ガンマ線バーストと遠方宇宙・元素の起源� 井上 進�(理研) +共同研究者の皆様 Grbs, Blazars

Total Page:16

File Type:pdf, Size:1020Kb

ガンマ線バーストと遠方宇宙・元素の起源� 井上 進�(理研) +共同研究者の皆様 Grbs, Blazars ProbingwithTMT the (more 時代のFirst than) Stars,GRBsGRB a forUVlittleで切り拓く超遠方宇宙� UNravelling Radiation, help from the B my DarkFields, friends Ages Dust… Mission� GeV Fermi ガンマ線バーストと遠方宇宙・元素の起源� 井上 進�(理研) +共同研究者の皆様 GRBs, blazars R. Salvaterra, T. R. Choudhury, A. Ferrara, B. Ciardi, R. Schneider 分子 ALMA (MNRAS in press, arXiv:0906.2495) Y. Inoue, M. Kobayashi, T. Totani, Y. Niinou (in prep.) z~30-6 ダスト ASTRO-H blazar HiZ-G GRB SPICA 再電離 金属 TMT submm R.ALMA Salvaterra,5@5 T.epoch R. Choudhury, of first starA. Ferrara, formation Inoue, (磁場)� Omukai & Ciardi, Benedetta MNRAS, Ciardi Firstsubmitted (MPA)Radiation (astro-ph/0502218) Fields,! FirstB. MagneticCiardi, R. Schneider Fields,lots of First theory Star Formation SKA K. Ichiki, K. KiyotomoTakahashi Ichiki (CfCP/NAOJ) but almost no observations!!! K. Omukai Keitaro Takahashi (Princeton) IceCube SKA CTA CTA “in an interstella burst i am back to reveal the universe” radio see - after T. Yorke also かなた outline� I. GRBs and the high-z Universe - overview: early excitement vs recent calming down - quasar contribution to reionization - gamma-ray probe of UV background *star formation rate, metal evolution, damping wings… -> later talks recent reviews: Space Sci. Rev. (2016) 202� II. neutron star mergers and r-process nucleosynthesis - potential of X-ray diagnostics cosmic dark ages -> cosmic dawn� - big bang� z~3600� - matter-rad. eq.� z~1000� - recombination� dark ages� z>~30� - first stars, galaxies, black holes… -> reionization z~8-10� z~6� - reion. ends - star formation � z~1-3 peak� z~0� adapted from Djorgovski� GRBs and high-z Universe� 2000’s: excitement, hope GRBs� high-z� 1967 discovery (670702) … 1997 afterglow, cosmological z (970508) 2000 potential recognition ~2000 first star simulations Lamb & Reichart 00 2001 quasar GP troughs Bromm & Loeb 01…� 2003 massive star (030329) 2003 CMB optical depth zreion~17?? 2005 z=6.3 (050904) 2009 z=8.2 (090423) high-z GRB mania!� record redshifts (spectroscopic): -2009 (GRB 090429 z~9.4)� GRB 090423 z=8.2� ©山崎� record redshifts (spectroscopic): -2017 (GRB 090429 z~9.4)� GRB 090423 z=8.2� ©山崎� 2015� 2020� record redshifts (spectroscopic): -2017 quasars strike back?� (GRB 090429 z~9.4)� GRB 090423 z=8.2� ULAS J1120+0641 z=7.085� ©山崎� 2015� 2020� record redshifts (spectroscopic): -2017 galaxies strike back!� GN-z11 z=11.09 EGSY8p7 z=8.68� (GRB 090429 z~9.4)� GRB 090423 z=8.2� ULAS J1120+0641 z=7.085� ©山崎� 2015� 2020� The Astrophysical Journal, 819:129current(11pp), 2016 March 10highest-z object: galaxy atOesch z=11.09 et al. Oesch+ 16� The Astrophysical Journal, 819:129 (11pp), 2016 March 10 Oesch et al. Table 3 Assumed LFs for z ∼ 10–11 Number Density Estimates -5 Reference f * 10 M* α Nexp (Mpc−3)(mag)(<−22.1) Figure 5. Grism Spectrum of GN-z11. The top panel shows the (negative) 2D spectrum from the stack of our cycle 22 data (12 orbits) with the trace outlined by the Bouwensdark et red al. lines.(2015b For clarity) the 2D spectrum1.65 was smoothed by− a20.97 Gaussian indicated− by2.38 the ellipse in the 0.06 lower right corner. The bottom panel is the un-smoothed 1D flux density using an optimal extraction rebinned to one resolution element of the G141 grism (93Å). The black dots show the same further binned to 560Å, while the Finkelsteinblue line et shows al. ( the2015 contamination) level0.96 that was subtracted− from20.55 the original object−2.90 spectrum. We identify 0.002 a continuum break in the spectrum at λ=1.47±0.01 μm. The continuum flux at λ>1.47 μm is detected at ∼1–1.5σ per resolution element and at 3.8σ per 560Å bin. After excluding lower redshift solutions (see the text and Mashian et al. (2015fi ) 0.25 +0.08 −21.20 