Membrane Traffic: a Driving Force in Cytokinesis

Total Page:16

File Type:pdf, Size:1020Kb

Membrane Traffic: a Driving Force in Cytokinesis Review TRENDS in Cell Biology Vol.15 No.2 February 2005 Cytokinesis series Membrane traffic: a driving force in cytokinesis Roger Albertson, Blake Riggs and William Sullivan Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, CA 95064, USA Dividing animal and plant cells maintain a constant cytokinesis is the fact that secretion remains active chromosome content through temporally separated throughout the cell cycle in plants but is dramatically rounds of replication and segregation. Until recently, downregulated during mitosis in animal cells [2,3]. the mechanisms by which animal and plant cells Recent advances in microscopy, a new generation of maintain a constant surface area have been considered fluorescent probes and sophisticated functional to be distinct. The prevailing view was that surface area approaches have begun to highlight the similarities was maintained in dividing animal cells through tem- between plant and animal cytokinesis. Specifically, porally separated rounds of membrane expansion and studies of a variety of animal systems have revealed membrane invagination. The latter event, known as that, like plants, membrane trafficking has an important cytokinesis, produces two physically distinct daughter role during animal cytokinesis (Figures 1,2 and Tables 1,2). cells and has been thought to be primarily driven by These studies demonstrate that targeted membrane actomyosin-based constriction. By contrast, membrane addition during cleavage furrow formation is a funda- addition seems to be the primary mechanism that drives mental and widely conserved mechanism of animal cytokinesis in plants and, thus, the two events are linked cytokinesis. This insight has opened new avenues of mechanistically and temporally. In this article (which is investigation that are now rapidly being addressed: part of the Cytokinesis series), we discuss recent studies what are the sources of membrane; when and where is of a variety of organisms that have made a convincing membrane added and removed during cytokinesis; how do case for membrane trafficking at the cleavage furrow membrane-trafficking pathways regulate membrane being a key component of both animal and plant delivery to and from the cleavage furrow; what role does cytokinesis. the cytoskeleton have in this process; and why are the distinct protein and lipid compositions at the furrow important for cytokinesis? In this article, we highlight Introduction recent progress in these areas (for further reviews about Basic light-microscopic observations highlight the differ- specific aspects of plant and animal cytokinesis, see Refs ences between plant and animal cytokinesis. During plant [3–9]). cell division, a specialized structure known as the phragmoplast forms at the cell center. The phragmoplast Cytokinesis in animal cells often requires on-time consists of membrane, microtubules and microfilaments, delivery of Golgi-derived membrane and promotes the concentration and fusion of secretory The additional membrane required for cytokinesis has vesicles [1]. Thus, plant cytokinesis proceeds from the cell several possible origins such as excess membrane stored center towards the cortex, relying primarily on vesicle within the plasma membrane, and internal membrane fusion. This process involves delivery of cell wall and derived from secretory, endocytic or recycling pathways membrane components, and requires actomyosin for (Figure 2). In amphibian embryos, microvilli observed expansion and fusion of the newly formed membrane during the initiation of cytokinesis might provide the with the plasma membrane. By contrast, cytokinesis in required membrane [10].IncellularizingDrosophila animal cells relies on a pronounced actomyosin contractile embryos, excess membrane stored as microprojections is ring that drives plasma membrane invagination from the a possible source [11]. Studies have also emphasized the cortex. An important feature of this ‘purse-string’ model is role of vesicle-mediated delivery of membrane from that, with the exception of the terminal sealing event, it internal pools during cytokinesis [12–16] (Table 1). does not require cleavage furrow ingression and mem- Perhaps the most striking evidence comes from scanning brane addition to be linked temporally and spatially. electron microscopy (SEM) and live confocal microscopy According to this basic model, additional membrane could studies of Xenopus embryos that demonstrate large be incorporated at any time and anywhere along the clusters of exocytic fusion pores near the base of the plasma membrane before the terminal events of cytokin- invaginating furrow [17] (Figure 3a). These are the sites of esis. Reinforcing the distinction between plant and animal recent exocytic events that required microtubules. Esti- Corresponding author: Sullivan, W. ([email protected]). mates based on fusion pore distribution and density Available online 6 January 2005 suggest that localized exocytosis is sufficient to provide www.sciencedirect.com 0962-8924/$ - see front matter Q 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tcb.2004.12.008 Review TRENDS in Cell Biology Vol.15 No.2 February 2005 93 furrow regression occurs [20]. Because BFA treatment also results in ectopic furrowing, it is unlikely that defects Plasma t-SNARE during the terminal stages of cytokinesis are due to a membrane Endocytic vesicle v-SNARE general lack of membrane; it is more likely that they are caused by a specific requirement for Golgi-derived vesicles RE at this stage. Whereas Golgi-based vesicle delivery is crucial during the terminal stages of embryonic C. elegans cytokinesis, it