Mechanized Semantics for Word Expansion in the POSIX Shell
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PL/SQL Multi-Diagrammatic Source Code Visualization
SQLFlow: PL/SQL Multi-Diagrammatic Source Code Visualization Samir Tartir Ayman Issa Department of Computer Science University of the West of England (UWE), University of Georgia Coldharbour Lane, Frenchay, Bristol BS16 1QY Athens, Georgia 30602 United Kingdom USA Email: [email protected] Email: [email protected] ABSTRACT: A major problem in software introducing new problems to other code that was perfectly maintenance is the lack of a well-documented source code working before. Therefore, educating programmers about in software applications. This has led to serious the behaviors of the target code before start modifying it difficulties in software maintenance and evolution. In is not an easy task. Source code visualization is one of the particular, for those developers who are faced with the heavily used techniques in the literature to overcome this task of fixing or modifying a piece of code they never lack of documentation problem, and its consequent even knew existed before. Database triggers and knowledge-sharing problem [7, 9]. procedures are parts of almost every application, are typical examples of badly documented software Therefore, this research aims at investigating the current components being the hidden back end of software database source code visualization tools and identifying applications. Source code visualization is one of the the main open issues for research. Consequently, the heavily used techniques in the literature so as to mostly used PL/SQL database programming language has familiarize software developers with new source code, been selected for a flowcharting reverse engineering and compensate for the knowledge-sharing problem. prototype tool called "SQLFlow". SQLFlow has been Therefore, a new PL/SQL flowcharting reverse designed, implemented, and tested to parse the target engineering tool, SQLFlow, has been designed and PL/SQL code stored in database procedures, analyze its developed. -
Technical Standard
Technical Standard X/Open Curses, Issue 7 The Open Group ©November 2009, The Open Group All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owners. Technical Standard X/Open Curses, Issue 7 ISBN: 1-931624-83-6 Document Number: C094 Published in the U.K. by The Open Group, November 2009. This standardhas been prepared by The Open Group Base Working Group. Feedback relating to the material contained within this standardmay be submitted by using the web site at http://austingroupbugs.net with the Project field set to "Xcurses Issue 7". ii Technical Standard 2009 Contents Chapter 1 Introduction........................................................................................... 1 1.1 This Document ........................................................................................ 1 1.1.1 Relationship to Previous Issues ......................................................... 1 1.1.2 Features Introduced in Issue 7 ........................................................... 2 1.1.3 Features Withdrawn in Issue 7........................................................... 2 1.1.4 Features Introduced in Issue 4 ........................................................... 2 1.2 Conformance............................................................................................ 3 1.2.1 Base Curses Conformance ................................................................. -
Javascript and the DOM
Javascript and the DOM 1 Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento The web architecture with smart browser The web programmer also writes Programs which run on the browser. Which language? Javascript! HTTP Get + params File System Smart browser Server httpd Cgi-bin Internet Query SQL Client process DB Data Evolution 3: execute code also on client! (How ?) Javascript and the DOM 1- Adding dynamic behaviour to HTML 3 Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento Example 1: onmouseover, onmouseout <!DOCTYPE html> <html> <head> <title>Dynamic behaviour</title> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> </head> <body> <div onmouseover="this.style.color = 'red'" onmouseout="this.style.color = 'green'"> I can change my colour!</div> </body> </html> JAVASCRIPT The dynamic behaviour is on the client side! (The file can be loaded locally) <body> <div Example 2: onmouseover, onmouseout onmouseover="this.style.background='orange'; this.style.color = 'blue';" onmouseout=" this.innerText='and my text and position too!'; this.style.position='absolute'; this.style.left='100px’; this.style.top='150px'; this.style.borderStyle='ridge'; this.style.borderColor='blue'; this.style.fontSize='24pt';"> I can change my colour... </div> </body > JavaScript is event-based UiEvents: These event objects iherits the properties of the UiEvent: • The FocusEvent • The InputEvent • The KeyboardEvent • The MouseEvent • The TouchEvent • The WheelEvent See https://www.w3schools.com/jsref/obj_uievent.asp Test and Gym JAVASCRIPT HTML HEAD HTML BODY CSS https://www.jdoodle.com/html-css-javascript-online-editor/ Javascript and the DOM 2- Introduction to the language 8 Introduzione alla programmazione web – Marco Ronchetti 2020 – Università di Trento JavaScript History • JavaScript was born as Mocha, then “LiveScript” at the beginning of the 94’s. -