fl −2.20 0.03 fl Figure 4), the best- t grism redshift is zgrism = 11.09-0.12. The red line re ects the Lyα break at this redshift, normalized to the measured H-band ux of GN-z11. The Mason etagreement al. (2015 is excellent.) The fact that we0.30 only detect significant−21.05flux along the trace−2.61 of our target source, 0.01 which is also consistent with the measured H-band magnitude, is strong evidence that we have indeed detected the continuum of GN-z11 rather than any residual contamination. Trac et al. (2015) 5.00 −20.18 −2.22 0.002 this flux detection is ∼1–1.5σ per resolution element longward 3.1. The Best-fit Solution: A z∼11 Galaxy of 1.47 μm and consistent with zero flux shortward of that. The Note. The parameters f*, M*, and α represent the three parametersBased onour of previous the photometric redshift measurement for total spectral flux averaged over 1.47–1.65 μm represents a GN-z11 (z = 10.2), we expected to detect a continuum Schechterclear UV 5.5σ LFdetection. taken This from is fullythe different consistent with papers. the prediction phot break at 1.36±0.05 μm. This can clearly be ruled out. from the exposure time calculator for an H=26 mag source in However, the grism data are consistent with an even higher a 12-orbit exposure. The extracted 1D spectrum along the trace of GN-z11 is shown redshift solution. Interpreting the observed break as the 1216Å in Figures 4 and 5.Thesehighlightthedetectionofacontinuum break, which is expected for high-redshift galaxies based on absorption from the neutral inter-galactic hydrogen along the when assumingbreak with a flux a ratio more of ff()()ll realistic<><1.47 case 1.47 where 0.32 at the emission line line of sight, we obtain a very good fit to the spectrum with a fl 2σ when averaged over 560 Å wide spectral bins. 2 Figure 7. Redshift and UV luminosities of known high-redshift galaxies from ux isfl distributed over a combination ofreduced linesχ =(e.g.,1.2 (see Figures 4 and 5). The best-fit redshift is A ux decrement is seen around ∼1.6 μm, which is caused +0.08 blank field surveys. Dark filled squares correspond to spectroscopically fi zgrism = 11.09 , corresponding to a cosmic time of only Hβ+by[O negativeIII]),fl weux values can in conone of ourdently two visits invalidate slightly above such a solution.-0.12 confirmed sources, while small gray dots are photometric redshifts (Bouwens the peak of the trace of GN-z11. However, this dip is consistent ∼400 Myr after the Big Bang. The grism redshift and its fi The lowerwith Gaussian left panel deviates in from Figure the noise4 model.compares We also tested the measureduncertainty grism are derived from anet MCMC al. 2015bt to). the GN-z11 2D spectrum clearly stands out as one of the most luminous currently spectrumthat the with detected that continuum expectedflux is still for present the when best- adoptingfit lowerwhich also redshift includes the morphologicalknown galaxies information at all of redshifts the z>6 and is by far the most distantmeasured different stacking and extraction procedures (see Appendix A). source as well as the photometry,galaxy adopting with identical spectroscopy techniques(black squares; see Oesch et al. 2015b, for a full list solution we had previouslyfi identified (Oesch etas al. used2014 for) the.A 3D-HST survey redshifts (see Momcheva In particular, we con rmed the spectral break in a simple of references). Wider area surveys with future near-infrared telescopes (such as strongmedian line stack emitter of the individual SED is continuum-subtracted clearly inconsistent 2D grism withet al. 2015 the). data. observations of our six individual visits. Additionally, we This high-redshift solutionWFIRST also reproduces) will be the required expected to determine how common such luminous sources Apartcon fromfirmed the that the emission