A% > 99.61 99.84 wt% 4471] 3]# B Concentration, ppm ( 7| 4) 33 ppm °14 34.8 ppm Gd Concentration, ppm - 0 ppm Pumps One On OK

Temperature, °C - 35 °C Isotopes, A% >99.0 99.64 wt% ^4^ 7]]# Main Pumps - On shutdown Cooling Pumps - Off 4# 4 4/Ml 4 2151 OK 447H 34^14 2151 OK

- 81 it 5.2 Trip setpoint of detector

High Log N Trip t-1 ^ Low Log N Trip Log Rate Channel D & E Channel F (cps) Trip (%) cps Value cps Value cps Value

5-20 200 2.30 180 2.26 1 0.01

20-50 500 2.70 450 2.65 4 0.60 30

50-250 1000 3.00 900 2.95 10 1.00 30

250-750 2000 3.30 1800 3.26 62 1.79 15

750-1500 3000 3.48 2700 3.42 250 2.40 15

1500-2300 4600 3.66 4140 3.62 750 2.88 15

2300-3500 7000 3.85 6300 3.80 1150 3.06 15

3500-5300 10600 4.03 9540 3.98 1750 3.24 15

5300-8000 16000 4.20 14400 4.16 2650 3.42 15

8000-12000 24000 4.38 21600 4.33 4000 3.60 10

12000-18000 36000 4.56 32400 4.51 6000 3.78 10

18000-27000 54000 4.73 48600 4.69 9000 3.95 10

27000-40500 81000 4.91 72900 4.86 13500 4.13 10

40500-61000 89000 4.95 79200 4.90 20250 4.31 10

61000 o]# 98000 4.99 91000 4.96 31000 4.49 10 t) 4N Fit D, E Trip Set Point ^ 90 %

- 82 - it 5.3 Predicted critical boron concentration

44144(A) RFSP(B) (A) - (B) RFSPtl^(mk) 1. AVZL(%) 16.94 15.0 1.94 -0.13968 2. 4144 44 (at%) 99.6 99.0 0.6 0.576 3. 444 44 (at%) 99.822 99.833 -0.011 -0.3729 4. ^44 44 34.96 25.0 9.96 -0.58764 5. 444 44 29.5 35.0 -5.5 -0.16775 6. MCA#4 55% 44 -0.984 -0.984 0.0 0.0 7. 44 (B) 9.0 4 4 Boron 44 9.12 9.04 1) AVZL 44 S : -0.072 mk/%AVZL 2) ^44 lir-c- 444 44 : 0.96 mk/atom % 3) 444 444 44 : 33.9 mk/atom% 4) ^44 44 444 44 : -0.0592 (304 5) 444 44 444 44 : 0.0305 mk/t (30 6) Gd 44S 314= : Boron 8.31 mk %3.6 (= 29.916) * 444/444^1 wt%* at%& 444 4

" (1000/D J-l

- 83 - 5.4 Coolant temperature coefficient

ZCU LEVEL 4# "344 iHr4 Xe## ^rE(C) ^E(t) -1AVZL AAVZL "9# (mk) (mk) (%) (mk) (%) (%)n"^ (mk) (mk) (A) (B) 35.25 34.12 50.06 34.14 -12.36 -12.36 0.89 0.00 -0.9025 -0.888 1.63 0.28 64.87 34.25 -10.25 -22.61 0.74 0.01 -1.6561 -1.738 -4.71 0.28 79.92 34.42 -10.18 -32.79 0.73 0.01 -2.3960 -2.564 -6.55 0.28 96.85 34.42 -10.79 -43.58 0.78 0.00 -3.0843 -3.358 -8.15 0.28 110.84 34.67 -9.62 -53.20 0.69 0.01 -3.8203 -4.107 -6.98 0.26 125.53 34.60 -10.07 -63.27 0.73 0.00 -4.5464 -4.822 -5.71 0.25 140.82 34.96 -8.29 -71.56 0.60 0.02 -5.1515 -5.521 -6.69 0.25 155.26 34.03 -7.46 -79.02 0.54 -0.05 -5.6561 -6.179 -8.46 0.25 172.15 36.01 -8.36 -87.38 0.60 0.11 -6.2878 -6.811 -7.68 0.25 187.21 34.82 -6.41 -93.79 0.46 -0.07 -6.6820 -7.393 -9.62 0.25 199.78 35.18 -4.71 -98.50 0.34 0.02 -7.1104 -7.788 -8.70 0.25 215.04 35.14 -5.66 -104.16 0.41 0.00 -7.5088 -8.270 -9.20 0.25 230.07 35.14 -4.27 -108.43 0.31 0.00 -7.8156 -8.703 -10.20 0.25 245.09 34.88 -3.53 -111.96 0.25 -0.01 -8.0551 -9.065 -11.14 0.25 259.84 34.75 -2.78 -114.74 0.20 -0.01 -8.2514 -9.368 -11.92 0.25

