Advanced Oxidation Processes - Applications, Trends, Prospects - Applications, and Processes Oxidation Advanced
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Trends in Environmental Catalytic Technologies for Water Remediation
water Editorial New Trends in Environmental Catalytic Technologies for Water Remediation Zacharias Frontistis Department of Chemical Engineering, University of Western Macedonia, GR-50100 Kozani, Greece; [email protected] Due to climate change, industrialization, and overpopulation, water resources man- agement is becoming a crucial sector. Consequently, as the limits of legislation for effluents’ reuse and recycling and use in crops or aquifers enrichment are becoming increasingly stringent, advanced wastewater treatment is becoming very demanding. Simultaneously, in recent years, a new generation of pollutants has emerged. The xenobiotic compounds present a disproportionately high degree of toxicity even though they are detected in mini- mal quantities, which is why they are called micro pollutants. This category contains many compounds belonging to different families, such as endocrine disruptors, pharmaceutical compounds, and personal care products. One of the main problems of this new generation of pollutants is their extremely low biodegradation or their tendency to accumulate in the sludge of conventional biological wastewater treatment systems. On the other hand, in the scientific community and the environmental restoration industry, the search for the optimal solution for removing recalcitrant organic pollutants such as humic acid and inorganics such as heavy metals from environmental matrices continues at an intensive pace. In this light, the scientific interest has turned to a new generation of physicochemical methods called advanced oxidation processes (AOPs). These processes are based on the in situ generation of reactive oxygen Citation: Frontistis, Z. New Trends species. AOPs include technologies such as photocatalysis, photo Fenton and Fenton-like in Environmental Catalytic reactions, activated persulfate, ozonation, wet air oxidation, UV/H2O2, hydrodynamic or Technologies for Water Remediation. -
Application of Catalytic Wet Peroxide Oxidation for Industrial and Urban Wastewater Treatment: a Review
catalysts Review Application of Catalytic Wet Peroxide Oxidation for Industrial and Urban Wastewater Treatment: A Review Juan José Rueda Márquez 1,*, Irina Levchuk 2 and Mika Sillanpää 1 1 Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12 (Innovation Centre for Safety and Material Technology, TUMA), 50130 Mikkeli, Finland; mika.sillanpaa@lut.fi 2 Water and Wastewater Engineering Research Group, School of Engineering, Aalto University, PO Box 15200, FI-00076 Aalto, Finland; irina.levchuk@aalto.fi * Correspondence: juan.rueda.marquez@lut.fi Received: 12 November 2018; Accepted: 14 December 2018; Published: 19 December 2018 Abstract: Catalytic wet peroxide oxidation (CWPO) is emerging as an advanced oxidation process (AOP) of significant promise, which is mainly due to its efficiency for the decomposition of recalcitrant organic compounds in industrial and urban wastewaters and relatively low operating costs. In current study, we have systemised and critically discussed the feasibility of CWPO for industrial and urban wastewater treatment. More specifically, types of catalysts the effect of pH, temperature, and hydrogen peroxide concentrations on the efficiency of CWPO were taken into consideration. The operating and maintenance costs of CWPO applied to wastewater treatment and toxicity assessment were also discussed. Knowledge gaps were identified and summarised. The main conclusions of this work are: (i) catalyst leaching and deactivation is one of the main problematic issues; (ii) majority of studies were performed in semi-batch and batch reactors, while continuous fixed bed reactors were not extensively studied for treatment of real wastewaters; (iii) toxicity of wastewaters treated by CWPO is of key importance for possible application, however it was not studied thoroughly; and, (iv) CWPO can be regarded as economically viable for wastewater treatment, especially when conducted at ambient temperature and natural pH of wastewater. -
Chemical Oxidation Applications for Industrial Wastewaters
