Thermodynamic Modeling of Uranium and Oxygen Containing Ternary Systems with Gadolinium, Lanthanum, and Thorium

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamic Modeling of Uranium and Oxygen Containing Ternary Systems with Gadolinium, Lanthanum, and Thorium University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2014 Thermodynamic Modeling of Uranium and Oxygen Containing Ternary Systems with Gadolinium, Lanthanum, and Thorium Jacob Wesley McMurray University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Ceramic Materials Commons, Nuclear Engineering Commons, and the Thermodynamics Commons Recommended Citation McMurray, Jacob Wesley, "Thermodynamic Modeling of Uranium and Oxygen Containing Ternary Systems with Gadolinium, Lanthanum, and Thorium. " PhD diss., University of Tennessee, 2014. https://trace.tennessee.edu/utk_graddiss/3152 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Jacob Wesley McMurray entitled "Thermodynamic Modeling of Uranium and Oxygen Containing Ternary Systems with Gadolinium, Lanthanum, and Thorium." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Energy Science and Engineering. Theodore M. Besmann, Major Professor We have read this dissertation and recommend its acceptance: Claudia J. Rawn, Brian D. Wirth, James R. Morris Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Thermodynamic Modeling of Uranium and Oxygen Containing Ternary Systems with Gadolinium, Lanthanum, and Thorium A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Jacob Wesley McMurray December 2014 Copyright © 2014 by Jacob W. McMurray All rights reserved ii Dedicated to my wife Perla McMurray my children Audrey and Samuel McMurray and my parents. Ron and Teddi McMurray iii ACKNOWLEDGEMENTS “No man is an island entire of itself; every man is a piece of the continent, a part of the main; if a clod be washed away by the sea, Europe is the less, as well as if a promontory were, as well as any manner of thy friends or of thine own were; any man's death diminishes me, because I am involved in mankind. And therefore never send to know for whom the bell tolls; it tolls for thee.” – John Donne The words of John Donne, the epigraph for Ernest Hemingway’s 1940 novel For Whom the Bell Tolls and likely the inspiration for the title, still stirs my spirit and embodies my philosophy on life; we all need one another, we are all in this thing together. To believe that any one person can create anything of value in a vacuum is hubris of the gods. I am therefore, profoundly grateful to Dr. Lee Riedinger, Dr. Mike Simpson, Dr. Jim Roberto, and the Bredesen Center for Interdisciplinary Research and Graduate Education for this remarkable opportunity to contribute to science and potentially impact energy issues. I am eternally grateful to Dr. Theodore M. Besmann, my mentor, for his instruction, patience and confidence in the skills I developed under his tutelage. A special thanks to Stewart Voit for fabricating samples, sharing laboratory expertise, and at – length discussions on the science behind our experimental measurements and Dr. Dongwon Shin for impromptu thermodynamic modeling lectures. I am grateful to Dr. Jaime Morris, Dr. George Pharr, Dr. Brian Wirth, and Dr. Claudia Rawn for their contribution to my education and agreeing to take part as members of my dissertation committee. The cooperation of my classmates, to whom I owe much gratitude for many hours of study, was instrumental in my success as a student. Finally, I must acknowledge my family for their advice, moral, emotional, and financial support. iv Research supported by the US Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program. v ABSTRACT The CALPHAD method is used to assess the thermodynamic properties and phase relations in the U-M-O system where M = Gd, La, and Th. A compound energy formalism (CEF) model for fluorite UO2±x [urania] is extended to represent the complex U1-yMyO2±x [urania solid solution] phases. The lattice stabilities for fictive GdO2 [gadolinia] and LaO2 [lanthana] fluorite structure compounds are calculated from density functional theory (DFT) for use in the CEF for U1-yMyO2±x [urania solid solution phase] while U6+ [uranium 6 plus cation] is introduced into the cation sublattice of the CEF for U1-yMyO2±x [urania solid solution phase] to better reproduce phase relations in U-Ln-O systems at high fixed trivalent Ln [lanthanide] compositions. Tentative Gibbs functions