Unconditionally Secure Commitment and Oblivious Transfer Schemes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Imperfect Oblivious Transfer Extended Abstract
Imperfect Oblivious Transfer Extended Abstract Ryan Amiri,1 Petros Wallden,2 and Erika Andersson1 1SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom∗ 2LFCS, School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, United Kingdom I. INTRODUCTION Oblivious transfer (OT) is one of the most widely used and fundamental primitives in cryptography. Its importance stems from the fact that it can be used as the foundation for secure two-party computations; with oblivious transfer, all secure two-party computations are possible [1],[2]. Unfortunately, it has been shown that unconditionally secure oblivious transfer is not possible, and that even quantum mechanics cannot help [3], [4]. In fact, the results of Lo actually go further, and show that it is impossible to securely evaluate any one sided two-party computation. Since then it has been an interesting and productive open question to determine the optimal security parameters achievable for some important two-party computations. In this paper we address the theoretical question \How close to ideal can unconditionally secure OT protocols be?" Our paper contains two main contributions: 1. For general 2-round OT protocols, we increase the lower bound on the minimum cheating probabilities achievable for Alice and Bob, i.e. we show that any OT protocol with at most two rounds of (classical or quantum) communication must have a cheating probability of at least 2=3. If the states in the final round of the (honest) protocol are pure, this bound is increased to 0:749. In the case that the final round contains pure states, we extend our 0:749 bound to general N-round OT protocols. -
Mechanics of Mobilecoin: First Edition
Mechanics of MobileCoin: First Edition exploring the foundations of a private digital currency April 6, 2021, Preview (10/11) v0.0.39 koe1,2 DRAFT INFORMATION: This is just a draft, and may not always be available wher- ever it is currently hosted. The final version will be available at https://github.com/ mobilecoinfoundation. License: `Mechanics of MobileCoin: First Edition' is released into the public domain. 1 [email protected] 2 Author `koe' worked on this document as part of a private contract with, then as an employee of, MobileCoin, Inc. Abstract Cryptography. It may seem like only mathematicians and computer scientists have access to this obscure, esoteric, powerful, elegant topic. In fact, many kinds of cryptography are simple enough that anyone can learn their fundamental concepts. It is common knowledge that cryptography is used to secure communications, whether they be coded letters or private digital interactions. Another application is in so-called cryptocurrencies. These digital moneys use cryptography to assign and transfer ownership of funds. To ensure that no piece of money can be duplicated or created at will, cryptocurrencies usually rely on `blockchains', which are public, distributed ledgers containing records of currency transactions that can be verified by third parties [115]. It might seem at first glance that transactions need to be sent and stored in plain text format to make them publicly verifiable. In truth, it is possible to conceal a transaction's participants, as well as the amounts involved, using cryptographic tools that nevertheless allow transactions to be verified and agreed upon by observers [151]. This is exemplified in the cryptocurrency MobileCoin. -
Perfectly Hiding Commitment Scheme with Two-Round from Any One-Way Permutation ∗
Perfectly Hiding Commitment Scheme with Two-Round from Any One-Way Permutation ¤ Chunming Tang1;y Dingyi Pei1 Zhuojun Liu2 Zheng-an Yao3 Mingsheng Wang4 1 School of Mathematics and Information Sciences, Guangzhou University, China(510006) 2 Key Laboratory of Mathematics Mechanization, AMSS, CAS, China(100080) 3 School of Mathematics and Statistics, Zhongshan University, China(510006) 4 State Key Laboratory of Information Security, Institute of Software, CAS China(100080) Abstract Commitment schemes are arguably among the most important and useful primitives in cryp- tography. According to the computational power of receivers, commitments can be classi¯ed into three possible types: computational hiding commitments, statistically hiding commitments and perfect computational commitments. The ¯st commitment with constant rounds had been constructed from any one-way functions in last centuries, and the second with non-constant rounds were constructed from any one-way functions in FOCS2006, STOC2006 and STOC2007 respectively, furthermore, the lower bound of round complexity of statistically hiding commit- n ments has been proven to be logn rounds under the existence of one-way function. Perfectly hiding commitments implies statistically hiding, hence, it is also infeasible to con- struct a practically perfectly hiding commitments with constant rounds under the existence of one-way function. In order to construct a perfectly hiding commitments with constant rounds, we have to relax the assumption that one-way functions exist. In this paper, we will construct a practically perfectly hiding commitment with two-round from any one-way permutation. To the best of our knowledge, these are the best results so far. Keywords: Cryptography, perfectly hiding commitments, one-way permutation, §-protocol. -
