Data Storage and Retrieval Using Photorefractive Crystals (Holographic Memories)

Total Page:16

File Type:pdf, Size:1020Kb

Data Storage and Retrieval Using Photorefractive Crystals (Holographic Memories) Data Storage and Retrieval using Photorefractive Crystals (Holographic Memories) A Thesis presented for the degree of Doctor of Philosophy in The Faculty of Science University of Calicut, Calicut by RAVINDER KUMAR BANYAL Indian Institute of Astrophysics Bangalore, 560034, INDIA October, 2005 Dedicated to The Sweet Memories of My Grandfather iii DECLARATION I hereby declare that the matter contained in this thesis is the result of the investi- gations carried out by me at the Indian Institute of Astrophysics, Bangalore, under the supervision of Dr. K. Neelakandan. This thesis has not been submitted for the award of any degree, diploma, associateship, fellowship etc. of any university or institute. Dr. K. Neelakandan Ravinder Kumar Banyal (Thesis Supervisor) (Ph.D. Candidate) Indian Institute of Astrophysics Bangalore 560 034, INDIA October, 2005 iv CERTIFICATE This is to certify that the thesis entitled \Data Storage and Retrieval using Photorefractive Crystals (Holographic Memories)" submitted to the Univer- sity of Calicut by Mr. Ravinder Kumar Banyal for the award of the degree of Doctor of Philosophy in the faculty of Science, is based on the results of the investigations carried out by him under my supervision and guidance, at the Indian Institute of Astrophysics, Bangalore. This thesis has not been submitted for the award of any degree, diploma, associateship, fellowship etc. of any university or institute. Dr. K. Neelakandan (Thesis Supervisor) Professor, Department of Physics, University of Calicut, Kerala October, 2005 v DECLARATION I hereby declare that the matter contained in this thesis is the result of the investi- gations carried out by me at the Indian Institute of Astrophysics, Bangalore, under the supervision of Dr. B. Raghavendra Prasad. This thesis has not been submitted for the award of any degree, diploma, associateship, fellowship etc. of any university or institute. Dr. B. Raghavendra Prasad Ravinder Kumar Banyal (Thesis Supervisor) (Ph.D. Candidate) Indian Institute of Astrophysics Bangalore 560 034, INDIA October, 2005 vi CERTIFICATE This is to certify that the thesis entitled \Data Storage and Retrieval using Photorefractive Crystals (Holographic Memories)" submitted to the Univer- sity of Calicut by Mr. Ravinder Kumar Banyal for the award of the degree of Doctor of Philosophy in the faculty of Science, is based on the results of the investigations carried out by him under my supervision and guidance, at the Indian Institute of Astrophysics, Bangalore. This thesis has not been submitted for the award of any degree, diploma, associateship, fellowship etc. of any university or institute. Dr. B. Raghavendra Prasad (Thesis Supervisor) Indian Institute of Astrophysics Koramangala, II Block Bangalore, Karnataka October, 2005 Acknowledgements It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair ... The above opening passage from `A Tale of Two Cities' by Charles Dickens would aptly sum-up the high and low points of bygone years! And now, I am indeed delighted to acknowledge people who mattered most during this phase. First and foremost, I would like to thank my supervisor Dr. B. Raghavendra Prasad for giving me an opportunity to work with him. Without his constant sup- port and able guidance, this thesis would not have been complete. I am also grateful to him for creating excellent lab facilities and a very congenial work atmosphere that helped me to carry out the research work smoothly and independently. I wish to acknowledge The Director, The Board of Graduate Studies, the library and the adminstration sta® of IIA and CREST for their encouraging support and help rendered during my PhD tenure. I am grateful to Prof. K. Neelakandan for readily agreeing to act my co-guide at Calicut University. I sincerely thank Dr. S. Chaterjee and Prof. K. P. J. Reddy from IISc for their valuable suggestions and advice on many occasions. I am obliged to Dr. B. R. S. Babu, Head of Physics Department at Calicut University, for his kind assistance during the PhD registration and other related formalities. I must thank Dr. Gopal Hegde for inviting me to Ngee Ann Polytechnic, Singapore. Personally, the visit was a great learning experience for me. I must thank all my batch-mates and senior students, especially, Dharam, Suresh, Raji, Dilip, Shivarani, and Preeti for being quite considerate and accommodating. vii viii Many people at CREST, including, D.K. Sahu, Parihar, Kemekar, and Ginu were of great help. Not to forget the generosity of the canteen people, security guards and technical sta® who made the stay at CREST quite rememberable. Manoj has been one of the most influential persons around. His indomitable conviction in secular and scienti¯c values have left an indelible impression upon me and in turn