and CEF representations for the fluorite derivative rhombohedral phases were developed and the two-sublattice liquid model (TSLM) was used to describe the melt. Equilibrium oxygen pressures over U1-yThyO2±x [urania thoria solid solution] were obtained from thermogravimetric measurements and used together with those reported in the literature, phase relations, and other experimentally determined thermodynamic values to fit adjustable parameters of the CEF and TSLM along with the standard state enthalpy and entropy of the Gibbs functions representing the stoichiometric compounds. The models can be extended to include other actinides and fission products to develop higher order multi-component system assessments to support further experimental efforts and the development of multi-physics fuel performance simulation codes. vi TABLE OF CONTENTS Chapter 1 Introduction 1 1.1 Nuclear power 4 1.2 Fuel and fission product chemistry 5 1.3 Computational thermodynamics coupled fuel 9 performance simulations 1.4 Goals of research 14 Chapter 2 Thermodynamic modeling of complex 15 crystalline phases and ionic liquids 2.1 CALPHAD methodology 16 2.2 Computational thermodynamics codes 18 2.3 Sublattice models 18 2.4 Excess functions 22 2.5 Summary 22 Chapter 3 Crystal chemistry of urania and urania solid 24 solutions 3.1 The UO2 crystal 24 3.2 Oxygen defect clustering in UO2 26 3.3 Dissolution of La and Gd in UO2±x 28 3.3.1 Lattice stabilities from DFT 32 3.3.2 Lattice parameter 33 3.3.3 Ionic radii 37 3.3.4 Oxidation state of uranium in fluorite solid 39 solutions 3.4 Oxygen order-disorder transition 46 vii Chapter 4 Thermodynamic data for the U-M-O systems 51 4.1 Thermodynamic data 52 4.2 Gadolinium 52 4.3 Lanthanum 56 4.4 Thorium 59 Chapter 5 Experimental 70 5.1 Sample preparation 70 5.2 Measurements 71 5.3 Approach to error analysis 85 5.4 Experimental results 89 Chapter 6 Modelling and assessments 92 6.1 The gas phase 94 6.2 Pure elements and stoichiometric phases 94 6.3 The UO2±x phase 95 6.4 The U-O liquid phase 98 6.5 The rhombohedral UGd6O12 101 6.6 The rhombohedral ULa6O12-x phase 101 6.7 The rhombohedral U2La6O15 phase 102 6.8 The rhombohedral (U,La)8O16 phase 103 6.9 Th-U solution phases 103 6.10 The ThUO5 phase 104 6.11 The (U1-yThy)4O9 solution phase 104 6.12 The U-M-O liquid phases 105 6.13 Fluorite-structure U1-yMyO2±x phases 107 6.14 Parameter optimization 112 6.14.1 The U–Gd–O system 112 viii 6.14.2 The U–La–O system 113 6.14.3 The U–Th–O system 113 6.15 Results for the U–Gd–O system 115 6.15.1 The Gd–O binary 115 6.15.2 The U–Gd binary 117 6.15.3 The U–Gd–O ternary 117 6.16 The U–La–O system 120 6.16.1 The La–O binary 120 6.16.2 The U–La binary 126 6.16.3 The U–La–O ternary 126 6.17 The U–Th–O system 132 6.17.1 The Th–O binary 132 6.17.2 The U–Th binary 133 6.17.3 The U–Th–O ternary 138 6.18 Defect chemistry 146 Chapter 7 Summary and conclusions 153 Chapter 8 Recommendations 158 8.1 Short range ordering 158 8.2 Order – disorder transition 160 8.3 Oxygen clustering 160 8.4 Experimental studies 162 8.4 Conclusions 162 List of References 164 Appendix 181 A Tabulated experimental results 182 B U–Gd–O Thermodynamic Functions 185 ix C U–La–O Thermodynamic Functions 189 D U–Th–O Thermodynamic Functions 194 Vita 198 x LIST OF TABLES Table 3.1 Defects proposed by Park and Olander [33] for their UO2±x thermochemical model using Kröger-Vink for point defects and a new notation for clustering….29 Table 3.2 Host metal empirical constants after Kim [53]….35 Table 3.3 Percent difference between U4+ radius and the effective ionic radius of an Ln3+….41 Table 4.1 Compositional and temperature ranges of equilibrium oxygen pressure over U1-yGdyO2±x by author….53 Table 4.2 Method, composition and temperature range of authors reporting heat capacity data for U1-yGdyO2. …55 Table 4.3 Compositional and temperature ranges of equilibrium oxygen pressure over U1-yLayO2±x by author….60 Table 4.4 Compositional, temperature ranges, and methods of equilibrium vapor pressure measurements over U1-yThyO2+x by author….66 Table 4.5 Method, composition and temperature range of authors reporting heat capacity data for U1-yThyO2….66 Table 5.1 Comparison of the calculated and measured oxygen partial pressure associated with different flow settings through the EGMS unit….76 Table 5.2 Flow combinations corresponding to the log p values used to measure the mass change of U Th O O2 0.95 0.05 2+x at 1573 K in Fig.