Generation and Distribution of Quantum Oblivious Keys for Secure Multiparty Computation
applied sciences Article Generation and Distribution of Quantum Oblivious Keys for Secure Multiparty Computation Mariano Lemus 1,2, Mariana F. Ramos 3,4, Preeti Yadav 1,2, Nuno A. Silva 3,4 , Nelson J. Muga 3,4 , André Souto 2,5,6,* , Nikola Paunkovi´c 1,2 , Paulo Mateus 1,2 and Armando N. Pinto 3,4 1 Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; [email protected] (M.L.); [email protected] (P.Y.); [email protected] (N.P.); [email protected] (P.M.) 2 Instituto de Telecomunicações, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal 3 Departamento de Eletrónica, Telecomunicações e Informática, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; [email protected] (M.F.R.); [email protected] (N.A.S.); [email protected] (N.J.M.); [email protected] (A.N.P.) 4 Instituto de Telecomunicações, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal 5 Departamento de Informática, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal 6 LASIGE, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 016, 1749-016 Lisboa, Portugal * Correspondence: [email protected] Received: 15 May 2020; Accepted: 10 June 2020; Published: 12 June 2020 Featured Application: Private data mining. Abstract: The oblivious transfer primitive is sufficient to implement secure multiparty computation. However, secure multiparty computation based on public-key cryptography is limited by the security and efficiency of the oblivious transfer implementation. We present a method to generate and distribute oblivious keys by exchanging qubits and by performing commitments using classical hash functions. -
Quantum Bit Commitment and Coin Tossing Protocols
Quantum Bit Commitment and Coin Tossing Protocols Gilles Brassard * Claude Crepeau t Departement d'informatique et de R.O. Laboratoire de Recherche en Informatique Universite de Montreal University de Paris-Sud C.P. 6128, succ. "A" Batiment 490 Montreal, Quebec CANADA H3C 3J7 91405 Orsay FRANCE 1 Introduction In the late 1960's a physicist, Stephen Wiesner, had the idea that the uncertainty principle could be used for cryptography (though he published his result much later [Wie83]). One of his ideas was that it would be possible to use a stream of polarized photons to transmit two messages in a way that would make only one of them readable at the receiver's choosing. This notion, which he called "multiplexing", is remarkably similar to the "one-out-of-two oblivious transfer" to be reinvented many years later [EGL83], and it even predates Rabin's notion of oblivious transfer [Rab81] by more than a decade. In the late 1970's, Wiesner's invention was brought back to life by the work of Charles H. Bennett and Gilles Brassard, which resulted in a CRYPTO '82 paper [BBBW82]. Subsequently, Bennett and Brassard used quantum cryptographic principles to implement basic cryptographic protocols, such as secret key exchange and coin tossing by telephone [BB84]. There has been recently much excitement in the field of quantum cryptography because a working prototype of the quantum key exchange channel has been successfully built at the IBM T. J. Watson Research Laboratory, Yorktown Heights [BBBSS90]. In recent times, the importance of cryptographic primitives has been brought to light by the work of many researchers whose goal is to characterize precisely the primitives sufficient for the implementation of various cryptographic protocols. -
A Review on Quantum Cryptography and Quantum Key Distribution
3rd International Conference on Multidisciplinary Research & Practice P a g e | 463 A Review on Quantum Cryptography and Quantum Key Distribution Ritu Rani Lecturer, Department of Physics, CRM Jat College, Hisar Abstract: - Quantum cryptography uses our current knowledge key. The main disadvantage of a secret-key cryptosystem is of physics to develop a cryptosystem that is not able to be related to the exchange of keys. Symmetric encryption is defeated - that is, one that is completely secure against being based on the exchange of a secret (keys). Secret key compromised without knowledge of the sender or the receiver of cryptography systems are often classified to be either stream the messages. Quantum cryptography promises to reform secure ciphers or block ciphers. Stream ciphers work on a single bit communication by providing security based on the elementary laws of physics, instead of the current state of mathematical at a time and also use some kind of feedback mechanism so algorithms or computing technology. This paper describes an that the key changes regularly. The goal of position-based overview about Quantum cryptography and Quantum key quantum cryptography is to use the geographical location of a distribution technology, and how this technology contributes to player as its (only) credential. A quantum cryptographic the network security. protocol is device-independent if its security does not rely on Keywords:- Quantum cryptography, public-key encryption, trusting that the quantum devices used are truthful. Thus the Secret key encryption, Quantum key distribution technology security analysis of such a protocol needs to consider scenarios of imperfect or even malicious devices. -