is required for the initial stages of furrow progression in Late Drosophila spermatocytes. Mutants for four way stop endosome Early endosme (fws), a Cog5 (conserved oligomeric Golgi) homolog, establish cleavage furrows, although ingression fails in these mutants [21] (Figure 1f). Mammalian Cog5 is a member of an eight-protein Golgi-associated complex believed to have a role in Golgi vesicle targeting [22]. Cog5 is nonessential but increases the efficiency of Golgi- Secretory vesicle based trafficking. Similarly, Fws is not generally required for cytokinesis and cell division throughout Drosophila development, raising the possibility that the large (20 mm) and rapidly cleaving (20 min) spermatocytes place excep- Lysosome Golgi tional demands on Golgi-based vesicle trafficking during cytokinesis. fws mutations also disrupt spermatid elongation – a process that requires extensive membrane addition. Further supporting the role of Golgi-based vesicle trafficking in spermatocyte cytokinesis is the finding that hypomorphic mutations in the Drosophila syntaxin5 homolog, a Golgi-localized soluble N-ethyl- maleimide-sensitive factor attachment protein receptor ER (SNARE) required for ER-to-Golgi traffic, result in male sterility due to failed cytokinesis [23]. In cellularizing Drosophila embryos, there is accumu- lating evidence that indicates that Golgi-mediated mem- brane delivery is required throughout the process of Nucleus furrow invagination. Cellularization is a specialized form of cytokinesis in which furrows that are compositionally TRENDS in Cell Biology and structurally equivalent to cleavage furrows encom- Figure 1. Intracellular membrane-trafficking pathways. Components of secretory, pass the w6000 interphase nuclei aligned on the cortex. endocytic, lysosomal and recycling pathways are shown. Transport steps are Electron microscopy (EM) studies indicate that some of indicated by arrows. Secretion involves vesicle transport from the ER to the Golgi apparatus and then to the plasma membrane. Vesicle fusion involves membrane- the membrane required for cellularization is derived from specific t-SNARE and v-SNARE (blue and red, respectively) protein interactions that extensive microprojections. However, quantifications of are promoted through several adaptor proteins (not shown). Endocytic vesicles cell surface area indicate that excess plasma membrane is budding from the plasma membrane are coated with clathrin (green); clathrin coats include a membrane-specific complex of adaptor proteins (not shown). The GTPase insufficient to complete cell division; thus, it is likely that dynamin assembles into rings (orange) at the neck of clathrin-coated endocytic additional internal stores are also required [11]. Live vesicles; dynamin ring constriction facilitates the ‘pinching off’ of vesicles from the analysis of Golgi movement during cellularization shows plasma membrane. One destination for endocytic vesicles is the early endosome, which directs vesicles back to the plasma membrane (through the RE) or to that Golgi move towards and closely associate with the lysosomes for degradation. advancing furrow, suggesting that they might be a source of membrane [15]. BFA injections severely disrupt most of the new membrane required to complete cyto- cellularization, providing functional support for this kinesis. These and other studies clearly demonstrate that interpretation [15]. Functional studies using antibodies major vesicle addition is associated with cleavage furrow directed against a Drosophila Golgi-associated protein, formation [18]. Lava Lamp, result in severe disruptions of Golgi mor- Golgi-derived vesicles are the primary source of phology and distribution, in addition to failed furrow membrane in plant cytokinesis [5]. Evidence of a similar formation [15]. A separate study using fluorescent surface role in animal cytokinesis came initially
Recommended publications
  • 3 Embryology and Development
    BIOL 6505 − INTRODUCTION TO FETAL MEDICINE 3. EMBRYOLOGY AND DEVELOPMENT Arlet G. Kurkchubasche, M.D. INTRODUCTION Embryology – the field of study that pertains to the developing organism/human Basic embryology –usually taught in the chronologic sequence of events. These events are the basis for understanding the congenital anomalies that we encounter in the fetus, and help explain the relationships to other organ system concerns. Below is a synopsis of some of the critical steps in embryogenesis from the anatomic rather than molecular basis. These concepts will be more intuitive and evident in conjunction with diagrams and animated sequences. This text is a synopsis of material provided in Langman’s Medical Embryology, 9th ed. First week – ovulation to fertilization to implantation Fertilization restores 1) the diploid number of chromosomes, 2) determines the chromosomal sex and 3) initiates cleavage. Cleavage of the fertilized ovum results in mitotic divisions generating blastomeres that form a 16-cell morula. The dense morula develops a central cavity and now forms the blastocyst, which restructures into 2 components. The inner cell mass forms the embryoblast and outer cell mass the trophoblast. Consequences for fetal management: Variances in cleavage, i.e. splitting of the zygote at various stages/locations - leads to monozygotic twinning with various relationships of the fetal membranes. Cleavage at later weeks will lead to conjoined twinning. Second week: the week of twos – marked by bilaminar germ disc formation. Commences with blastocyst partially embedded in endometrial stroma Trophoblast forms – 1) cytotrophoblast – mitotic cells that coalesce to form 2) syncytiotrophoblast – erodes into maternal tissues, forms lacunae which are critical to development of the uteroplacental circulation.