©2019 The Author(s) This is an Open Access book distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying and redistribution for non- commercial purposes, provided the original work is properly cited and that any new works are made available on the same conditions (http://creativecommons.org/licenses/by/4.0/). This does not affect the rights licensed or assigned from any third party in this book. This title was made available Open Access through a partnership with Knowledge Unlatched. IWA Publishing would like to thank all of the libraries for pledging to support the transition of this title to Open Access through the KU Select 2018 program. Downloaded from http://iwaponline.com/ebooks/book-pdf/521267/wio9781780401416.pdf by guest on 24 September 2021 Chemical Oxidation Applications for Industrial Wastewaters Chemical Oxidation Applications for Industrial This book covers the most recent scientific and technological developments (state-of-the-art) in the field of chemical oxidation processes applicable for the Chemical Oxidation efficient treatment of biologically-difficult-to-degrade, toxic and/or recalcitrant effluents originating from different manufacturing processes. It is a comprehensive Applications for review of process and pollution profiles as well as conventional, advanced and emerging treatment processes & technologies developed for the most relevant and pollution (wet processing)-intensive industrial sectors. Industrial Wastewaters It addresses chemical/photochemical oxidative treatment processes, case- Olcay Tünay, Işık Kabdaşlı, Idil Arslan-Alaton and Tuğba Ölmez-Hancı specific treatability problems of major industrial sectors, emerging (novel) as well as pilot/full-scale applications, process integration, treatment system design & sizing criteria (figure-of merits), cost evaluation and success stories in the application of chemical oxidative treatment processes. -
Devdopment of the Monolith Froth Reactor for Catalytic Wet Oxidation Of
05-19-99 15:2_ TU RESEARCH ID=9182246298 P03/09 Devdopment of the Monolith Froth Reactor for Catalytic Wet Oxidation of CELSS Mo_ Final Report on Jt_t_z-_l_ --_ J Martin Abraham" Department of Chemical Engineering The University of Toledo Toledo, OH 43606 John W. Fisher MS 239-1 l NASA - Ames Research Center Moffett Field, CA 94035 The aqueous phase oxidation of acetic acid, used as a model compound for the treatment of CELSS (Controlled Ecological Life Support System) waste, was carried out in the monolith froth reactor which utilizes two-phase flow in the monolith channels. The catalytic oxidation of acetic acid was carried out over a Pt/AI.,O_ catalyst, prepared at The University of Tulsa, at temperatures and pressures below the critical point of water. The effect of ex'temally controllable parameters (temperature, liquid flow rate, distributor plate orifice size, pitch, and catalyst distance from the distributor plate) on the rate of acetic acid oxidation was investigated. Results indicate reaction rate increased with increasing temperature and exhibited a maximum with respect to liquid flow rate. The apparent activation energy calculated from reaction rate data ,,,,,as 99.7 kJ/mol. This value is similar to values reported for the oxidation of acetic acid in other systems and is comparable to intrinsic values calculated for oxidation reactions. The "kinetic data were modeled using simple power law kinetics. The effect of "froth" feed system characteristics was also investigated. Results indicate that the reaction rate exhibits a maximum with respect to distributor plate orifice size, pitch, and catalyst distance from the distributor plate. -
Janne Bjmmtvedt Buhaug Investigation of the Chemistry of Liquid H2S Scavengers ,- DISC-LAIMER
Janne Bjmmtvedt Buhaug Investigation of the Chemistry of Liquid H2S Scavengers ,- DISC-LAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Janne Bjamtvedt Buhaug INVESTIGATION OF THE CHEMISTRY OF LIQUIDH2S SCAVENGERS DEPARTMENT OF CHEMISTRY NORWEGIAN UNIVERSITY OF SCIENCE & TECHNOLOGY "u Preface The work presented in this dissertation has been executed at the Department of Chemistry, the Norwegian University of Science and Technology in Trond- heim, fiom January 1999 to June 2002. Statoil ASA initiated this work, and I would like to thank them for letting me work on their project. Statoil and the Norwegian Research Council are gratellly acknowledged for their generous financial support. I would like