A Prolog-Based Proof Tool for Type Theory Taλ and Implicational Intuitionistic-Logic
A Prolog-based Proof Tool for Type Theory TAλ and Implicational Intuitionistic-Logic L. Yohanes Stefanus University of Indonesia Depok 16424, Indonesia [email protected] and Ario Santoso∗ Technische Universit¨atDresden Dresden 01187, Germany [email protected] Abstract Studies on type theory have brought numerous important contributions to computer science. In this paper we present a GUI-based proof tool that provides assistance in constructing deductions in type theory and validating implicational intuitionistic-logic for- mulas. As such, this proof tool is a testbed for learning type theory and implicational intuitionistic-logic. This proof tool focuses on an important variant of type theory named TAλ, especially on its two core algorithms: the principal-type algorithm and the type inhabitant search algorithm. The former algorithm finds a most general type assignable to a given λ-term, while the latter finds inhabitants (closed λ-terms in β-normal form) to which a given type can be assigned. By the Curry{Howard correspondence, the latter algorithm provides provability for implicational formulas in intuitionistic logic. We elab- orate on how to implement those two algorithms declaratively in Prolog and the overall GUI-based program architecture. In our implementation, we make some modification to improve the performance of the principal-type algorithm. We have also built a web-based version of the proof tool called λ-Guru. 1 Introduction In 1902, Russell revealed the inconsistency in naive set theory. This inconsistency challenged the foundation of mathematics at that time. To solve that problem, type theory was introduced [1, 5]. As time goes on, type theory becomes widely used, it becomes a logician's standard tool, especially in proof theory. -
The Elinks Manual the Elinks Manual Table of Contents Preface
The ELinks Manual The ELinks Manual Table of Contents Preface.......................................................................................................................................................ix 1. Getting ELinks up and running...........................................................................................................1 1.1. Building and Installing ELinks...................................................................................................1 1.2. Requirements..............................................................................................................................1 1.3. Recommended Libraries and Programs......................................................................................1 1.4. Further reading............................................................................................................................2 1.5. Tips to obtain a very small static elinks binary...........................................................................2 1.6. ECMAScript support?!...............................................................................................................4 1.6.1. Ok, so how to get the ECMAScript support working?...................................................4 1.6.2. The ECMAScript support is buggy! Shall I blame Mozilla people?..............................6 1.6.3. Now, I would still like NJS or a new JS engine from scratch. .....................................6 1.7. Feature configuration file (features.conf).............................................................................7 -
Introduction to Javascript
Introduction to JavaScript Lecture 6 CGS 3066 Fall 2016 October 6, 2016 JavaScript I Dynamic programming language. Program the behavior of web pages. I Client-side scripts to interact with the user. I Communicates asynchronously and alters document content. I Used with Node.js in server side scripting, game development, mobile applications, etc. I Has thousands of libraries that can be used to carry out various tasks. JavaScript is NOT Java I Names can be deceiving. I Java is a full-fledged object-oriented programming language. I Java is popular for developing large-scale distributed enterprise applications and web applications. I JavaScript is a browser-based scripting language developed by Netscape and implemented in all major browsers. I JavaScript is executed by the browsers on the client side. JavaScript and other languages JavaScript borrows the elements from a variety of languages. I Object orientation from Java. I Syntax from C. I Semantics from Self and Scheme. Whats a script? I A program written for a special runtime environment. I Interpreted (as opposed to compiled). I Used to automate tasks. I Operates at very high levels of abstraction. Whats JavaScript? I Developed at Netscape to perform client side validation. I Adopted by Microsoft in IE 3.0 (1996). I Standardized in 1996. Current standard is ECMAScript 6 (2016). I Specifications for ECMAScript 2016 are out. I CommonJS used for development outside the browser. JavaScript uses I JavaScript has an insanely large API and library. I It is possible to do almost anything with JavaScript. I Write small scripts/apps for your webpage. -