compelled me to re-evaluate many of my own beliefs. I thank Pandey Ji, Methi, Nagaraj, Blesson, and Vigeesh for weekend recreations. Many may not have liked the monotony of vegetarian food that I have often cooked at weekends. But, I presume that the disappointment was quickly forgotten amidst the euphoria of drinking sessions that led to many insightful revelations and healthy debates. Ravindra (Bhatti) was a very close friend right from my early days in IIA. Many a times his simplicity and remarkable sense of humour helped me to overcome my own distressful moments. Maheswar has been very supportive and helpful all through out and I really thank him for giving me good company in IIA. My acquaintance with Saigeetha was more of a coincidence. She has been a wonderful and inspiring person. I was immensely bene¯tted from her witty criticism and refreshing wisdom. I'm also grateful to her for introducing me to the fascinating ¯eld of geophysics. Friends back home, namely { Dimmu, Bipan, Ripu, Surender, Sanju, Rajiv, Rockey and Vikas were quite a®ectionate and concerned. It is with great pleasure, I acknowledge their wholehearted support and appreciation. Special thanks to my wife Kanchan who endured my absence without any trace of resentment or complain. Despite my prolonged isolation and total negligence, she displayed a remarkable composure and forbearance. My younger brother Pawan has been a great source of strength for me. His pres- ence at home, spared me from the burden of domestic responsibilities and hardships and allowed me to focus on my studies. Finally, I would like to thank my parents for the overwhelming support and encouragement. Their generosity and liberal attitude has made all the di®erence for me. Preface There are several types of optical materials that exhibit nonlinear properties. The research work reported in this thesis is focused on two of its kind, namely, the inorganic photorefractive systems such as LiNbO3 and BaTiO3 and the bacte- riorhodopsin; which is a biological molecule. The work presented in this thesis is broadly divided into two parts. The ¯rst part of the thesis (Chapter 1 to Chapter 4 ) deals with the photorefractive e®ect in LiNbO3 and BaTiO3 crystals and their use in holographic data storage. The second part (Chapter 5 ) deals with the theoreti- cal and experimental studies of bacteriorhodopsin and its applications in all-optical photonic switching. In its entirety, the most appropriate title for this thesis would have been, \Data Storage and Optical Switching in Photoactive Media." However, in accordance with University's guidelines, we are compelled to retain the topic of research (approved by the University at the time of registration) as our present thesis title even though the content of this thesis is more extensive. In Chapter 1 of the thesis, basics of nonlinear optics and related phenomenon are reviewed. Nonlinear optics is the branch of optics that describes the behaviour of light in nonlinear media {a media in which the polarization P responds nonlinearly to the electric ¯eld E of the light. Higher order polarization terms are responsi- ble for the di®erent types of nonlinear e®ects. The light-induced refractive index change is a fundamental nonlinear process that occurs in several photorefractive materials. A qualitative discussion on the principle and the physical mechanism of the photorefractive e®ect is outlined. A concise review of holography based data storage in photorefractive crystals is also presented. The importance and require- ments of hight density memories is highlighted subsequently. In the later half of the Chapter 1, a brief introduction to all optical switching in nonlinear media is given. The bacteriorhodopsin molecule and its photophysical and absorption properties are briefly described. All the concepts and material discussed in this chapter provide a necessary background for the work presented in the later chapters. Chapter 2 deals with the characterization of BaTiO3 and LiNbO3 crystals. A short but necessary review of theoretical formulism based on the band transport model and electro-optic e®ect is presented to facilitate physical understanding of the x phenomenon. The work includes detailed experimental studies of the light-induced absorption and two-wave mixing in undoped and Rh-doped BaTiO3 crystals at dif- ferent wavelengths and light intensities. Temporal and the steady-state behaviour of light-induced absorption is studied using a familiar pump-probe technique. A two-center charge transport model is proposed to explain the intensity dependence of the absorption coe±cients in BaTiO3. Important parameters such as build-up and decay rates, thermal excitation rates, and two-wave mixing gain have been ob- tained. Di®raction e±ciency measurements and grating erasure studies in triply doped Fe:Ce:Ti:LiNbO3 crystals are presented in the end. Photorefractive crystals are widely used in the area of holographic data storage and related applications.