to express my most sincere gratitude to my supervisor, Professor Jan M. Bakke, for his great enthusiasm and belief in me and my work. I am deeply grateful to my friends and colleagues at the Department for many hours of small-talk, fruitful discussions and valuable help during my studies. Particularly, I would particularly like to thank siv.ing. Ingrid Sletvold and sivhg. Bjart Frode Lutnzzs for spending hours reading through this thesis. All your comments have been greatly appreciated. Dr.ing. Einar Skarstad Egeland was very helpful in establishing the WPAC names of many of my compounds, and he is gratefully acknowledged. Finally, I would like to express my gratitude to my family for the many encour- aging phone calls during my many years of education. Lastly, I would like to thank my husband, Halvard, for his love and support, and for colourful ideas for my work. -
CATALYTIC WET AIR OXIDATION of INDUSTRIAL WASTEWATERS Oxidation of Bisphenol a Over Cerium Supported Metal Catalysts
A 651 OULU 2015 A 651 UNIVERSITY OF OULU P.O. Box 8000 FI-90014 UNIVERSITY OF OULU FINLAND ACTA UNIVERSITATISUNIVERSITATIS OULUENSISOULUENSIS ACTA UNIVERSITATIS OULUENSIS ACTAACTA SCIENTIAESCIENTIAEA A RERUMRERUM Anne Heponiemi NATURALIUMNATURALIUM Anne Heponiemi Professor Esa Hohtola CATALYTIC WET AIR University Lecturer Santeri Palviainen OXIDATION OF INDUSTRIAL Postdoctoral research fellow Sanna Taskila WASTEWATERS OXIDATION OF BISPHENOL A OVER CERIUM Professor Olli Vuolteenaho SUPPORTED METAL CATALYSTS University Lecturer Veli-Matti Ulvinen Director Sinikka Eskelinen Professor Jari Juga University Lecturer Anu Soikkeli Professor Olli Vuolteenaho UNIVERSITY OF OULU GRADUATE SCHOOL; UNIVERSITY OF OULU FACULTY OF SCIENCE Publications Editor Kirsti Nurkkala ISBN 978-952-62-0898-5 (Paperback) ISBN 978-952-62-0899-2 (PDF) ISSN 0355-3191 (Print) ISSN 1796-220X (Online) ACTA UNIVERSITATIS OULUENSIS A Scientiae Rerum Naturalium 651 ANNE HEPONIEMI CATALYTIC WET AIR OXIDATION OF INDUSTRIAL WASTEWATERS Oxidation of bisphenol A over cerium supported metal catalysts Academic dissertation to be presented with the assent of the Doctoral Training Committee of Technology and Natural Sciences of the University of Oulu for public defence in Kuusamonsali (YB210), Linnanmaa, on 25 September 2015, at 12 noon UNIVERSITY OF OULU, OULU 2015 Copyright © 2015 Acta Univ. Oul. A 651, 2015 Supervised by Professor Ulla Lassi Docent Toivo Kuokkanen Reviewed by Professor Albin Pintar Doctor Sylvain Keav Opponent Professor Claude Descorme ISBN 978-952-62-0898-5 (Paperback) ISBN 978-952-62-0899-2 (PDF) ISSN 0355-3191 (Printed) ISSN 1796-220X (Online) Cover Design Raimo Ahonen JUVENES PRINT TAMPERE 2015 Heponiemi, Anne, Catalytic wet air oxidation of industrial wastewaters. Oxidation of bisphenol A over cerium supported metal catalysts University of Oulu Graduate School; University of Oulu, Faculty of Science Acta Univ. -
Redalyc.Antioxidant and Scavenging Activity of Skyrin on Free Radical And
Avances en Química ISSN: 1856-5301 [email protected] Universidad de los Andes Venezuela Vargas, Franklin; Rivas, Carlos; Zoltan, Tamara; López, Verónica; Ortega, Jessenia; Izzo, Carla; Pineda, María; Medina, José; Medina, Ernesto; Rosales, Luís Antioxidant and scavenging activity of skyrin on free radical and some reactive oxygen species Avances en Química, vol. 3, núm. 1, enero-abril, 2008, pp. 7-14 Universidad de los Andes Mérida, Venezuela Disponible en: http://www.redalyc.org/articulo.oa?id=93330103 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto 7 www.saber.ula.ve/avancesenquimica Avances en Química, 3(1), 7-14 (2008) Artículo Científico Antioxidant and scavenging activity of skyrin on free radical and some reactive oxygen species. Franklin Vargas *1, Carlos Rivas1, Tamara Zoltan1, Verónica López1, Jessenia Ortega1, Carla Izzo1, María Pineda1, José Medina2, Ernesto Medina3, Luís Rosales *3 1) Laboratorio de Fotoquímica, Instituto Venezolano de Investigaciones Científicas (I.V.I.C.) 2) Centro de Química, I.V.I.C. 3) Laboratorio de Ecofisiología Vegetal, Centro de Ecología, I.V.I.C., Caracas, Venezuela. Phone: 0212-5041338, Fax: 0212-5041350 (*) [email protected] Recibido: 28/11/2007 Revisado: 10/01/2008 Aceptado: 10/03/2008 --------------------------------------------------------------------------------------------------------------------- Resumen: El skyrin es un producto natural proveniente de algunas especies botánicas (hongos) y es uno de los primeros agentes antidiabéticos no-peptídico de pequeño peso molecular. El objetivo de este estudio fue el de investigar . -