Synchronizing Threads with POSIX Semaphores
3/17/2016 POSIX Semaphores Synchronizing Threads with POSIX Semaphores 1. Why semaphores? 2. Posix semaphores are easy to use sem_init sem_wait sem_post sem_getvalue sem_destroy 3. Activities 1 2 Now it is time to take a look at some code that does something a little unexpected. The program badcnt.c creates two new threads, both of which increment a global variable called cnt exactly NITER, with NITER = 1,000,000. But the program produces unexpected results. Activity 1. Create a directory called posixsem in your class Unix directory. Download in this directory the code badcnt.c and compile it using gcc badcnt.c -o badcnt -lpthread Run the executable badcnt and observe the ouput. Try it on both tanner and felix. Quite unexpected! Since cnt starts at 0, and both threads increment it NITER times, we should see cnt equal to 2*NITER at the end of the program. What happens? Threads can greatly simplify writing elegant and efficient programs. However, there are problems when multiple threads share a common address space, like the variable cnt in our earlier example. To understand what might happen, let us analyze this simple piece of code: THREAD 1 THREAD 2 a = data; b = data; a++; b--; data = a; data = b; Now if this code is executed serially (for instance, THREAD 1 first and then THREAD 2), there are no problems. However threads execute in an arbitrary order, so consider the following situation: Thread 1 Thread 2 data a = data; --- 0 a = a+1; --- 0 --- b = data; // 0 0 --- b = b + 1; 0 data = a; // 1 --- 1 --- data = b; // 1 1 So data could end up +1, 0, -1, and there is NO WAY to know which value! It is completely non- deterministic! http://www.csc.villanova.edu/~mdamian/threads/posixsem.html 1/4 3/17/2016 POSIX Semaphores The solution to this is to provide functions that will block a thread if another thread is accessing data that it is using. -
LIGO Data Analysis Software Specification Issues
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T970100-A - E LIGO Data Analysis Software Specification Issues James Kent Blackburn Distribution of this draft: LIGO Project This is an internal working document of the LIGO Project. California Institute of Technology Massachusetts Institute of Technology LIGO Project - MS 51-33 LIGO Project - MS 20B-145 Pasadena CA 91125 Cambridge, MA 01239 Phone (818) 395-2129 Phone (617) 253-4824 Fax (818) 304-9834 Fax (617) 253-7014 E-mail: [email protected] E-mail: [email protected] WWW: http://www.ligo.caltech.edu/ Table of Contents Index file /home/kent/Documents/framemaker/DASS.fm - printed July 22, 1997 LIGO-T970100-A-E 1.0 Introduction The subject material discussed in this document is intended to support the design and eventual implementation of the LIGO data analysis system. The document focuses on raising awareness of the issues that go into the design of a software specification. As LIGO construction approaches completion and the interferometers become operational, the data analysis system must also approach completion and become operational. Through the integration of the detector and the data analysis system, LIGO evolves from being an operational instrument to being an operational grav- itational wave detector. All aspects of software design which are critical to the specifications for the LIGO data analysis are introduced with the preface that they will be utilized in requirements for the LIGO data analysis system which drive the milestones necessary to achieve this goal. Much of the LIGO data analysis system will intersect with the LIGO diagnostics system, espe- cially in the areas of software specifications. -
Openextensions POSIX Conformance Document
z/VM Version 7 Release 1 OpenExtensions POSIX Conformance Document IBM GC24-6298-00 Note: Before you use this information and the product it supports, read the information in “Notices” on page 73. This edition applies to version 7, release 1, modification 0 of IBM z/VM (product number 5741-A09) and to all subsequent releases and modifications until otherwise indicated in new editions. Last updated: 2018-09-12 © Copyright International Business Machines Corporation 1993, 2018. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents List of Tables........................................................................................................ ix About This Document............................................................................................xi Intended Audience......................................................................................................................................xi Conventions Used in This Document.......................................................................................................... xi Where to Find More Information.................................................................................................................xi Links to Other Documents and Websites.............................................................................................. xi How to Send Your Comments to IBM....................................................................xiii Summary of Changes for z/VM -
