Hardware-Accelerated Gradient Noise for Graphics Josef B. Spjut Andrew E. Kensler Erik L. Brunvand School of Computing SCI Institute School of Computing University of Utah University of Utah University of Utah
[email protected] [email protected] [email protected] ABSTRACT techniques trade computation for memory. This is impor- A synthetic noise function is a key component of most com- tant since as process technology scales, compute resources puter graphics rendering systems. This pseudo-random noise will increasingly outstrip memory speeds. For texturing sur- function is used to create a wide variety of natural looking faces, the memory reduction can be two-fold: first there textures that are applied to objects in the scene. To be is the simple reduction in texture memory itself. Second, useful, the generated noise should be repeatable while ex- 3D or \solid" procedural textures can eliminate the need for hibiting no discernible periodicity, anisotropy, or aliasing. explicit texture coordinates to be stored with the models. However, noise with these qualities is computationally ex- However, in order to avoid uniformity and produce visual pensive and results in a significant fraction of the run time richness, a simple, repeatable, pseudo-random function is for scenes with rich visual complexity. We propose modifi- required. Noise functions meet this need. Simply described, a noise function in computer graphics is cations to the standard algorithm for computing synthetic N noise that improve the visual quality of the noise, and a par- an R ! R mapping used to introduce irregularity into an allel hardware implementation of this improved noise func- otherwise regular pattern.