A New and Efficient Signature on Commitment Values
International Journal of Network Security, Vol.7, No.1, PP.101–106, July 2008 101 A New and Efficient Signature on Commitment Values Fangguo Zhang1,3, Xiaofeng Chen2,3, Yi Mu4, and Willy Susilo4 (Corresponding author: Fangguo Zhang) Department of Electronics and Communication Engineering, Sun Yat-Sen University1 Guangzhou 510275, P. R. China (Email: [email protected]) Department of Computer Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China2 Guangdong Key Laboratory of Information Security Technology Guangzhou 510275, P. R. China3 School of IT and Computer Science University of Wollongong, Wollongong, NSW 2522, Australia4 (Received July 15, 2006; revised and accepted Nov. 8, 2006) Abstract user, it cannot be transferred to any one else, i.e. “non- transferability”. It is desirable that the overheads of com- We present a new short signature scheme based on a vari- munication and computation imposed by a credential sys- ant of the Boneh-Boyen’s short signatures schemes. Our tem to users and services must not heavily affect their short signature scheme is secure without requiring the performance. random oracle model. We show how to prove a commit- The studies of anonymous credential have gone through ted value embedded in our short signature. Using this several stages. After its introduction by Chaum, Brands primitive, we construct an efficient anonymous credential presented a public key based construction of anonymous system. credential in which a user can provide in zero knowledge Keywords: Anonymity, anonymous credentials, commit- that the credentials encoded by its certificate satisfy a ment, signature given linear Boolean formula [6]. This scheme allows only one show, namely, two transactions from the same user can be found performed by the same user. -
One-Way Functions Imply Secure Computation in a Quantum World
One-Way Functions Imply Secure Computation in a Quantum World James Bartusek* Andrea Coladangelo† Dakshita Khurana‡ Fermi Ma§ Abstract We prove that quantum-hard one-way functions imply simulation-secure quantum oblivious transfer (QOT), which is known to suffice for secure computation of arbitrary quantum functionalities. Further- more, our construction only makes black-box use of the quantum-hard one-way function. Our primary technical contribution is a construction of extractable and equivocal quantum bit commit- ments based on the black-box use of quantum-hard one-way functions in the standard model. Instantiating the Crépeau-Kilian (FOCS 1988) framework with these commitments yields simulation-secure QOT. arXiv:2011.13486v2 [quant-ph] 13 Aug 2021 *UC Berkeley. Email: [email protected] †UC Berkeley. Email: [email protected] ‡UIUC. Email: [email protected] §Princeton University and NTT Research. Email: [email protected] 1 Contents 1 Introduction 3 1.1 OurResults ...................................... ......... 4 1.2 RelatedWork ..................................... ......... 6 1.3 ConcurrentandIndependentWork. .............. 6 2 Technical Overview 8 2.1 Recap: Quantum Oblivious Transfer from Commitments . .................. 8 2.2 Our Construction: A High-Level Overview . ................ 10 2.3 Making Any Quantum (or Classical) Commitment Equivocal ................... 11 2.4 An Extractability Compiler for Equivocal Commitments . .................... 13 2.5 Putting it Together: From Commitments to Secure Computation. -
Practical and Provably-Secure Commitment Schemes from Collision-Free Hashing
Practical and Provably-Secure Commitment Schemes from Collision-Free Hashing Shai Halevi ? Silvio Micali MIT { Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139 Abstract. We present a very practical string-commitment scheme which is provably secure based solely on collision-free hashing. Our scheme en- ables a computationally bounded party to commit strings to an unbounded one, and is optimal (within a small constant factor) in terms of interac- tion, communication, and computation. Our result also proves that constant round statistical zero-knowledge arguments and constant-round computational zero-knowledge proofs for NP exist based on the existence of collision-free hash functions. 1 Introduction String commitment is a fundamental primitive for cryptographic protocols. A commitment scheme is an electronic way to temporarily hide a value that cannot be changed. Such a scheme emulates by means of a protocol the following two- stage process. In Stage 1 (the Commit stage), a party called the Sender locks a message in a box, and sends the locked box to another party called the receiver. In Stage 2 (the De-commit stage), the Sender provides the Receiver with the key to the box, thus enabling him to learn the original message. Commitment-schemes are very useful building blocks in the design of larger cryptographic protocols. They are typically used as a mean of flipping fair coins between two players, and also play a crucial part in some zero-knowledge proofs and in various types of signature schemes. Commitment schemes can also be used in scenarios like bidding for a contract, where committing to a bid rather than sending it in the clear can eliminate the risk of it being \leaked" to the competitors. -
Ring Confidential Transactions