Recommended publications
  • Gadolinium Information
    Gadolinium Information Gadolinium contrast agents are frequently utilized during MRI examinations in order to improve the exam and interpretation. They are not always needed. Your radiologist will determine whether or not gadolinium contrast is needed for your MRI examination. Gadolinium contrast agents are quickly eliminated from the body in healthy individuals. With normal functioning kidneys, the retention of gadolinium in soft tissues of the body is very small and may not even be detectable. However, some patients who receive multiple doses of contrast, including pregnant women and children, might be at increased risk of gadolinium remaining in the body for longer periods of time. To date, there are no known harmful effects of gadolinium remaining in the body for long periods of time in patients who have normal kidneys. In patients who have poorly functioning kidneys, a condition called nephrogenic systemic sclerosis (NSF) can occur. This causes debilitating thickening of the skin and other tissues. This only occurs in patients with poorly functioning kidneys. Your kidney function will be checked prior to receiving gadolinium contrast agent if needed. Other side-effects can occur even in patients with healthy kidneys. Some patients report pain, tiredness, and muscle aches after receiving gadolinium contrast but these conditions have not been directly linked to the administration of the gadolinium. Allergic reactions can also occur, as with any drug. If you have questions regarding your MRI examination today, please ask your MRI Technologist. MEDICATION GUIDE MULTIHANCE® (məl-tē-han(t)s) (gadobenate dimeglumine) Injection for intravenous use What is MULTIHANCE? • MULTIHANCE is a prescription medicine called a gadolinium-based contrast agent (GBCA).
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Measurement of Uranium Dioxide Thermophysical Properties by the Laser Flash Method
    2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 MEASUREMENT OF URANIUM DIOXIDE THERMOPHYSICAL PROPERTIES BY THE LASER FLASH METHOD Pablo Andrade Grossi 1, Ricardo Alberto Neto Ferreira 2, Denise das Mercês Camarano 3, Roberto Márcio de Andrade 4 1,2,3 Centro de Desenvolvimento da Tecnologia Nuclear-CDTN Comissão Nacional de Energia Nuclear-CNEN Av. Presidente Antônio Carlos 6627 Cidade Universitária-Pampulha-Caixa Postal 941 CEP: 31.161-970 Belo Horizonte, MG 1 [email protected] 2 [email protected] 3 [email protected] 4 Departamento de Engenharia Mecânica Escola de Engenharia da Universidade Federal de Minas Gerais Av. Presidente Antônio Carlos 6627-Cidade Universitária-Pampulha CEP: 31.270-901 - Belo Horizonte – MG - Brasil 4 [email protected] ABSTRACT The evaluation of the thermophysical properties of uranium dioxide (UO 2), including a reliable uncertainty assessment, are required by the nuclear reactor design. These important informations are used by thermohydraulic codes to define operational aspects and to assure the safety, when analyzing various potential situations of accident. The Laser Flash Method had become the most popular method to measure the thermophysical properties of materials. Despite its several advantages, some experimental obstacles have been found due to the difficulty to obtain experimentally the ideals initial and boundary conditions required by the original method. An experimental apparatus and a methodology for estimating uncertainties of thermal diffusivity, thermal conductivity and specific heat measurements based on the Laser Flash Method are presented. A stochastic thermal diffusion modeling has been developed and validated by Standard Samples.