continuum break lines, is seen which only along we the trace do notcount detect, rate based this on an H=26really mag continuum are at z source,>10. as well modelof also our spectrum predicts by creating weak simple continuum 1D-extractions aboveflux and acrossas the the overall whole morphology of the 2D grism spectrum. This is below the trace of our target source. Finally, we confirmed that demonstrated in Figure 3, where we show the original data, the wavelength range. At <1.47 μm, this is higherneighbor than subtracted the 2D spectrum as well as the residual after short long a break is seen in both epochs separately (see Figure 10). the observed spectrum has a break of (1->ff) 0.68 observedIn mean, the following while sections, at > we1.47 discussμm the thepossible expected redshift flsubtractingux is too out low the z=11.09 model with the correct H-band nn solutions for GN-z11 based on the combined constraints of the magnitude. Note the drop of theatfl 2uxσ longward, thus of indicating 1.65 μm due again that we can marginally rule out a comparednew grism to the continuum observations. detection as wellOverall as the the pre-existing likelihoodto the of reduced a z∼ sensitivity2 of4000 the grism.Å Thisbreak is an important based on the spectrum alone without even extremephotometry. emission line SED based on our grism dataconstraint, is less because than it shows that the detected flux originates −6 including the photometric constraints. 10 and can be ruled out. 5 Note that in very similar grism observations for a source triply imaged by a CLASH foreground cluster, emission line 4. DISCUSSION contamination could also be excluded (Pirzkal et al. 2015). We 4.1. Physical Properties of GN-z11 thus have no indication currently that any of the recent z∼9–11 galaxy candidates identified with HST is a lower Despite being the most distant known galaxy, GN-z11 is redshift strong emission line contaminant (but see, e.g., relatively bright and reliably detected in both IRAC 3.6 and Brammer et al.
Recommended publications
  • A Revised View of the Canis Major Stellar Overdensity with Decam And
    MNRAS 501, 1690–1700 (2021) doi:10.1093/mnras/staa2655 Advance Access publication 2020 October 14 A revised view of the Canis Major stellar overdensity with DECam and Gaia: new evidence of a stellar warp of blue stars Downloaded from https://academic.oup.com/mnras/article/501/2/1690/5923573 by Consejo Superior de Investigaciones Cientificas (CSIC) user on 15 March 2021 Julio A. Carballo-Bello ,1‹ David Mart´ınez-Delgado,2 Jesus´ M. Corral-Santana ,3 Emilio J. Alfaro,2 Camila Navarrete,3,4 A. Katherina Vivas 5 and Marcio´ Catelan 4,6 1Instituto de Alta Investigacion,´ Universidad de Tarapaca,´ Casilla 7D, Arica, Chile 2Instituto de Astrof´ısica de Andaluc´ıa, CSIC, E-18080 Granada, Spain 3European Southern Observatory, Alonso de Cordova´ 3107, Casilla 19001, Santiago, Chile 4Millennium Institute of Astrophysics, Santiago, Chile 5Cerro Tololo Inter-American Observatory, NSF’s National Optical-Infrared Astronomy Research Laboratory, Casilla 603, La Serena, Chile 6Instituto de Astrof´ısica, Facultad de F´ısica, Pontificia Universidad Catolica´ de Chile, Av. Vicuna˜ Mackenna 4860, 782-0436 Macul, Santiago, Chile Accepted 2020 August 27. Received 2020 July 16; in original form 2020 February 24 ABSTRACT We present the Dark Energy Camera (DECam) imaging combined with Gaia Data Release 2 (DR2) data to study the Canis Major overdensity. The presence of the so-called Blue Plume stars in a low-pollution area of the colour–magnitude diagram allows us to derive the distance and proper motions of this stellar feature along the line of sight of its hypothetical core. The stellar overdensity extends on a large area of the sky at low Galactic latitudes, below the plane, and in the range 230◦ <<255◦.