    [Show full text]
  • Conserved Microtubule–Actin Interactions in Cell Movement and Morphogenesis
    REVIEW Conserved microtubule–actin interactions in cell movement and morphogenesis Olga C. Rodriguez, Andrew W. Schaefer, Craig A. Mandato, Paul Forscher, William M. Bement and Clare M. Waterman-Storer Interactions between microtubules and actin are a basic phenomenon that underlies many fundamental processes in which dynamic cellular asymmetries need to be established and maintained. These are processes as diverse as cell motility, neuronal pathfinding, cellular wound healing, cell division and cortical flow. Microtubules and actin exhibit two mechanistic classes of interactions — regulatory and structural. These interactions comprise at least three conserved ‘mechanochemical activity modules’ that perform similar roles in these diverse cell functions. Over the past 35 years, great progress has been made towards under- crosstalk occurs in processes that require dynamic cellular asymme- standing the roles of the microtubule and actin cytoskeletal filament tries to be established or maintained to allow rapid intracellular reor- systems in mechanical cellular processes such as dynamic shape ganization or changes in shape or direction in response to stimuli. change, shape maintenance and intracellular organelle movement. Furthermore, the widespread occurrence of these interactions under- These functions are attributed to the ability of polarized cytoskeletal scores their importance for life, as they occur in diverse cell types polymers to assemble and disassemble rapidly, and to interact with including epithelia, neurons, fibroblasts, oocytes and early embryos, binding proteins and molecular motors that mediate their regulated and across species from yeast to humans. Thus, defining the mecha- movement and/or assembly into higher order structures, such as radial nisms by which actin and microtubules interact is key to understand- arrays or bundles.
    [Show full text]
  • The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination
    | FLYBOOK DEVELOPMENT AND GROWTH The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination Adam C. Martin1 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 ORCID ID: 0000-0001-8060-2607 (A.C.M.) ABSTRACT A critical juncture in early development is the partitioning of cells that will adopt different fates into three germ layers: the ectoderm, the mesoderm, and the endoderm. This step is achieved through the internalization of specified cells from the outermost surface layer, through a process called gastrulation. In Drosophila, gastrulation is achieved through cell shape changes (i.e., apical constriction) that change tissue curvature and lead to the folding of a surface epithelium. Folding of embryonic tissue results in mesoderm and endoderm invagination, not as individual cells, but as collective tissue units. The tractability of Drosophila as a model system is best exemplified by how much we know about Drosophila gastrulation, from the signals that pattern the embryo to the molecular components that generate force, and how these components are organized to promote cell and tissue shape changes. For mesoderm invagination, graded signaling by the morphogen, Spätzle, sets up a gradient in transcriptional activity that leads to the expression of a secreted ligand (Folded gastrulation) and a transmembrane protein (T48). Together with the GPCR Mist, which is expressed in the mesoderm, and the GPCR Smog, which is expressed uniformly, these signals activate heterotrimeric G-protein and small Rho-family G-protein signaling to promote apical contractility and changes in cell and tissue shape. A notable feature of this signaling pathway is its intricate organization in both space and time.