Note) E-f] Vb- ^4 = o, # (.'AVZLtif +-H zfi 'S-S-H +.'iXeti>-§-H) = 0

tiN 0.0552 mk/C (35 C 4 4, 4# 35C& RFSP 4]^

- 84 - it 5.5 Moderator temperature coefficient ^44 ^44 444 444 ^44 AVZL .iAVZL 44 Xe 444 444 4B(t) 4S(t) (%) (%) (mk) (%) (mk) (mk) (A) (B)

69.00 260.48 50.26 0.42 65.00 261.00 48.82 -1.44 0.10 -0.01 -0.1165 -0.122 -4.51 0.42 60.06 261.37 46.43 -2.39 0.17 -0.01 -0.2730 -0.285 -4.21 0.43 54.45 261.37 43.82 -2.61 0.19 0.00 -0.4404 -0.467 -5.70 0.43 50.25 261.25 41.63 -2.19 0.16 0.00 -0.6310 -0.662 -4.68 0.43 45.52 261.00 39.00 -2.63 0.19 0.01 -0.8365 -0.863 -3.07 0.43 40.42 261.37 35.87 -3.13 0.23 -0.01 -1.0502 -1.075 -2.31 0.43 34.99 261.64 32.07 -3.80 0.27 -0.01 -1.2787 -1.299 -1.56 0.45

Note) 2^^ = 0,

# (,'lAVZL tif-g-H + «}-§-£ + + .'iXe «>■§-£) = 0 "34^ Mf-g-S 414 : -0.0202 mk/t (260 t?!#) 44 i 4E : 4S4j 4 eg i)a^| ^-g- % 44 = (A-B)/B*100 44 44 44S 44 : -0.072 mk/%AVZL 444 Mf-g-S 4 444 = -{(.'iAVZL*-0.072)+(.'iHT*0.0202)-.'iXe}

- 85 - 300

-Yl 5.1 Reactivity change due to coolant temperature

- 86 - Reactivity (mk) - - - - -0.4- - 0 0 0 1 1 . . . . . 2 0 8 6 2 ------Yl

5.2

Reactivity RFSP Measurement Moderator

change -

87 temperature due

-

to

moderator

(C)

temperature n\ 6 9

44^ 44S 7]5 44^4 44^# 44-44 7>44 ZED-2 44^- 4

44- DCA44 4*34 44 #4# 4444 44444. zed -24 dca 444 44^ 4 4& 44^ #44 4# 444 4-§-4z 444, 4# #4 4# 4& 44^4 44^4 44 4-0-4.44 44 io % 4^& 4z}# 4 44.

44 44& 44/444 4442 44 powderpufs -v 4 RFSP hjas ] 44 44 4 44 2^4 444 4&#^40-44 4/M014-. 44 44 44 44 0.5 ppm 444 4 44401^-4, 44^4 44, ^4#, 444, zi4z #444 4-0^4 44 0.3 %, 3.4 % 5.7 % 3.43.6.9 % 4444 41444- 4444 44 44 -&4-01 ± 15 %# 444z 01014. 44 ^ 44^ 4444 4^44 10.9 % ^.4# ^-4 431 44 ^.4 15 % RMS# 444014. 444 4 4444 4^ 314^ 44 n.9 % 4 1.6 % 4444 #444 4444, 44 44 4-4 ± 25 %# 444014.

44 2^4 444 4&4 4# 4& 44^4 44 44 44 4&zl 014 4# 431/44 a^4 4& 44^ 44 444 44444 4444 44. 47i]g.A^ 4 444 4^3144 44^1 4& 44-^4 #444z zl4444, 4& 44-^4 3144 0144^ ^.4 444 444 4444, 44 44 444 444 4_s_44.