Recommended publications
  • Optical Data Storage in Photorefractive Materials
    OPTICAL DATASTORAGEDATA STORAGE IN PHOTOREFRACTIVE MATERIALS T. A. Rabson, F.F. K.K. TittelTittel and D. M. KimKirn Electrical EngineeringEngineering Department Rice University Houston, TexasTexas 77001 Abstract The basicbasic physicalphysical theorytheory ofof thethe photorefractivephotorefractive effecteffect willwill bebe presented.presented. Methods will be discussed forfor utilizing the effect for the storage of informationinformation as well as optical displaydisplay ofof information.information. The funda-funda- mental limitslimits on writing time,time, accessaccess timetime andand storagestorage densitydensity willwill bebe relatedrelated toto thethe physicalphysical propertiesproperties ofof the materials involved.involved. Particularly promising materials, such as LiNb03LiNbO^ will bebe discusseddiscussed inin detail.detail. Introduction The incidenceincidence of lightlight on certain ferroelectricferroelectric crystalscrystals cancan alteralter thethe indexindex ofof refractionrefraction ofof thethe crycry­ - stalstal(1). ^ ''. This physical phenomenonphenomenon isis knownknown asas thethe photorefractivephotorefractive effect.effect. Although thethe physicalphysical behaviorbehavior of this effect has been well studiedstudied thethe fundamentalfundamental photoexcitationphotoexcitat ion processprocess isis stillstill notnot wellwell understood.understood. This lacklack of understanding doesdoes notnot preventprevent thethe applicationapplication ofof thethe effecteffect toto thethe storagestorage ofof datadata inin crystalscrystals
    [Show full text]
  • Photorefractive Self-Focusing and Defocusing As an Optical Limiter
    Photorefractive self-focusing and defocusing as an optical limiter Galen C. Duree Jr. and Gregory J. Salamo University of Arkansas Physics Department Fayetteville, Arkansas 72701 Mordechai Segev and Amnon Yariv California Institute of Technology Department of Applied Phyiscs Pasadena, California 91125 Edward J. Sharp Army Research Laboratory Fort Belvoir, Virginia 22060 and Ratnakar R. Neurgankar Rockwell International Science Center Thousand Oaks, California 91360 ABSTRACT Focusing and defocusing of laser light has been observed for many years. Optical Kerr type materials exhibit this effect only for high intensities. We show experimental evidence that photorefractive materials can also produce dramatic focusing and defocusing. Whereas Kerr materials produce this effect for high intensities, photorefractive materials produce these effects independent of intensity indicating that this effect would be ideal for an optical limiter. We compare the characteristics of Kerr and photorefractive materials, discuss the physical models for both materials and present experimental evidence for photorefractive defocusing. Self-focusing and defocusing was observed for any incident polarization although the effect was more pronounced using extraordinary polarized light. In addition, self-focusing or defocusing could be observed depending on the direction of the applied electric field. When the applied field was in the same direction as the crystal spontaneous polarization, focusing was observed. When the applied field was opposite the material spontaneous polarization, the incident laser light was dramatically defocused. 192 I SPIE Vol. 2229 0-8194-1533-2194/$6.00 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/18/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx INTRODUCTION One of the attractive features of laser light is that it can be focused to a very small spot.