    [Show full text]
  • Redefining the Roles of the Ftsz-Ring in Bacterial Cytokinesis
    Available online at www.sciencedirect.com ScienceDirect Redefining the roles of the FtsZ-ring in bacterial cytokinesis 1 2 Jie Xiao and Erin D Goley In most bacteria, cell division relies on the functions of an in bacterial division, with emphasis on the relative roles essential protein, FtsZ. FtsZ polymerizes at the future division and contributions of the polymerizing GTPase, FtsZ, and site to form a ring-like structure, termed the Z-ring, that serves the peptidoglycan (PG) cell wall synthesis machinery. as a scaffold to recruit all other division proteins, and possibly generates force to constrict the cell. The scaffolding function of the Z-ring is well established, but the force generating function Bacterial cell division: the challenge and the has recently been called into question. Additionally, new machinery findings have demonstrated that the Z-ring is more directly Bacterial cell division requires invagination and separa- linked to cell wall metabolism than simply recruiting enzymes to tion of a multi-layered cell envelope, including constric- the division site. Here we review these advances and suggest tion and fission of the membrane(s), and synthesis, that rather than generating a rate-limiting constrictive force, the remodeling, and splitting of the PG cell wall at the Z-ring’s function may be redefined as an orchestrator of division site. Bacterial cells possess high turgor pressures, septum synthesis. ranging from 0.3 MPa for Gram-negative Escherichia coli Addresses [1] to 2 MPa in Gram-positive Bacillus subtilis [2]. This 1 Department of Biophysics and Biophysical Chemistry, Johns Hopkins pressure, acting on a constriction zone of 60 nm in axial University School of Medicine, Baltimore, MD 21205, USA width and 3 mm in circumference (approximately the 2 Department of Biological Chemistry, Johns Hopkins University School size of the septum), would require a total force of 50 to of Medicine, Baltimore, MD 21205, USA 300 nN to counterbalance (Figure 1).
    [Show full text]
  • Stages of Embryonic Development of the Zebrafish
    DEVELOPMENTAL DYNAMICS 2032553’10 (1995) Stages of Embryonic Development of the Zebrafish CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL, BONNIE ULLMANN, AND THOMAS F. SCHILLING Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254 (C.B.K., S.R.K., B.U., T.F.S.); Department of Biology, Dartmouth College, Hanover, NH 03755 (W.W.B.) ABSTRACT We describe a series of stages for Segmentation Period (10-24 h) 274 development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad peri- Pharyngula Period (24-48 h) 285 ods of embryogenesis-the zygote, cleavage, blas- Hatching Period (48-72 h) 298 tula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the Early Larval Period 303 changing spectrum of major developmental pro- Acknowledgments 303 cesses that occur during the first 3 days after fer- tilization, and we review some of what is known Glossary 303 about morphogenesis and other significant events that occur during each of the periods. Stages sub- References 309 divide the periods. Stages are named, not num- INTRODUCTION bered as in most other series, providing for flexi- A staging series is a tool that provides accuracy in bility and continued evolution of the staging series developmental studies. This is because different em- as we learn more about development in this spe- bryos, even together within a single clutch, develop at cies. The stages, and their names, are based on slightly different rates. We have seen asynchrony ap- morphological features, generally readily identi- pearing in the development of zebrafish, Danio fied by examination of the live embryo with the (Brachydanio) rerio, embryos fertilized simultaneously dissecting stereomicroscope.
    [Show full text]
  • Mechanical Bistability Enabled by Ectodermal Compression Facilitates
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.435928; this version posted March 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Mechanical bistability enabled by ectodermal compression facilitates 2 Drosophila mesoderm invagination 3 4 Hanqing Guo1, Michael Swan2, Shicheng Huang1 and Bing He1* 5 6 1. Department of Biological Sciences, Dartmouth College, Hanover, NH 7 2. Department of Molecular Biology, Princeton University, Princeton, NJ 8 *Correspondence: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.435928; this version posted March 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 9 Abstract 10 Apical constriction driven by non-muscle myosin II (“myosin”) provides a well-conserved 11 mechanism to mediate epithelial folding. It remains unclear how contractile forces near the 12 apical surface of a cell sheet drive out-of-plane bending of the sheet and whether myosin 13 contractility is required throughout folding. By optogenetic-mediated acute inhibition of myosin, 14 we find that during Drosophila mesoderm invagination, myosin contractility is critical to prevent 15 tissue relaxation during the early, “priming” stage of folding but is dispensable for the actual 16 folding step after the tissue passes through a stereotyped transitional configuration, suggesting 17 that the mesoderm is mechanically bistable during gastrulation. Combining computer modeling 18 and experimental measurements, we show that the observed mechanical bistability arises from an 19 in-plane compression from the surrounding ectoderm, which promotes mesoderm invagination 20 by facilitating a buckling transition.