    [Show full text]
  • Complex Stellar Populations in Massive Clusters: Trapping Stars of a Dwarf Disc Galaxy in a Newborn Stellar Supercluster
    Mon. Not. R. Astron. Soc. 372, 338–342 (2006) doi:10.1111/j.1365-2966.2006.10867.x Complex stellar populations in massive clusters: trapping stars of a dwarf disc galaxy in a newborn stellar supercluster M. Fellhauer,1,3⋆ P. Kroupa2,3⋆ and N. W. Evans1⋆ 1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA 2Argelander Institute for Astronomy, University of Bonn, Auf dem Hug¨ el 71, D-53121 Bonn, Germany 3The Rhine Stellar-Dynamical Network Accepted 2006 July 24. Received 2006 July 21; in original form 2006 April 27 ABSTRACT Some of the most-massive globular clusters of our Milky Way, such as, for example, ω Centauri, show a mixture of stellar populations spanning a few Gyr in age and 1.5 dex in metallicities. In contrast, standard formation scenarios predict that globular and open clusters form in one single starburst event of duration 10 Myr and therefore should exhibit only one age and one metallicity in its stars. Here, we investigate the possibility that a massive stellar supercluster may trap older galactic field stars during its formation process that are later detectable in the cluster as an apparent population of stars with a very different age and metallicity. With a set of numerical N-body simulations, we are able to show that, if the mass of the stellar supercluster is high enough and the stellar velocity dispersion in the cluster is comparable to the dispersion of the surrounding disc stars in the host galaxy, then up to about 40 per cent of its initial mass can be additionally gained from trapped disc stars.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Midwife of the Galactic Zoo
    FOCUS 30 A miniature milky way: approximately 40 million light-years away, UGC 5340 is classified as a dwarf galaxy. Dwarf galaxies exist in a variety of forms – elliptical, spheroidal, spiral, or irregular – and originate in small halos of dark matter. Dwarf galaxies contain the oldest known stars. Max Planck Research · 4 | 2020 FOCUS MIDWIFE OF THE GALACTIC ZOO TEXT: THOMAS BÜHRKE 31 IMAGE: NASA, TEAM ESA & LEGUS Stars cluster in galaxies of dramatically different shapes and sizes: elliptical galaxies, spheroidal galaxies, lenticular galaxies, spiral galaxies, and occasionally even irregular galaxies. Nadine Neumayer at the Max Planck Institute for Astronomy in Heidelberg and Ralf Bender at the Max Planck Institute for Extraterrestrial Physics in Garching investigate the reasons for this diversity. They have already identified one crucial factor: dark matter. Max Planck Research · 4 | 2020 FOCUS Nature has bestowed an overwhelming diversity upon our planet. The sheer resourcefulness of the plant and animal world is seemingly inexhaustible. When scien- tists first started to explore this diversity, their first step was always to systematize it. Hence, the Swedish naturalist Carl von Linné established the principles of modern botany and zoology in the 18th century by clas- sifying organisms. In the last century, astronomers have likewise discovered that galaxies can come in an array of shapes and sizes. In this case, it was Edwin Hubble in the mid-1920s who systematized them. The “Hubble tuning fork dia- gram” classified elliptical galaxies according to their ellipticity. The series of elliptical galaxies along the di- PHOTO: PETER FRIEDRICH agram branches off into two arms: spiral galaxies with a compact bulge along the upper branch and galaxies with a central bar on the lower branch.