Condensation By-Products in Wet Peroxide Oxidation: Fouling Or Catalytic Promotion? Part I
catalysts Article Condensation By-Products in Wet Peroxide Oxidation: Fouling or Catalytic Promotion? Part I. Evidences of an Autocatalytic Process Asunción Quintanilla 1, Jose L. Diaz de Tuesta 2,3 , Cristina Figueruelo 1, Macarena Munoz 1,* and Jose A. Casas 1 1 Chemical Engineering Department, Universidad Autónoma de Madrid, Ctra. Colmenar km 15, 28049 Madrid, Spain; [email protected] (A.Q.); cgfi[email protected] (C.F.); [email protected] (J.A.C.) 2 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; [email protected] 3 Laboratório de Processos de Separação e Reação - Laboratório de Catálise e Materiais (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal * Correspondence: [email protected]; Tel.: 34-91-497-3991; Fax: +34-91497-3516 Received: 22 May 2019; Accepted: 6 June 2019; Published: 11 June 2019 Abstract: The present work is aimed at the understanding of the condensation by-products role in wet peroxide oxidation processes. This study has been carried out in absence of catalyst to isolate the (positive or negative) effect of the condensation by-products on the kinetics of the process, and in presence of oxygen, to enhance the oxidation performance. This process was denoted as oxygen-assisted wet peroxide oxidation (WPO-O2) and was applied to the treatment of phenol. First, the influence of the reaction operating conditions (i.e., temperature, pH0, initial phenol concentration, H2O2 dose and O2 pressure) was evaluated. The initial phenol concentration and, overall, the H2O2 dose, were identified as the most critical variables for the formation of condensation by-products and thus, for the oxidation performance. -
Uncommon Fatty Acids and Cardiometabolic Health
Review Uncommon Fatty Acids and Cardiometabolic Health Kelei Li 1, Andrew J. Sinclair 2,3, Feng Zhao 1 and Duo Li 1,3,* 1 Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; [email protected] (K.L.); [email protected] (F.Z.) 2 Faculty of Health, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia; [email protected] 3 Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia * Correspondence: [email protected]; Tel.: +86-532-8299-1018 Received: 7 September 2018; Accepted: 18 October 2018; Published: 20 October 2018 Abstract: Cardiovascular disease (CVD) is a major cause of mortality. The effects of several unsaturated fatty acids on cardiometabolic health, such as eicosapentaenoic acid (EPA) docosahexaenoic acid (DHA), α linolenic acid (ALA), linoleic acid (LA), and oleic acid (OA) have received much attention in past years. In addition, results from recent studies revealed that several other uncommon fatty acids (fatty acids present at a low content or else not contained in usual foods), such as furan fatty acids, n-3 docosapentaenoic acid (DPA), and conjugated fatty acids, also have favorable effects on cardiometabolic health. In the present report, we searched the literature in PubMed, Embase, and the Cochrane Library to review the research progress on anti-CVD effect of these uncommon fatty acids. DPA has a favorable effect on cardiometabolic health in a different way to other long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), such as EPA and DHA. Furan fatty acids and conjugated linolenic acid (CLNA) may be potential bioactive fatty acids beneficial for cardiometabolic health, but evidence from intervention studies in humans is still limited, and well-designed clinical trials are required. -
PLEASE DO NOT REMOVE THIS PAGE Accepted Manuscript