    [Show full text]
  • Depleted Uranium Technical Brief
    Disclaimer - For assistance accessing this document or additional information,please contact [email protected]. Depleted Uranium Technical Brief United States Office of Air and Radiation EPA-402-R-06-011 Environmental Protection Agency Washington, DC 20460 December 2006 Depleted Uranium Technical Brief EPA 402-R-06-011 December 2006 Project Officer Brian Littleton U.S. Environmental Protection Agency Office of Radiation and Indoor Air Radiation Protection Division ii iii FOREWARD The Depleted Uranium Technical Brief is designed to convey available information and knowledge about depleted uranium to EPA Remedial Project Managers, On-Scene Coordinators, contractors, and other Agency managers involved with the remediation of sites contaminated with this material. It addresses relative questions regarding the chemical and radiological health concerns involved with depleted uranium in the environment. This technical brief was developed to address the common misconception that depleted uranium represents only a radiological health hazard. It provides accepted data and references to additional sources for both the radiological and chemical characteristics, health risk as well as references for both the monitoring and measurement and applicable treatment techniques for depleted uranium. Please Note: This document has been changed from the original publication dated December 2006. This version corrects references in Appendix 1 that improperly identified the content of Appendix 3 and Appendix 4. The document also clarifies the content of Appendix 4. iv Acknowledgments This technical bulletin is based, in part, on an engineering bulletin that was prepared by the U.S. Environmental Protection Agency, Office of Radiation and Indoor Air (ORIA), with the assistance of Trinity Engineering Associates, Inc.
    [Show full text]
  • Biosorption of Lanthanum and Samarium by Chemically Modified
    Applied Water Science (2019) 9:182 https://doi.org/10.1007/s13201-019-1052-3 ORIGINAL ARTICLE Biosorption of lanthanum and samarium by chemically modifed free Bacillus subtilis cells Ellen C. Giese1 · Caio S. Jordão1 Received: 6 March 2019 / Accepted: 1 October 2019 / Published online: 16 October 2019 © The Author(s) 2019 Abstract Previous studies showed that Bacillus subtilis possessed high physiological activity in industrial waste treatment as a biosorb- ent for recovery metals, and in this study, the sorption capacity for both La 3+ and Sm 3+ was demonstrated. The efects of lanthanide concentration and contact time were tested to acid and alkali pre-treated cells. Very high levels of removal, reach- ing up to 99% were obtained for both lanthanide ions. Langmuir isotherm model was applied to describe the adsorption isotherm and indicated a better correlation with experimental data R2 = 0.84 for La3+ using sodium hydroxide pre-treated free cells and R2 = 0.73 for Sm3+ to acid pre-treated B. subtilis cells as biosorbents. Results of this study indicated that chemically modifed B. subtilis cells are a very good candidate for the removal of light rare-earth elements from aquatic environments. The process is feasible, reliable, and eco-friendly. Keywords Bacillus subtilis · Biosorption · Rare-earth elements · Lanthanum · Samarium Introduction Recovery of the rare-earth elements is interesting due to the high economic value along with various industrial Biosorption is a new emerging biotechnology that has the applications (Table 1); however, conventional technologies potential to be more efective, inexpensive, and environmen- as precipitation, liquid–liquid extraction, solid–liquid extrac- tal-friendly than conventional methods utilized in industrial tion, and ion exchange present high processing costs and waste treatment.