    [Show full text]
  • The Large Scale Universe As a Quasi Quantum White Hole
    International Astronomy and Astrophysics Research Journal 3(1): 22-42, 2021; Article no.IAARJ.66092 The Large Scale Universe as a Quasi Quantum White Hole U. V. S. Seshavatharam1*, Eugene Terry Tatum2 and S. Lakshminarayana3 1Honorary Faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India. 2760 Campbell Ln. Ste 106 #161, Bowling Green, KY, USA. 3Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India. Authors’ contributions This work was carried out in collaboration among all authors. Author UVSS designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors ETT and SL managed the analyses of the study. All authors read and approved the final manuscript. Article Information Editor(s): (1) Dr. David Garrison, University of Houston-Clear Lake, USA. (2) Professor. Hadia Hassan Selim, National Research Institute of Astronomy and Geophysics, Egypt. Reviewers: (1) Abhishek Kumar Singh, Magadh University, India. (2) Mohsen Lutephy, Azad Islamic university (IAU), Iran. (3) Sie Long Kek, Universiti Tun Hussein Onn Malaysia, Malaysia. (4) N.V.Krishna Prasad, GITAM University, India. (5) Maryam Roushan, University of Mazandaran, Iran. Complete Peer review History: http://www.sdiarticle4.com/review-history/66092 Received 17 January 2021 Original Research Article Accepted 23 March 2021 Published 01 April 2021 ABSTRACT We emphasize the point that, standard model of cosmology is basically a model of classical general relativity and it seems inevitable to have a revision with reference to quantum model of cosmology. Utmost important point to be noted is that, ‘Spin’ is a basic property of quantum mechanics and ‘rotation’ is a very common experience.
    [Show full text]
  • Interpreting the Spitzer/IRAC Colours of 7 Z 9 Galaxies
    MNRAS 000,1–11 (2019) Preprint 15 July 2020 Compiled using MNRAS LATEX style file v3.0 Interpreting the Spitzer/IRAC Colours of 76 z 69 Galaxies: Distinguishing Between Line Emission and Starlight Using ALMA G. W. Roberts-Borsani1;2?, R. S. Ellis2 and N. Laporte3;4;2 1Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095, USA 2Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK 3Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 4Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, UK Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Prior to the launch of JWST, Spitzer/IRAC photometry offers the only means of studying the rest-frame optical properties of z >7 galaxies. Many such high redshift galaxies display a red [3.6]−[4.5] micron colour, often referred to as the “IRAC excess”, which has conven- tionally been interpreted as arising from intense [O III]+Hβ emission within the [4.5] micron bandpass. An appealing aspect of this interpretation is similarly intense line emission seen in star-forming galaxies at lower redshift as well as the redshift-dependent behaviour of the IRAC colours beyond z ∼7 modelled as the various nebular lines move through the two band- passes. In this paper we demonstrate that, given the photometric uncertainties, established stel- lar populations with Balmer (4000 Å rest-frame) breaks, such as those inferred at z >9 where line emission does not contaminate the IRAC bands, can equally well explain the redshift- dependent behaviour of the IRAC colours in 7.
    [Show full text]
  • Blue Straggler Stars in Galactic Open Clusters and the Effect of Field Star Contamination
    A&A 482, 777–781 (2008) Astronomy DOI: 10.1051/0004-6361:20078629 & c ESO 2008 Astrophysics Blue straggler stars in Galactic open clusters and the effect of field star contamination (Research Note) G. Carraro1,R.A.Vázquez2, and A. Moitinho3 1 ESO, Alonso de Cordova 3107, Vitacura, Santiago, Chile e-mail: [email protected] 2 Facultad de Ciencias Astronómicas y Geofísicas de la UNLP, IALP-CONICET, Paseo del Bosque s/n, La Plata, Argentina e-mail: [email protected] 3 SIM/IDL, Faculdade de Ciências da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal e-mail: [email protected] Received 7 September 2007 / Accepted 19 February 2008 ABSTRACT Context. We investigate the distribution of blue straggler stars in the field of three open star clusters. Aims. The main purpose is to highlight the crucial role played by general Galactic disk fore-/back-ground field stars, which are often located in the same region of the color magnitude diagram as blue straggler stars. Methods. We analyze photometry taken from the literature of 3 open clusters of intermediate/old age rich in blue straggler stars, which are projected in the direction of the Perseus arm, and study their spatial distribution and the color magnitude diagram. Results. As expected, we find that a large portion of the blue straggler population in these clusters are simply young field stars belonging to the spiral arm. This result has important consequences on the theories of the formation and statistics of blue straggler stars in different population environments: open clusters, globular clusters, or dwarf galaxies.