ISSN 2379-5980 (online) DOI 10.5195/LEDGER.2016.34 RESEARCH ARTICLE Ring Confidential Transactions Shen Noether,∗ Adam Mackenzie, the Monero Research Lab† Abstract. This article introduces a method of hiding transaction amounts in the strongly decentralized anonymous cryptocurrency Monero. Similar to Bitcoin, Monero is a cryptocur- rency which is distributed through a proof-of-work “mining” process having no central party or trusted setup. The original Monero protocol was based on CryptoNote, which uses ring signatures and one-time keys to hide the destination and origin of transactions. Recently the technique of using a commitment scheme to hide the amount of a transaction has been dis- cussed and implemented by Bitcoin Core developer Gregory Maxwell. In this article, a new type of ring signature, A Multilayered Linkable Spontaneous Anonymous Group signature is described which allows one to include a Pedersen Commitment in a ring signature. This construction results in a digital currency with hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation. The author would like to note that early drafts of this were publicized in the Monero Community and on the #bitcoin-wizards IRC channel. Blockchain hashed drafts are available showing that this work was started in Summer 2015, and completed in early October 2015.17 An eprint is also available at http://eprint.iacr.org/2015/1098. 1. Introduction Recall that in Bitcoin each transaction is signed by the owner of the coins being sent and these signatures verify that the owner is allowed to send the coins. This is entirely analogous to the signing of a check from your bank. -
Oblivious Transfer of Bits
Oblivious transfer of bits Abstract. We consider the topic Oblivious transfer of bits (OT), that is a powerful primitive in modern cryptography. We can devide our project into these parts: In the first part: We would clarify the definition OT, we would give a precise characterization of its funcionality and use. Committed oblivious transfer (COT) is an enhancement involving the use of commitments, which can be used in many applications of OT covering particular malicious adversarial behavior, it cannot be forgotten. In the second part: We would describe the history of some important discoveries, that preceded present knowledge in this topic. Some famous discovers as Michael O. Rabin or Claude Crépeau could be named with their works. In the third part: For OT, many protocols covering the transfer of bits are known, we would introduce and describe some of them. The most known are Rabin's oblivious transfer protocol, 1-2 oblivious transfer, 1-n oblivious transfer. These would be explained with examples. In the fourth part: We also need to discuss the security of the protocols and attacs, that are comitted. Then security of mobile computing. In the fifth part: For the end, we would give some summary, also interests or news in this topic, maybe some visions to the future evolution. 1 Introduction Oblivious transfer of bits (often abbreviated OT) is a powerful primitive in modern cryptography especially in the context of multiparty computation where two or more parties, mutually distrusting each other, want to collaborate in a secure way in order to achieve a common goal, for instance, to carry out an electronic election, so this is its applicability. -
Ringct 2.0: a Compact Accumulator-Based (Linkable Ring Signature) Protocol for Blockchain Cryptocurrency Monero
RingCT 2.0: A Compact Accumulator-Based (Linkable Ring Signature) Protocol for Blockchain Cryptocurrency Monero Shi-Feng Sun1;2, Man Ho Au1 ?, Joseph K. Liu3, Tsz Hon Yuen4, Dawu Gu2 1Hong Kong Polytechnic University, Hong Kong E-mail: csssun,[email protected] 2Shanghai Jiao Tong University, China E-mail: [email protected] 3Monash University, Australia E-mail: [email protected] 4 Huawei, Singapore E-mail: [email protected] Abstract. In this work, we initially study the necessary properties and security re- quirements of Ring Confidential Transaction (RingCT) protocol deployed in the pop- ular anonymous cryptocurrency Monero. Firstly, we formalize the syntax of RingCT protocol and present several formal security definitions according to its application in Monero. Based on our observations on the underlying (linkable) ring signature and commitment schemes, we then put forward a new efficient RingCT protocol (RingCT 2.0), which is built upon the well-known Pedersen commitment, accumu- lator with one-way domain and signature of knowledge (which altogether perform the functions of a linkable ring signature). Besides, we show that it satisfies the secu- rity requirements if the underlying building blocks are secure in the random oracle model. In comparison with the original RingCT protocol, our RingCT 2.0 protocol presents a significant space saving, namely, the transaction size is independent of the number of groups of input accounts included in the generalized ring while the original RingCT suffers a linear growth with the number of groups, which would allow each block to process more transactions. 1 Introduction 1.1 Monero: A Blockchain-based Cryptocurrency A cryptocurrency is a digital asset designed to work as a medium of exchange using cryp- tography to secure the transactions and to control the creation of additional units of the currency.