    [Show full text]
  • Gadolinium Speciation
    Gadolinium Speciation Peter Caravan Martinos Center for Biomedical Imaging Institute for Innovation in Imaging Massachusetts General Hospital and Harvard Medical School Conflicts of Interest Stock ownership (>5%): Reveal Pharmaceuticals; Collagen Medical; Factor 1A LLC. Research grants: Pfizer; Pliant Pharmaceuticals; Biogen; Agilent; Pharmakea; Siemens. Consulting: Guerbet; Bayer; Collagen Medical; UCB Biopharma; Pfizer. What do we mean by speciation? What is the chemical form of the gadolinium in tissue? Chelated Gd Dissociated Gd The GBCA remains intact Dissociation of the GBCA Gd3+ ion Is Gd bound to a low molecular weight ligand? Is Gd part of some inorganic material like hydroxyapatite? Is Gd bound to a macromolecule? If so, which one? Where is the Gd distributed within tissue? Extra vs intracellular? In which cellular compartments? Why do we care about speciation? • The chemical form of Gd may inform its potential toxicity • Mineralized, insoluble Gd may be less toxic than soluble protein bound Gd (hypothesis) • The chemical form may also inform whether the Gd will be ultimately eliminated. Intact chelate may be expected to eventually clear the body (hypothesis). • The chemical form and location may guide chelation therapy strategies. Hierarchy of relevance of the data Human in vivo Human ex vivo Animal in vivo Animal ex vivo Solutions To model ex vivo Water solutions Tweedle MF. Gadolinium deposition: Is it chelated or dissociated gadolinium? How can we tell? Magn Reson Imaging. 2016;34(10):1377–82. How do GBCAs differ • Thermodynamics:
    [Show full text]
  • High-Density Concrete with Ceramic Aggregate Based on Depleted Uranium Dioxide
    HIGH-DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DIOXIDE S.G. Ermichev, V.I. Shapovalov, N.V.Sviridov (RFNC-VNIIEF, Sarov, Russia) V.K. Orlov, V.M. Sergeev, A. G. Semyenov, A.M. Visik, A.A. Maslov, A. V. Demin, D.D. Petrov, V.V. Noskov, V. I. Sorokin, O. I. Uferov (VNIINM, Moscow, Russia) L. Dole (ORNL, Oak Ridge, USA) Abstract - Russia is researching the production and testing of concretes with ceramic aggregate based on depleted uranium dioxide (UO2). These DU concretes are to be used as structural and radiation-shielded material for casks for A-plant spent nuclear fuel transportation and storage. This paper presents the results of studies aimed at selection of ceramics and concrete composition, justification of their production technology, investigation of mechanical properties, and chemical stability. This Project is being carried out at the A.A. Bochvar All-Russian Scientific-Research Institute of inorganic materials (VNIINM, Russia) and Russian Federal Nuclear Center – All-Russia Scientific Research Institute of Experimental Physics (RFNC-VNIIEF, Russia). This Project #2691 is financed by the International Science and Technology Center (ISTC) under collaboration of the Oak- Ridge National Laboratory (USA) I. INTRODUCTION The current practice of ensuring the required gamma conduction, thermo-, radiation and corrosion resistance, shielding and strength of metal-concrete casks is based on service life and water resistance. concrete density. For this purpose high-density rocks Specific characteristics of UO2’s chemical activity (magnetite, iron glance, barium sulfate, etc.) as well as because of its small size of particles and thus great specific scrap, scale, broken metal chips and others are introduced surface area prevent the use of traditional methods of UO2 into concrete as coarse aggregates.
    [Show full text]
  • I -F??TI O08'w –Gçanooog –Ggan
    Feb. 27, 1962 L. BURRIS, JR., ETA 3,023,097 REPROCESSING URANIUM DIOXDE FUES Filed Nov. 23, 1959 2 Sheets-Sheet I-F??TI OOOG–ggan O08’w–gçan no?opa8 (g?20%OG) INVENTOR. Les lie 8urris, Jr. Af r e di S c h n e i der Attorney Feb. 27, 1962 L. BURRIS, JR., ETA 3,023,097 REPROCESSING URANIUM DIOXDE FUELS Filed Nov. 23, 1959 2 Sheets-Sheet 2 - 4O - 5 ? - 6 O - 8O - 9 O - OO - , ? - 2 O - 3 O Nd 2O Gnd Sm2O3 - 4 O - 150 Pr2O3 and Ce2O3 O 3OO 5OO IOOO 5OO 2OOO 25 OO Temperature (K) F I Leslie Burris,INVENTOR. Jr. Alfred Schneid er BY ????? C???-e Attorney - 3,023,097 United States Patent Office Patented Feb. 27, 1962 2 of the dioxide fuel and its commingled substances in prep 3,323,097 aration for the next step about to be described; this size REPROCESSING GUARNUM DIXE FUELS Lesie Burris, Jr., and Alfred Schneider, Naperville, H., reduction is best carried out by successive oxidations and aSsigi nors to the United States of America as rere reductions which cause crumbling by reason of the suc sented by the United States Atomic Energy Cons cessive changes in crystal structure. After the particle ?$$??? size has been reduced sufficiently, a molten reducing i Fied Nov. 23, 1959, Ser. No. 854,989 metal of the group consisting of zinc and cadmium is 4 Claims. (C. 75-84.) introduced to the crumbled mixture, and this causes quite a number of metals to go into the metallic state, where The invention relates to a novel pyrometalurgical O upon they alloy with the reducing metal and the molten method of reprocessing uranium dioxide fuels after they metal phase may then be separated from the solid oxide have become contaminated by ª fission products in i nu phase consisting of the oxides of metals such as uranium, clear reactors, and more particularly, to a novel method rare earths and plutonium which are still not reduced.