    [Show full text]
  • The Dwarf Galaxy Abundances and Radial-Velocities Team (DART) Large Programme – a Close Look at Nearby Galaxies
    Reports from Observers The Dwarf galaxy Abundances and Radial-velocities Team (DART) Large Programme – A Close Look at Nearby Galaxies Eline Tolstoy1 The dwarf galaxies we have studied are nearby galaxies. The modes of operation, Vanessa Hill 2 the lowest-luminosity (and mass) galax- the sensitivity and the field of view are Mike Irwin ies that have ever been found. It is likely an almost perfect match to requirements Amina Helmi1 that these low-mass dwarfs are the most for the study of Galactic dSph galaxies. Giuseppina Battaglia1 common type of galaxy in the Universe, For example, it is now possible to meas- Bruno Letarte1 but because of their extremely low ure the abundance of numerous elements Kim Venn surface brightness our ability to detect in nearby galaxies for more than 100 stars Pascale Jablonka 5,6 them diminishes rapidly with increasing over a 25;-diameter field of view in one Matthew Shetrone 7 distance. The only place where we can shot. A vast improvement on previous la- Nobuo Arimoto 8 be reasonably sure to detect a large frac- borious (but valiant) efforts with single-slit Tom Abel 9 tion of these objects is in the Local spectrographs to observe a handful of Francesca Primas10 Group, and even here, ‘complete sam- stars per galaxy (e.g., Tolstoy et al. 200; Andreas Kaufer10 ples’ are added to each year. Within Shetrone et al. 200; Geisler et al. 2005). Thomas Szeifert10 250 kpc of our Galaxy there are nine low- Patrick Francois 2 mass galaxies (seven observable from The DART Large Programme has meas- Kozo Sadakane11 the southern hemisphere), including Sag- ured abundances and velocities for sev- ittarius which is in the process of merging eral hundred individual stars in a sample with our Galaxy.
    [Show full text]
  • Tidal Dwarf Galaxies and Missing Baryons
    Tidal Dwarf Galaxies and missing baryons Frederic Bournaud CEA Saclay, DSM/IRFU/SAP, F-91191 Gif-Sur-Yvette Cedex, France Abstract Tidal dwarf galaxies form during the interaction, collision or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons”, known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this article, I use “dark matter” to refer to the non-baryonic matter, mostly located in large dark halos – i.e., CDM in the standard paradigm. I use “missing baryons” or “dark baryons” to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”. 1. Introduction: the formation of Tidal Dwarf Galaxies A Tidal Dwarf Galaxy (TDG) is, per definition, a massive, gravitationally bound object of gas and stars, formed during a merger or distant tidal interaction between massive spiral galaxies, and is as massive as a dwarf galaxy [1] (Figure 1).
    [Show full text]
  • Monster Black Hole Found in Tiny Galaxy Discovery Hints at Twice As Many Supermassive Black Holes in the Nearby Universe As Previously Thought
    NATURE | NEWS Monster black hole found in tiny galaxy Discovery hints at twice as many supermassive black holes in the nearby Universe as previously thought. Ron Cowen 17 September 2014 Artist's impression by V. Beckmann/ESA/NASA/SPL Matter falling into supermassive black holes can get so hot that it emits X-rays. Astronomers have for the first time found strong evidence for a giant black hole in a Lilliputian galaxy. The finding suggests that supermassive black holes could be twice as numerous in the nearby Universe as previously estimated, with many of them hidden at the centres of small, seemingly nondescript galaxies known as ultra-compact dwarfs. Anil Seth of the University of Utah in Salt Lake City and his colleagues report the findings on 17 September in Nature1. The team became intrigued by the ultra-compact dwarf galaxy M60-UCD1, some 16.6 million parsecs (54 million light years) from Earth, in part because its X-ray emissions suggested that it might house a black hole. Images taken with the Hubble Space Telescope showed that the galaxy harboured a high concentration of mass at its centre, but the team had no idea how heavy the putative black hole might be. To weigh the beast, the researchers measured the velocity of stars whipping about the galaxy’s centre using an infrared spectrometer on the Gemini North telescope atop Mauna Kea in Hawaii. The high velocity of the stars is best explained by a central black hole that tips the scales at 21 million times the Sun’s mass, concluded Seth’s team.