    [Show full text]
  • Photorefractive Effect in Linbo 3
    Photorefractive effect in LiNbO 3 -based integrated-optical circuits for continuous variable experiments François Mondain, Floriane Brunel, Xin Hua, Elie Gouzien, Alessandro Zavatta, Tommaso Lunghi, Florent Doutre, Marc de Micheli, Sébastien Tanzilli, Virginia d’Auria To cite this version: François Mondain, Floriane Brunel, Xin Hua, Elie Gouzien, Alessandro Zavatta, et al.. Photorefrac- tive effect in LiNbO 3 -based integrated-optical circuits for continuous variable experiments. Optics Express, Optical Society of America - OSA Publishing, 2020. hal-02908852 HAL Id: hal-02908852 https://hal.archives-ouvertes.fr/hal-02908852 Submitted on 29 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Photorefractive effect in LiNbO3-based integrated-optical circuits for continuous variable experiments Fran¸coisMondain,1 Floriane Brunel,1 Xin Hua,1 Elie´ Gouzien,1 Alessandro Zavatta,2, 3 Tommaso Lunghi,1 Florent Doutre,1 Marc P. De Micheli,1 S´ebastienTanzilli,1 and Virginia D'Auria1, ∗ 1Universit´eC^oted'Azur, CNRS, Institut de Physique de Nice (INPHYNI), UMR 7010, Parc Valrose, 06108 Nice Cedex 2, France. 2Istituto Nazionale di Ottica (INO-CNR) Largo Enrico Fermi 6, 50125 Firenze, Italy 3LENS and Department of Physics, Universit`adi Firenze, 50019 Sesto Fiorentino, Firenze, Italy (Dated: July 23, 2020) We investigate the impact of photorefractive effect on lithium niobate integrated quantum pho- tonic circuits dedicated to continuous variable on-chip experiments.
    [Show full text]
  • 4-2 Image Storage Techniques Using Photore- Fractive Effect
    4-2 Image Storage Techniques using Photore- fractive Effect TAKAYAMA Yoshihisa, ZHANG Jiasen, OKAZAKI Yumi, KODATE Kashiko, and ARUGA Tadashi Optical image storage techniques using the photorefractive effect are presented. In these techniques, the random reference multiplexing scheme is introduced to the holo- graphic recording process in order to increase the storage capacity. The common feature of our techniques is the use of a bundle of multimode fibers placed in the optical path of refer- ence wave. This approach can automatically impose quasi-random patterns on the wave- front when the reference wave penetrates the fiber bundle. As a proof-of-principle, experi- ments of recording holograms are performed with a LiNbO3 crystal. The results show that the use of fiber bundle enables us to build a simple and compact optical setup keeping the capacity of hologram multiplexing. Keywords Photorefractive, Hologram multiplexing, Optical memory, Fiber bundle 1 Introduction As well as the increase of storage capacity, to build a simple and compact setup is another Optical holographic data storage using the interest. For this purpose, a single multimode photorefractive effect has been extensively fiber has been replaced by a bundle of fibers studied. Several schemes for hologram multi- to steer the reference beam without any lenses plexing have been examined and successfully or mirrors[11][12]. In our first attempt, the improved the storage capacity [1]-[7]. Recently, recording medium is mounted on a linear an optical fiber has been employed in optical stage and moved along a direction perpendicu- setups as a device to impose a quasi-random lar to the axis of the fiber bundle.
    [Show full text]
  • Photorefractive Properties of Undoped, Cerium-Doped
    Photorefractive properties of undoped,undoped, ceriumcerium-doped,-doped, and iron-dopediron -doped single-crystalsingle-crystal Sr0.6Ba0.4Nb2O6 Sr0 George A. Rakuljic Abstract. We present the results of our theoretical andand experimental studies of Amnon Yariv the photorefractivephotorefractive effect effect in in single single-crystal -crystal SBN:60, SBN:60, SBN:Ce, SBN:Ce, and and SBN:Fe. SBN:Fe. TheThe California Institute ofof TechnologyTechnology twotwo-beam -beam couplingcoupling coefficients,coefficients, response times,times, and absorption coefficients of Department of Applied Physics these materials areare given. Pasadena, California California 9112591125 Subject terms: photorefractive materials;materials; non nonlinear linear optical optical materials; materials; optical optical phase phase con con­ - Ratnakar Neurgaonkar jugation; imageimage processingprocessing; opticaloptical signal signal processing. processing. Rockwell International Corporation Optical Engineering 25(11), 12121212-1216 -1216 (November 1986).1986). Science Center Thousand Oaks,Oaks, CaliforniaCalifornia 9136091360 CONTENTS The point groupgroup symmetrysymmetry of of SBN SBN isis 44 mm,mm, whichwhich impliesimplies 1. IntroductionIntroduction that itsits electroelectro-optic -optic tensortensor is nonzero.nonzero. The dominant electro-electro- 2. MaterialMaterial propertiesproperties optic coefficientcoefficient is r33,r33 , which ranges from 100100 pm/pm/V V inin 3. PhotorefractivePhotorefractive properties SBN:25 to 14001400 pm/ V in SBN:75. In order toto realizerealize thethe largelarge 4. SummarySummary ofof resultsresults values of electro-opticelectro -optic coefficients in SBN crystals, they must, 5. ConclusionConclusion in practice, be poled by first being heated toto above their Curie 6. AcknowledgmentsAcknowledgments points and then being cooled to roomroom temperaturetemperature with an 7. ReferencesReferences applied dc electric field of 5 to 88 kVkV/cm. /cm. 1. INTRODUCTIONINTRODUCTION 3.