    [Show full text]
  • Dissolution of Uranium Dioxide in Nitric Acid Media: What Do We Know?
    EPJ Nuclear Sci. Technol. 3, 13 (2017) Nuclear © Sciences P. Marc et al., published by EDP Sciences, 2017 & Technologies DOI: 10.1051/epjn/2017005 Available online at: http://www.epj-n.org REGULAR ARTICLE Dissolution of uranium dioxide in nitric acid media: what do we know? Philippe Marc1, Alastair Magnaldo1,*, Aimé Vaudano1, Thibaud Delahaye2, and Éric Schaer3 1 CEA, Nuclear Energy Division, Research Department of Mining and Fuel Recycling Processes, Service of Dissolution and Separation Processes, Laboratory of Dissolution Studies, 30207 Bagnols-sur-Cèze, France 2 CEA, Nuclear Energy Division, Research Department of Mining and Fuel Recycling Processes, Service of Actinides Materials Fabrication, Laboratory of Actinide Conversion Processes, 30207 Bagnols-sur-Cèze, France 3 Laboratoire Réactions et Génie des Procédés, UMR CNRS 7274, University of Lorraine, 54001 Nancy, France Received: 16 March 2016 / Received in final form: 15 November 2016 / Accepted: 14 February 2017 Abstract. This article draws a state of knowledge of the dissolution of uranium dioxide in nitric acid media. The chemistry of the reaction is first investigated, and two reactions appear as most suitable to describe the mechanism, leading to the formation of monoxide and dioxide nitrogen as reaction by-products, while the oxidation mechanism is shown to happen before solubilization. The solid aspect of the reaction is also investigated: manufacturing conditions have an impact on dissolution kinetics, and the non-uniform attack at the surface of the solid results in the appearing of pits and cracks. Last, the existence of an autocatalytic mechanism is questionned. The second part of this article presents a compilation of the impacts of several physico-chemical parameters on the dissolution rates.
    [Show full text]
  • ACR Manual on Contrast Media
    ACR Manual On Contrast Media 2021 ACR Committee on Drugs and Contrast Media Preface 2 ACR Manual on Contrast Media 2021 ACR Committee on Drugs and Contrast Media © Copyright 2021 American College of Radiology ISBN: 978-1-55903-012-0 TABLE OF CONTENTS Topic Page 1. Preface 1 2. Version History 2 3. Introduction 4 4. Patient Selection and Preparation Strategies Before Contrast 5 Medium Administration 5. Fasting Prior to Intravascular Contrast Media Administration 14 6. Safe Injection of Contrast Media 15 7. Extravasation of Contrast Media 18 8. Allergic-Like And Physiologic Reactions to Intravascular 22 Iodinated Contrast Media 9. Contrast Media Warming 29 10. Contrast-Associated Acute Kidney Injury and Contrast 33 Induced Acute Kidney Injury in Adults 11. Metformin 45 12. Contrast Media in Children 48 13. Gastrointestinal (GI) Contrast Media in Adults: Indications and 57 Guidelines 14. ACR–ASNR Position Statement On the Use of Gadolinium 78 Contrast Agents 15. Adverse Reactions To Gadolinium-Based Contrast Media 79 16. Nephrogenic Systemic Fibrosis (NSF) 83 17. Ultrasound Contrast Media 92 18. Treatment of Contrast Reactions 95 19. Administration of Contrast Media to Pregnant or Potentially 97 Pregnant Patients 20. Administration of Contrast Media to Women Who are Breast- 101 Feeding Table 1 – Categories Of Acute Reactions 103 Table 2 – Treatment Of Acute Reactions To Contrast Media In 105 Children Table 3 – Management Of Acute Reactions To Contrast Media In 114 Adults Table 4 – Equipment For Contrast Reaction Kits In Radiology 122 Appendix A – Contrast Media Specifications 124 PREFACE This edition of the ACR Manual on Contrast Media replaces all earlier editions.