    [Show full text]
  • The Satellite Distribution of the Galaxy Therefore Ence for Orbits in the Plane of the Disk (Brainerd 2005)
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 29 June 2018 (MN LATEX style file v2.2) The satellite distribution of M31 A. W. McConnachie1,2 & M. J. Irwin1 1Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, U.K. 2Department of Physics and Astronomy, University of Victoria, Victoria, B.C. V8P 5C2, Canada 29 June 2018 ABSTRACT The spatial distribution of the Galactic satellite system plays an important role in Galactic dynamics and cosmology, where its successful reproduction is a key test of simulations of galaxy halo formation. Here, we examine its representative nature by conducting an analysis of the 3-dimensional spatial distribution of the M31 subgroup of galaxies, the next closest system to our own. We begin by a discussion of distance estimates and incompleteness concerns, before revisiting the question of membership of the M31 subgroup. We constrain this by consideration of the spatial and kinematic properties of the putative satellites. Comparison of the distribution of M31 and Galac- tic satellites relative to the galactic disks suggests that the Galactic system is probably modestly incomplete at low latitudes by ≃ 20 %. We find that the radial distribution of satellites around M31 is more extended than the Galactic subgroup; 50% of the Galactic satellites are found within ∼ 100kpc of the Galaxy, compared to ∼ 200kpc for M31. We search for “ghostly streams” of satellites around M31, in the same way others have done for the Galaxy, and find several, including some which contain many of the dwarf spheroidal satellites. The lack of M31-centric kinematic data, however, means we are unable to probe whether these streams represent real physical associ- ations.
    [Show full text]
  • The Dwarf Galaxy Satellite System of Centaurus A?,?? Oliver Müller1, Marina Rejkuba2, Marcel S
    A&A 629, A18 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935807 & c O. Müller et al. 2019 Astrophysics The dwarf galaxy satellite system of Centaurus A?,?? Oliver Müller1, Marina Rejkuba2, Marcel S. Pawlowski3, Rodrigo Ibata1, Federico Lelli2, Michael Hilker2, and Helmut Jerjen4 1 Observatoire Astronomique de Strasbourg (ObAS), Universite de Strasbourg – CNRS, UMR 7550, Strasbourg, France e-mail: [email protected] 2 European Southern Observatory, Karl-Schwarzschild Strasse 2, 85748 Garching, Germany 3 Leibniz-Institut fur Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany 4 Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia Received 30 April 2019 / Accepted 3 July 2019 ABSTRACT Dwarf galaxy satellite systems are essential probes to test models of structure formation, making it necessary to establish a census of dwarf galaxies outside of our own Local Group. We present deep FORS2 VI band images from the ESO Very Large Telescope (VLT) for 15 dwarf galaxy candidates in the Centaurus group of galaxies. We confirm nine dwarfs to be members of Cen A by measuring their distances using a Bayesian approach to determine the tip of the red giant branch luminosity. We have also fit theoretical isochrones to measure their mean metallicities. The properties of the new dwarfs are similar to those in the Local Group in terms of their sizes, luminosities, and mean metallicities. Within our photometric precision, there is no evidence of a metallicity spread, but we do observe possible extended star formation in several galaxies, as evidenced by a population of asymptotic giant branch stars brighter than the red giant branch tip.
    [Show full text]