    [Show full text]
  • 2. Archenteron Morphogenesis in the Sea Urchin David R
    Cell-Cell Interactions in Early Development, pages 15-29 © 1991 Wiley-Liss, Inc. I .f 2. Archenteron Morphogenesis in the Sea Urchin David R. McClay, John Morrill, and Jeff Hardin Department of Zoology, Duke University, Durham, North Carolina 27707 (D .R.M., J.H.); Department of Biology, New College, Sarasota, Florida 33580 (J .M.) INTRODUCTION The progression of development involves an impressive array of morphoge­ netic rearrangements, each of which involves the coordination of multiple cel­ lular functions and molecular events. We have been studying gastrulation in the sea urchin embryo as a relatively simple model system in an attempt to understand the sorts of rules observed by an embryo as it performs a single morphogenetic event. To the observer, gastrulation in this embryo involves two major cell movements. First, primary mesenchyme cells ingress and dis­ playa series of migratory behaviors leading to the assembly of the larval skel­ eton. Second, invagination of the archenteron leads to the formation of the primitive gut. The ingression and subsequent behavior of primary mesenchyme cells is examined elsewhere in this volume (Ettensohn, Chapter 11). Here we review events associated with formation of the archenteron . In echinoderm embryos, archenteron formation begins with an indentation of the vegetal plate, followed by elongation of the indented area until a tubular archenteron forms that extends into the blastocoel . Elongation continues until the tube reaches a defined, anatomically specific region on the wall of the blastocoel (Fig . I). All through invagination, secondary mesenchyme cells at the tip of the archenteron extend filopodia that make contact with the wall of the blastocoel.
    [Show full text]
  • Building the Cytokinetic Contractile Ring in an Early Embryo
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445582; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 2 3 4 5 Building the cytokinetic contractile ring in an early embryo: initiation as clusters of 6 myosin II, anillin and septin, and visualization of a septin filament network 7 8 Chelsea Garno1,2, Zoe H. Irons2,3, Courtney M. Gamache2,3, Xufeng Wu4, Charles B. Shuster1,2, 9 and John H. Henson2,3* 10 11 1Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States 12 of America 13 14 2Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United 15 States of America 16 17 3Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America 18 19 4National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20 United States of America 21 22 23 24 25 26 27 *Corresponding author 28 E-mail: [email protected] (J.H.H.) 29 30 31 32 33 34 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445582; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license.
    [Show full text]
  • Developmental Biology Lecture Notes 4 Gastrulation
    DEVELOPMENTAL BIOLOGY LECTURE NOTES 4 GASTRULATION Animals have bodies of diverse shapes with internal collections of organs of unique morphology and function. Such sophisticated body architecture is elaborated during embryonic development, whereby a fertilized egg undergoes a program of cell divisions, fate specification, and movements. One key process of embryogenesis is determination of the anteroposterior (AP), dorsoventral (DV), and left-right (LR) embryonic axes. Other aspects of embryogenesis are specification of the germ layers, endoderm, mesoderm, and ectoderm, as well as their subsequent patterning and diversification of cell fates along the embryonic axes. These processes occur very early during development when most embryos consist of a relatively small number of morphologically similar cells arranged in simple structures, such as cell balls or sheets, which can be flat or cup shaped. Gastrulation is a fundamental phase of animal embryogenesis during which germ layers are specified, rearranged, and shaped into a body plan with organ rudiments. The term gastrulation, derived from the Greek word gaster, denoting stomach or gut, is a fundamental process of animal embryogenesis that employs cellular rearrangements and movements to reposition and shape the germ layers, thus creating the internal organization as well as the external form of developing animals. GASTRULATION is a complex series of cell movements that: a. rearranges cells, giving them new neighbors. These rearrangements put cells in a new environment, with the potential to receive new signals. b. results in the formation of the 3 GERM LAYERS that will form most of the subsequent embryo: ECTODERM, ENDODERM and MESODERM. The following general types of morphogenetic movements have been recognized: a.