    [Show full text]
  • Cerium Oxide Nanoparticles and Gadolinium Integration
    Linköping Studies in Science and Technology Dissertation No. 1997 Peter Eriksson Peter FACULTY OF SCIENCE AND ENGINEERING Linköping Studies in Science and Technology, Dissertation No. 1997, 2019 Cerium Oxide Nanoparticles Department of Physics, Chemistry and Biology (IFM) Linköping University SE-581 83 Linköping, Sweden and Gadolinium Integration Cerium Oxide Integration Nanoparticles and Gadolinium Synthesis, Characterization and Biomedical Applications www.liu.se Peter Eriksson 2019 Linköping Studies in Science and Technology Dissertation No. 1997 Cerium Oxide Nanoparticles and Gadolinium Integration Synthesis, Characterization and Biomedical Applications Peter Eriksson Applied Physics Department of Physics, Chemistry & Biology Linköping University, Sweden Linköping 2019 Front cover: A cerium oxide nanoparticle with integrated gadolinium. Back cover: Cross-section of a gadolinium-cerium oxide nanoparticle and its displayed theragnostic properties: left) cerium undergo redox-reactions to scavenge reactive oxygen species and right) gadolinium shorten the T1-relaxation time of nuclei spins in water molecules. During the course of the research underlying this thesis, Peter Eriksson was enrolled in Forum Scientium, a multidisciplinary doctoral programme at Linköping University, Sweden. © Copyright 2019 Peter Eriksson, unless otherwise noted Peter Eriksson Cerium Oxide Nanoparticles and Gadolinium Integration; Synthesis, Characterization and Biomedical Applications ISBN: 978-91-7685-029-9 ISSN: 0345-7524 Linköping Studies in Science and Technology,
    [Show full text]
  • Experimental Studies of Neutron Irradiated Uranium Dioxide at High Temperatures
    NL90C1051 lNIS-mi— 12739 Experimental studies of neutron irradiated uranium dioxide at high temperatures R.H.J. Tanke EXPERIMENTAL STUDIES OF NEUTRON IRRADIATED URANIUM DIOXIDE AT HIGH TEMPERATURES EXPERIMENTELE STUDIES VAN MET NEUTRONEN BESTRAALD URANIUMDIOXIDE BIJ HOGE TEMPERATUREN (met een samenvatting in het Nederlands) PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE RIJKSUNIVERSITEIT TE UTRECHT, OP GEZAG VAN DE RECTOR MAGNIFICUS PROF.DR. J.A. VAN GÏNKEL, VOLGENS BESLUIT VAN HET COLLEGE VAN DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP WOENSDAG 20 JUNI 1990 DES NAMIDDAGS TE 4.15 UUR. door Richardus Hendrikus Johannes Tanke geboren op 19 april 1957 te Hengelo (O) Promotor: Prof.Dr. CD. Andriesse Aan Pien CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK DEN HAAG Tanke, Richardus Hend. ^kus Johannes Experimental studies of neutron irradiated uranium dioxide at high temperatures / Richardus Hendrikus Johannes Tanke. - Arnhem : KEMA. - 111. Thesis Utrecht. - With index, ref. - With summary in Dutch. ISBN 90-353-1023-3 pbk. ISBN 90-353-1024-1 geb. SISO 538 UDC [539.125.06:546.791-31:536.45](043.3) Subject headings: uranium dioxide / gamma tomography. Contents Summary and outline 7 Outline of this thesis 9 Chapter 1: Introduction 11 The safety issue during the development of nuclear power 11 Experimental programmes on the release of fission products 15 from overheated fuel The KEMA source term experiment 17 References 18 Chapter 2: Experimental equipment and laboratory facilities 21 The hot cell 23 Measurement equipment for the evaporation experiment
    [Show full text]