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RMIT Research Repository Thank you for downloading this document from the RMIT Research Repository 7KH50,75HVHDUFK5HSRVLWRU\LVDQRSHHQDFFHVVGDWDEDVHVKRZFDVLQJWWKHUHVHDUFK RXWSXWVRI50,78QLYHUVLW\UHVHDUFKHUV 50,755HVHDUFK5HHSRVLWRU\KWWSUHVHDUFKEDQNUPLWHGXDX Citation: Hii, K, Baroutian, S, Parthasarathy, R, Gapes, D and Eshtiaghi, N 2014, 'A review of wet air oxidation and thermal hydrolysistechnologies in sludge treatment', Bioresource Technology, vol. 155, pp. 289-299. See this record in the RMIT Research Repository at: https://researchbank.rmit.edu.au/view/rmit:30221 Version: Accepted Manuscript Copyright Statement: © 2013 Elsevier Ltd Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Australia License Link to Published Version: http://dx.doi.org/10.1016/j.biortech.2013.12.066 PLEASE DO NOT REMOVE THIS PAGE Accepted Manuscript A Review of Wet Air Oxidation and Thermal Hydrolysis Technologies in Sludge Treatment Kevin Hii, Saeid Baroutian, Raj Parthasarathy, Daniel J. Gapes, Nicky Eshtiaghi PII: S0960-8524(13)01906-8 DOI: http://dx.doi.org/10.1016/j.biortech.2013.12.066 Reference: BITE 12789 To appear in: Bioresource Technology Please cite this article as: Hii, K., Baroutian, S., Parthasarathy, R., Gapes, D.J., Eshtiaghi, N., A Review of Wet Air Oxidation and Thermal Hydrolysis Technologies in Sludge Treatment, Bioresource Technology (2013), doi: http:// dx.doi.org/10.1016/j.biortech.2013.12.066 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. -
II EURAF Conference
capa EURAF EUROPEAN AGROFORESTRY FEDERATION nd 2 European Agroforestry Conference Integrating Science and Policy to Promote Agroforestry in Practice Book of Abstracts June 2014 Cottbus, Germany Editor-In-Chief: Organizing Committee: João HN Palma Dirk Freese Editors: Anja Chalmin Anja Chalmin Christian Dupraz Paul Burgess Rosa Mosquera-Losada Jo Smith Anastasia Panthera Mike Strachan Norbert Lammersdorf Jabier Ruiz Mirazo João HN Palma Adolfo Rosati Joana A Paulo Scientific Committee: Adolfo Rosati Anastasia Panthera Ansgar Quinkenstein Gerardo Moreno Jo Smith Joana A Paulo João HN Palma Rosa Mosquera-Losada Sami Kryeziu ISBN: 978-972-97874-4-7 cover design: Luís Fonseca (The 50 words more frequent in this document, sized proportional to their frequency) Contents Preface .............................................................................................................................................. v New insights into carbon, water and nutrient cycling in agroforestry ........................................ 2 Biophysical Interactions in the Alley Cropping System in Saskatchewan ................................................................... 3 Soil carbon sequestration in a Mediterranean agroforestry system............................................................................. 7 Pasture management under hardwood plantations: legume implantation vs. mineral fertilization ............................ 10 Carbon Sequestration in a Poplar Agroforestry System in India with Wheat and other Crops at Different Spacing and -
Hydrogen As a Novel and Effective Treatment of Acute Carbon Monoxide Poisoning
ARTICLE IN PRESS Medical Hypotheses xxx (2010) xxx–xxx Contents lists available at ScienceDirect Medical Hypotheses journal homepage: www.elsevier.com/locate/mehy Hydrogen as a novel and effective treatment of acute carbon monoxide poisoning Meihua Shen, Jian He, Jianmei Cai, Qiang Sun, Xuejun Sun, Zhenglu Huo * Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China article info summary Article history: Hydrogen is a major component of interstellar space and the fuel that sustains the stars. However, it is Received 19 February 2010 seldom regarded as a therapeutic gas. A recent study provided evidence that hydrogen inhalation exerted Accepted 23 February 2010 antioxidant and anti-apoptotic effects and protected the brain against ischemia–reperfusion injury by Available online xxxx selectively reducing hydroxyl radical and peroxynitrite. It has been known that the mechanisms under- lying the brain injury after acute carbon monoxide poisoning are interwoven with multiple factors including oxidative stress, free radicals, and neuronal nitric oxide synthase as well as abnormal inflam- matory responses. Studies have shown that free radical scavengers can improve the neural damage. Based on the findings abovementioned, we hypothesize that hydrogen therapy may be an effective, simple, economic and novel strategy in the treatment of acute carbon monoxide poisoning. Ó 2010 Elsevier Ltd. All rights reserved. Introduction prevents neural death. Other researchers have showed that hydro- gen can also improve myocardial, hepatic ischemia–reperfusion in- Hydrogen is the simplest and most essential chemical element, jury, neonatal hypoxia–ischemia, Parkinson’s disease, oxidative composing nearly 75% of the universe’s elemental matter. It is a stress induced cognitive decline, etc.