NINETEENTH PLENARY MEETING of ISO/IEC JTC 1/SC 22 London, United Kingdom September 19-22, 2006 [20060918/22] Version 1, April 17, 2006 1
NINETEENTH PLENARY MEETING OF ISO/IEC JTC 1/SC 22 London, United Kingdom September 19-22, 2006 [20060918/22] Version 1, April 17, 2006 1. OPENING OF PLENARY MEETING (9:00 hours, Tuesday, September 19) 2. CHAIRMAN'S REMARKS 3. ROLL CALL OF DELEGATES 4. APPOINTMENT OF DRAFTING COMMITTEE 5. ADOPTION OF THE AGENDA 6. REPORT OF THE SECRETARY 6.1 SC 22 Project Information 6.2 Proposals for New Work Items within SC 22 6.3 Outstanding Actions From the Eighteenth Plenary of SC 22 Page 1 of 7 JTC 1 SC 22, 2005 Version 1, April 14, 2006 6.4 Transition to ISO Livelink 6.4.1 SC 22 Transition 7. ACTIVITY REPORTS 7.1 National Body Reports 7.2 External Liaison Reports 7.2.1 ECMA International (Rex Jaeschke) 7.2.2 Free Standards Group (Nick Stoughton) 7.2.2 Austin Joint Working Group (Nick Stoughton) 7.3 Internal Liaison Reports 7.3.1 Liaison Officers from JTC 1/SC 2 (Mike Ksar) 7.3.2 Liaison Officer from JTC 1/SC 7 (J. Moore) Page 2 of 7 JTC 1 SC 22, 2005 Version 1, April 14, 2006 7.3.3 Liaison Officer from ISO/TC 37 (Keld Simonsen) 7.3.5 Liaison Officer from JTC 1 SC 32 (Frank Farance) 7.4 Reports from SC 22 Subgroups 7.4.1 Other Working Group Vulnerabilities (Jim Moore) 7.4.2 SC 22 Advisory Group for POSIX (Stephen Walli) 7.5 Reports from JTC 1 Subgroups 7.5.1 JTC 1 Vocabulary (John Hill) 7.5.2 JTC 1 Ad Hoc Directives (John Hill) 8. -
So You Think You Know C? [Pdf]
So You Think You Know C? And Ten More Short Essays on Programming Languages by Oleksandr Kaleniuk Published in 2020 This is being published under the Creative Commons Zero license. I have dedicated this work to the public domain by waiving all of my rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. Table of Contents Introduction......................................................................................................... 4 So you think you know C?..................................................................................6 APL deserves its renaissance too.......................................................................13 Going beyond the idiomatic Python..................................................................30 Why Erlang is the only true computer language................................................39 The invisible Prolog in C++..............................................................................43 One reason you probably shouldn’t bet your whole career on JavaScript.........54 You don't have to learn assembly to read disassembly......................................57 Fortran is still a thing........................................................................................64 Learn you a Lisp in 0 minutes...........................................................................68 Blood, sweat, -
Proposal to Refocus TC39-TG1 on the Maintenance of the Ecmascript, 3 Edition Specification
Proposal to Refocus TC39-TG1 On the Maintenance of the ECMAScript, 3rd Edition Specification Submitted by: Yahoo! Inc. Microsoft Corporation Douglas Crockford Pratap Lakshman & Allen Wirfs-Brock Preface We believe that the specification currently under development by TC39-TG1 as ECMAScript 4 is such a radical departure from the current standard that it is essentially a new language. It is as different from ECMAScript 3rd Edition as C++ is from C. Such a drastic change is not appropriate for a revision of a widely used standardized language and cannot be justified in light of the current broad adoption of ECMAScript 3rd Edition for AJAX style web applications. We do not believe that consensus can be reach within TC39-TG1 based upon its current language design work. However, we do believe that an alternative way forward can be found and submit this proposal as a possible path to resolution. Proposal We propose that the work of TC39-TG1 be reconstituted as two (or possibly three) new TC39 work items as follows: Work item 1 – On going maintenance of ECMAScript, 3rd Edition. In light on the broad adoption of ECMAScript, 3rd Edition for web browser based applications it is clear that this language will remain an important part of the world-wide-web infrastructure for the foreseeable future. However, since the publication of the ECMAScript, 3rd Edition specification in 1999 there has been feature drift between implementations and cross-implementation compatibility issues arising from deficiencies and ambiguities in the specification. The purpose of this work item is to create a maintenance revision of the specification (a 4th Edition) that focuses on these goals: Improve implementation conformance by rewriting the specification to improve its rigor and clarity, and by correcting known points of ambiguity or under specification.