- 88 - *1 7 9

44 44 #4 ^ 44 4^ • POWDERPUFS-V 5 RFSP# 444 DCA 44 44 4& 44 4 4 4 . 44^ 44 44^ 444 44 44 aa 44 (4, MCNP-4B) ^ 4/}

- 89 - BIBLIOGRAPHIC INFORMATION SHEET

Performing Org. Sponsoring Org. Standard Report No. INIS Subject Code Report No. Report No. KAERI/TR-1997/2001

Title/Subtitle Analysis on Experimental Results of CANDU Fuel Void Reactivity

Main Author HangBok Choi ( Design Technology Development)

Coauthor ByungJoo Min, GyuHong Roh, MiKyoung Yang

Publication Publication Taejon Publisher KAERI 2001. 12. Place Date Page 89 p. 111. & Tab. Yes ( V ), No ( ) Size 26 cm.

Note Open( V ), Restricted( ), Classified Report Type Technical Report Class Document, Internal Use Only( ) Sponsoring Org. Contract No.

Abstract (15-20 Lines)

In case of loss of coolant accident, the void reactivity of the CANDU fuel provides a positive reactivity and increases the reactor power abruptly. Therefore it is required to secure credibility of the void reactivity in the stage of nuclear design and analysis, which has motivated this study to assess the measurement data of CANDU fuel void reactivity. First of all, the measurement data of ZED-2 and DCA were reviewed and the recent results were used for the analysis of uncertainty and validation of reactor physics codes. In principle, both the ZED-2 and DCA experiments are performed to measure moderator critical height during the substitution process by experimental lattices. The overview of the experimental results indicated that the confidence level of the void reactivity is ± 10 %. The assessment of physics codes, POWDERPUFS-V and RFSP, has been performed using Phase-B measurement data of Wolsong 2. However, because the void reactivity measurement data is not available from the Phase-B test, the measurement data of coolant/moderator temperature coefficient, which are believed to be close to the property of the void reactivity, were used to assess the performance of void reactivity calculation by the CANDU core physics codes. The comparison between the calculation and measurement has shown that the prediction errors of the coolant and moderator temperature coefficients are 11.9 % and 1.6 %, respectively, which are within the allowable design error of 25 %, Subject Keywords CANDU, void reactivity, critical assembly (About 10 words) ^ A] ^ ^ 4

#194432443 4 44435. a ) 43 ##32443 INIS #422

KAERI/TR-1997/2001

44/#4 ##3 ^43 43 #4-3 #4 #4 #4

#44 4#4- (443 4414# 7fl#4)

##44 4^#, 3##, 444

# A A #4 44 44 444AM 4## 444 2001. 12.

4 4 4 89 p. 3 3 $!#-( 0 ), #-§-( ) EL 71 26 cm. #3.4# ##( o ), 444( ), 444# 7l##J7Al #44, 344 #4 ( ) 324## #4# #7]# 44 43 3# (15-20## 4) #45. 443# 7]2. 44-3# 444 44 4^1-34 44 44-3# #444 #4# 544 #44: Fi# 4-4-7) 4x}g. 44/4447) 43 44-34 443 #44 443# #34# t\v4, 4# 44 444 44 4-3# 44-4414. 44 zed -24 dca 44 444 3#4 44 4-3# #444 434434, 4 4 45 #154 444 44 443 #7> # 2#4#4 534 4## 44-4^4. ZED-24 DCA 4*1# 44 44 34 ### #4 47 1 #4# #44# 4403 44# 4^44, #447-1 444 43 44-34 443# 4 10 % #33 4/1-42 44. ##3 44 52# 47}# POWDERPUFS-V4 RF'SP4 444 #4 234 4 #4 x}3# 44HM 4/l-4^#4, 43 44-34 44 ^-44 ^4 4 #4 4-4 4 44/4#Ail #3444 4# 47}##4. 4444 ^44# 424 44, 447# 4#7ii4 44 11.9 % 4 1.6 %4 34# 3^34, 44 #4 4# 344 ±25 % 444 2# 433 4444.

#414443 ##3, 7li #4-3, 441 44 (104444)