    [Show full text]
  • Photorefractive Response and Real-Time Holographic Application of a Poly(4-(Diphenylamino)Benzyl Acrylate)-Based Composite
    Polymer Journal (2014) 46, 59–66 & 2014 The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/14 www.nature.com/pj ORIGINAL ARTICLE Photorefractive response and real-time holographic application of a poly(4-(diphenylamino)benzyl acrylate)-based composite Ha Ngoc Giang, Kenji Kinashi, Wataru Sakai and Naoto Tsutsumi A photorefractive (PR) composite based on poly(4-(diphenylamino)benzyl acrylate) (PDAA) as a host photoconductive matrix is reported. The PR performance was investigated at three different wavelengths (532, 561, 594 nm), and an optimized operating wavelength of 532 nm was obtained. The PDAA composite had high sensitivity at 532 nm with a maximum diffraction efficiency of 480%, which was achieved at an applied electric field of 40 V lm À1. An application with a hologram display system using the PR composite was demonstrated. A clear and updatable hologram of an object was successfully reconstructed in real time, even at a low applied electric field of 25 V lm À1. Polymer Journal (2014) 46, 59–66; doi:10.1038/pj.2013.68; published online 14 August 2013 Keywords: composite; hologram; photoconductive polymer; photorefractive effect; wavelength INTRODUCTION temperature (Tg)of4200 1C. Low hole mobility will limit the speed Photorefractive (PR) polymers and composites have attracted much of space-charge field formation and consequently lead to a slow PR attention because of their interesting applications, such as data response time. storage, three-dimensional (3D) displays, image amplification and Another factor that will affect PR response time is the re- optical phase conjugation. The mechanism for a PR effect is a orientation of the chromophore, which has been shown to occur combination of several steps: (1) non-uniform material illumination inside a low Tg composite and has an essential role in high PR 8 through a laser interference pattern, (2) charge generation assisted by performance.
    [Show full text]
  • Photorefractive Effect in NLC Cells Caused by Anomalous Electrical
    crystals Review Photorefractive Effect in NLC Cells Caused by Anomalous Electrical Properties of ITO Electrodes Atefeh Habibpourmoghadam Department of Nonlinear Phenomena, Institute of Physics, Otto von Guericke University, 39106 Magdeburg, Germany; [email protected] Received: 8 September 2020; Accepted: 2 October 2020; Published: 4 October 2020 Abstract: In a pure nematic liquid crystal (NLC) cell, optically induced charge carriers followed by transports in double border interfaces of orientant/LC and indium-tin-oxide (ITO)/orientant (or LC) can cause removal of screening of the static electric field inside the LC film. This is called surface photorefractive effect (SPR), which induces director field reorientation at a low DC electric field beyond the threshold at a reduced Fréedericksz transition and, as a result, a modulation of the LC effective refractive index. The studies conducted on the photoinduced opto-electrical responses in pure nematic LC cells biased with uniform static DC electric fields support the SPR effect (attributed to the photoelectric activation of the double interfaces). The SPR effect was further studied in LC cells with photoresponsive substrates, which act as a source of a bell-shaped electric field distribution in the LC film if no ITO electrode was employed. In an equipped cell with ITO, the photovoltaic electric field induces charge carrier redistribution in the ITO film, hence the SPR effect. This paper is aimed at highlighting all the evidences supporting ITO film as one of the fundamental sources of the SPR effect in pure NLC cells under the condition of applying low optical power and low DC voltage. An optically induced fringe electric field stemming from inhomogeneous photo-charge profiles near the electrode surfaces is expected in the LC film due to the semiconducting behavior of the ITO layer.