    [Show full text]
  • Reconstitution of Contractile Actomyosin Rings in Vesicles
    ARTICLE https://doi.org/10.1038/s41467-021-22422-7 OPEN Reconstitution of contractile actomyosin rings in vesicles Thomas Litschel 1, Charlotte F. Kelley 1,2, Danielle Holz3, Maral Adeli Koudehi3, Sven K. Vogel1, ✉ Laura Burbaum1, Naoko Mizuno 2, Dimitrios Vavylonis3 & Petra Schwille 1 One of the grand challenges of bottom-up synthetic biology is the development of minimal machineries for cell division. The mechanical transformation of large-scale compartments, 1234567890():,; such as Giant Unilamellar Vesicles (GUVs), requires the geometry-specific coordination of active elements, several orders of magnitude larger than the molecular scale. Of all cytos- keletal structures, large-scale actomyosin rings appear to be the most promising cellular elements to accomplish this task. Here, we have adopted advanced encapsulation methods to study bundled actin filaments in GUVs and compare our results with theoretical modeling. By changing few key parameters, actin polymerization can be differentiated to resemble various types of networks in living cells. Importantly, we find membrane binding to be crucial for the robust condensation into a single actin ring in spherical vesicles, as predicted by theoretical considerations. Upon force generation by ATP-driven myosin motors, these ring-like actin structures contract and locally constrict the vesicle, forming furrow-like deformations. On the other hand, cortex-like actin networks are shown to induce and stabilize deformations from spherical shapes. 1 Department of Cellular and Molecular Biophysics,
    [Show full text]
  • Defining the Rate-Limiting Processes of Bacterial Cytokinesis
    Defining the rate-limiting processes of PNAS PLUS bacterial cytokinesis Carla Coltharpa, Jackson Bussa,1, Trevor M. Plumera, and Jie Xiaoa,2 aDepartment of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Edited by Joe Lutkenhaus, University of Kansas Medical Center, Kansas City, KS, and approved January 6, 2016 (received for review July 22, 2015) Bacterial cytokinesis is accomplished by the essential ‘divisome’ septum closure and is distinct from a model in which new septal machinery. The most widely conserved divisome component, FtsZ, PG growth actively pushes from the outside of the cytoplasmic is a tubulin homolog that polymerizes into the ‘FtsZ-ring’ (‘Z-ring’). membrane (27). In this latter model, PG synthesis limits the rate Previous in vitro studies suggest that Z-ring contraction serves as a of septum closure, and the Z-ring acts as a scaffold that passively major constrictive force generator to limit the progression of cy- follows the closing septum (29). Alternatively, Z-ring contraction tokinesis. Here, we applied quantitative superresolution imaging and septal cell wall synthesis may work together to drive con- to examine whether and how Z-ring contraction limits the rate of striction; in which case, progression of septum closure would be septum closure during cytokinesis in Escherichia coli cells. Surpris- regulated by both processes (27). ingly, septum closure rate was robust to substantial changes in all A large number of studies support the Z-ring–centric force Z-ring properties proposed to be coupled to force generation: FtsZ’s GTPase activity, Z-ring density, and the timing of Z-ring as- generation model.
    [Show full text]
  • The Regulation of Intestinal Mucosal Barrier by Myosin Light Chain Kinase/Rho Kinases
    International Journal of Molecular Sciences Review The Regulation of Intestinal Mucosal Barrier by Myosin Light Chain Kinase/Rho Kinases Younggeon Jin 1 and Anthony T. Blikslager 2,* 1 Department of Animal and Avian Sciences, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA; [email protected] 2 Department of Clinical Sciences, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA * Correspondence: [email protected] Received: 29 April 2020; Accepted: 16 May 2020; Published: 18 May 2020 Abstract: The intestinal epithelial apical junctional complex, which includes tight and adherens junctions, contributes to the intestinal barrier function via their role in regulating paracellular permeability. Myosin light chain II (MLC-2), has been shown to be a critical regulatory protein in altering paracellular permeability during gastrointestinal disorders. Previous studies have demonstrated that phosphorylation of MLC-2 is a biochemical marker for perijunctional actomyosin ring contraction, which increases paracellular permeability by regulating the apical junctional complex. The phosphorylation of MLC-2 is dominantly regulated by myosin light chain kinase- (MLCK-) and Rho-associated coiled-coil containing protein kinase- (ROCK-) mediated pathways. In this review, we aim to summarize the current state of knowledge regarding the role of MLCK- and ROCK-mediated pathways in the regulation of the intestinal barrier during normal homeostasis and digestive diseases. Additionally, we will also suggest potential therapeutic targeting of MLCK- and ROCK-associated pathways in gastrointestinal disorders that compromise the intestinal barrier. Keywords: myosin light chain kinase; rho-associated coiled-coil containing protein kinase; apical junction complex; tight junction; adherens junction 1.
    [Show full text]