    [Show full text]
  • Papers Theory and Applications of Four-Wwe Mixing in Photorefractive Media
    12 IEEE JOURNAL OF QUANTUMELECTRONICS, VOL.NO. QE-20, 1, JANUARY 1984 Papers Theory and Applications of Four-Wwe Mixing in Photorefractive Media MARK CRONIN-GOLOMB, BARUCH FISCHER, JEFFREY 0. WHITE, AND AMNON YARIV, FELLOW, IEEE (Invited Paper) Abstract-The development of a theory of four-wave mixing in photo- In the mid 1970’s the field of phase conjugate optics [35] refractive crystals is described. This theory is solved in the undepleted began to prosper because of potential applicationsin aberration pumpsapproximation with linear absorptionand without using the correction. The main problem to be faced was and still is the undepletedpumps approximation for negligibleabsorption. Both the transmission and reflectiongratings are treated individually. The results development of fastmedia with large nonlinearities. While are used to analyze several photorefractive phase conjugate mirrors, phase conjugationby four-wave mixing is oftenthought of yielding reflectivities and thresholds. The useof photorefractive crystals interms of nonlinearoptical susceptibilities, theformal as optical distortion correction elements and experimental demonstra- analogy with real-time holography [36] has made it clear that tions of several of the passive phase conjugate mirrors are described. PR materials could beused effectively in phase conjugation. 1. INTRODUCTION As a result, a whole new branch in phase conjugate optics has HROUGH therecent years’ boom innonlinear optical beendeveloped E371 -[40]. High reflectivityphase conjuga- T phase conjugation, photorefractive (PR) materials such as tion with low-power lasers has become an easy task. Feinberg LiNb03, Bi12Sizo O3 (BSO), BaTi03, and Sr, - xBa, Nb2 O6 hasdemonstrated a resonator using a PR phase conjugate (SBN) have been assuming ever increasing prominence due to mirror [41], andmany new nonlinearoptical deviceshave their unique capability for displaying strong nonlinear effects been demonstrated including ring oscillators by White et al.
    [Show full text]
  • Photorefractive Effect and Two-Beam Energy Exchange in Hybrid Liquid Crystal Cells
    Photorefractive effect and two-beam energy exchange in hybrid liquid crystal cells Igor Pinkevych Physics Faculty, Taras Shevchenko National University of Kyiv, Ukraine (joint work with Victor Reshetnyak, Tim Sluckin, Gary Cook, and Dean Evans) PHOTOREFRACTIVE EFFECT (1) The photorefractive effect is a phenomenon in which local index of refraction is changed in response to illumination by light with spatially varying intensity. Such effect was first observed in early 60s. Mechanism The photorefractive effect in crystals usually occurs in several stages: 1. A photorefractive material is illuminated by coherent light beams. Interference of the beams results in a pattern of dark and light fringes throughout the crystal. 2. In bright regions electrons can absorb the light and be photoexcited from an impurity level into the conduction band of the crystal, leaving an electron hole. ikar ikbr it E Eae Ebe e Ir I0 1 mcos Kr K kb ka PHOTOREFRACTIVE EFFECT (2) Mechanism 3. Once in the conduction band, the electrons diffuse towards the dark-fringe regions. Here they fall into the traps. The redistribution of electrons into the dark regions of the material and holes in the bright areas, causes a spatially periodic electric field, known as a space charge field. 4. The space charge field, via the electro-optic effect, changes the local refractive index of the crystal and creates a refractive index grating. 5. The refractive index grating can now diffract light and, as a result, energy exchange between beams at the grating is possible. What we will talk about We will study energy gain in system of two coherent beams propagating in medium with the refractive index grating (induced by these beams): there is an interaction between beams at the diffraction grating and, as a result, amplitude of one of the beams (signal beam) increases/decreases.
    [Show full text]
  • Photorefractive Mesogenic Composites
    Research News Photorefractive Mesogenic Composites By Hiroshi Ono,* Tomomi Kawamura, Nazarene Mocam Frias, Keiko Kitamura, Nobuhiro Kawatsuki, and Hideki Norisada Mesogenic composites, consisting of low-molar-mass liquid crystals, polymers, and photoconductive sensitizers, constitute novel organic materials possessing high-performance photorefractivity. Polymeric materials in the photorefractive mesogenic composites play a very important role in terms of improving the resolution, stabilizing the homeotropic alignment, and func- tionalizing the materials. 1. Introduction terial. Electric fields as large as 50±100 V/mm are used to pole these materials and several kilovolts of DC field are Photorefractive materials have been investigated exten- applied to the popular photorefractive polymer composites sively because of the possibility of applications in optical because the film thickness is about 50±150 mm. The high signal processing, dynamic holography, and phase conjuga- electric field causes serious problems, such as dielectric tion.[1] Photorefractive gratings appear in materials that ex- breakdown and phase separation, in these photorefractive hibit both an electric-field-dependent refractive index polymer composites. change and an optically induced charge distribution. The In 1994, Khoo et al. found that low-molar-mass nematic refractive-index modulation is out of phase with the optical liquid crystals (L-LCs) show high-performance photorefrac- interference pattern, and this phase shift can induce an tivity under low driving voltage (<1 V/mm) by giving photo- energy exchange between two coherent beams, which leads conductivity to the L-LCs.[5] This was accomplished by dop- to a variety of useful applications. Photorefractive materi- ing the L-LC 4¢-(n-pentyl)-4-cyanobiphenyl (5CB) with als are by far the most efficient nonlinear optical media for fullerene (C60).
    [Show full text]
  • Photorefractive Properties of Liquid Crystal-Filled Bacterial Cellulose Mats
    Photorefractive properties of liquid crystal-filled bacterial cellulose mats By Caroline Novak Department of Physics, Case Western Reserve University [email protected] Advisor Dr. Kenneth Singer Department of Physics, Case Western Reserve University [email protected] December 17, 2017 Table of Contents 1. Executive Summary............................................................................................................................ 3 2. Introduction....................................................................................................................................... 3 3. Background........................................................................................................................................ 3 3.1. Photorefractive Effect........................................................................................................ 3 3.2. Liquid Crystal...................................................................................................................... 4 3.3. Bacterial Cellulose.............................................................................................................. 5 4. Justification........................................................................................................................................ 5 5. Methods and Materials...................................................................................................................... 6 5.1. Two-Beam Coupling..........................................................................................................
    [Show full text]
  • Investigations of the Photorefractive Effect in Pot,Assium Tantalum
    Investigations of the Photorefractive Effect in Pot,assium Tantalum hTiobate Thesis by 1-ictor Leyva In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1991 (Submitted May 20, 1991) .. - 11- Acknowledgements I wili always recall with fondness the diverse and highly talented group of individuals I have encountered during my graduate studies. First and foremost I would like to thank Dr. Amnon I'ariv for the opportunity he opened to me and for his guidance. I have benefitted greatly from my work with Dr. Aharon Agranat. His assistance is appreciated. Of the many students of the Quantum Electronics group, I u~ouldespecially like to acknowledge those involved in the photorefractive field with whom I have had many productive discussions and collaborations. These include Korman Kwong. George Rakuljic, I'asuo Tomita, Koichi Sayano: =d Rudy HoRmeister. The group owes much to the excellent technical support of Jana htercado, Ali Ghaffari, Desrnond Armstrong: and Rex-in Cooper. I thank each of them for their assistance. In addition, the mechanical design and machine shop support of Larr>- Begaj-, Guy Duremberg, and Tony Stark is gratefully ackno~i,ledged. .. - 111- Abstract This thesis describes results of investigations of the photorefractive effect in potassium tantalum niobate (KTal-,Nb, 03)crystals. A band transport model is used to describe the photorefractive effect. The coupled mode equations are then introduced and used to solve self-consistently for the interaction of the light and space charge fields in a photorefractive material. The design and construction of a high te~peraturecrystal growth system is discussed.
    [Show full text]