Unraveling a Revealing Paradox: Why Major Histocompatibility Complex I

Total Page:16

File Type:pdf, Size:1020Kb

Unraveling a Revealing Paradox: Why Major Histocompatibility Complex I Unraveling a Revealing Paradox: Why Major Histocompatibility Complex I–signaled Thymocytes “Paradoxically” Appear as CD4ϩ8lo Transitional Cells During Positive Selection of CD8 T Cells Remy Bosselut,1 Terry I. Guinter,2 Susan O. Sharrow,2 and Alfred Singer2 1Laboratory of Immune Cell Biology and 2Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Abstract The mechanism by which T cell receptor specificity determines the outcome of the CD4/CD8 lineage decision in the thymus is not known. An important clue is the fact that major histocom- patibility complex (MHC)-I–signaled thymocytes paradoxically appear as CD4ϩ8lo transitional cells during their differentiation into CD8 T cells. Lineage commitment is generally thought to occur at the CD4ϩ8 (double positive) stage of differentiation and to result in silencing of the opposite coreceptor gene. From this perspective, the appearance of MHC-I–signaled thy- mocytes as CD4ϩ8lo cells would be due to effects on CD8 surface protein expression, not CD8 gene expression. But contrary to this perspective, this study demonstrates that MHC-I–signaled thymocytes appear as CD4ϩ8lo cells because of transient down-regulation of CD8 gene ex- pression, not because of changes in CD8 surface protein expression or distribution. This study also demonstrates that initial cessation of CD8 gene expression in MHC-I–signaled thymocytes is not necessarily indicative of commitment to the CD4 T cell lineage, as such thymocytes re- tain the potential to differentiate into CD8 T cells. These results challenge classical concepts of lineage commitment but fulfill predictions of the kinetic signaling model. Key words: lineage commitment • kinetic signaling • coreceptor reversal • positive selection Introduction Immature CD4ϩ8 (double positive [DP]*) thymocytes are TCR engagement of peptide–MHC-II complexes generally signaled in the thymus to differentiate into mature single requires coengagement of surface CD4 coreceptor molecules positive T cells by TCR engagement of intrathymic whereas TCR engagement of peptide–MHC-I complexes The Journal of Experimental Medicine MHC–peptide complexes (1). TCR engagement of in- generally requires coengagement of surface CD8 corecep- trathymic peptide–MHC-II complexes results in differenti- tor molecules (4, 5). However, the actual mechanism by ation of DP thymocytes into mature CD4 T cells whereas which TCR and coreceptor coengagements influence lin- TCR engagement of intrathymic peptide–MHC-I com- eage choice remains a matter of intense controversy. plexes results in differentiation of DP thymocytes into Classical models of lineage commitment are of two gen- mature CD8 T cells (2, 3). The mechanism by which the eral types: instructional and stochastic (6–10). Instructional MHC class specificity of surface TCR complexes deter- models of lineage commitment propose that TCR plus mines lineage choice remains an unresolved problem in CD4 coengagements on DP thymocytes terminate CD8 developmental immunology. It is thought that lineage gene expression and dictate commitment to the CD4 T choice is a consequence of the coreceptor molecules that cell lineage by transducing signals that differ either qualita- individual TCRs use to engage intrathymic ligands, as tively or quantitatively (in strength or duration) from sig- nals transduced by TCR plus CD8 coengagements that terminate CD4 gene expression and dictate commitment to Address correspondence to Alfred Singer, Experimental Immunology the CD8 T cell lineage (11–15). Stochastic models of lin- Branch, National Cancer Institute, Building 10, Room 4B36, Be- thesda, MD 20892. Phone: 301-496-5461; Fax: 301-496-0887; E-mail: eage commitment propose that coengagement of TCR [email protected] with either coreceptor molecule signals DP thymocytes to *Abbreviations used in this paper: DP, double positive; hCD2, human CD2. randomly terminate expression of one coreceptor gene, 1709 The Journal of Experimental Medicine • Volume 197, Number 12, June 16, 2003 1709–1719 http://www.jem.org/cgi/doi/10.1084/jem.20030170 with only thymocytes still expressing matching TCR and expression on MHC-I–signaled thymocytes during CD8 T coreceptor molecules responsive to subsequent survival sig- cell differentiation tests predictions made by different con- nals (16, 17). In both models, lineage commitment is pos- cepts of how lineage commitment occurs. The classical con- tulated to occur in DP thymocytes and result in silencing of cept that lineage commitment occurs in DP thymocytes and the opposite coreceptor gene. results in irreversible silencing of the opposite coreceptor As a result, classical models of lineage commitment pre- gene predicts that low CD8 surface protein expression on dict that DP thymocytes that have committed to the CD4ϩ MHC-I–signaled CD4ϩ8lo thymocytes is due to direct ef- T cell lineage have terminated CD8 gene expression and fects on CD8 surface protein expression, not CD8 gene ex- therefore will lose CD8 surface protein expression and ap- pression. In contrast, the kinetic signaling model predicts pear as CD4ϩ8lo transitional cells. Reciprocally, signaled that low CD8 surface protein expression on MHC-I–sig- DP thymocytes that have committed to the CD8 T cell naled CD4ϩ8lo thymocytes is due to down-regulation of lineage have terminated CD4 gene expression and will lose CD8 gene expression. Consequently, this study has at- CD4 surface protein expression and appear as CD4lo8ϩ tempted to determine the actual basis for reduced CD8 sur- cells. However, experimental observations are discordant face protein expression on MHC-I–signaled CD4ϩ8lo thy- with these predictions as assessment of CD4ϩ8lo and mocytes. These results demonstrate that reduced CD8 CD4lo8 transitional populations revealed that a significant surface expression on MHC-I–signaled CD4ϩ8lo thymocytes proportion of CD8 lineage cells initially appear as CD4ϩ8lo is not due to internalization nor slow reexpression of CD8 transitional cells (18–22). The appearance of CD8-commit- surface proteins, but is due to down-regulated CD8 gene ted thymocytes as CD4ϩ8lo transitional cells is paradoxical expression. In addition, this study demonstrates that down- on two levels, as: (a) CD8-committed thymocytes are regulation of CD8 gene expression does not imply commit- thought to have terminated CD4 gene expression, yet these ment to the CD4 lineage, as many intermediate CD4ϩ8Ϫ cells display high levels of CD4 proteins on their cell sur- thymocytes retain the ability to differentiate into CD8 T face, and (b) CD8-committed thymocytes are thought to cells. These results support the kinetic signaling model but express CD8 coreceptor genes, yet these cells display low challenge more classical concepts of lineage commitment. levels of CD8 proteins on their cell surface. Although the paradoxical loss of CD8 surface proteins on MHC-I–sig- naled thymocytes had not been predicted, it could be rec- Materials and Methods onciled with classical lineage commitment models by hy- Animals. Mice deficient in MHC-II (MHC-IIo; reference pothesizing that it was due to a direct effect of MHC-I 27), CD8 (CD8␣o; reference 5), or CD8 (CD8␤o; reference signals on CD8 surface proteins that resulted in reduced 28) were used at 8–12 wk of age and maintained in our own ani- mal facility. MHC-IIo mice were bred with CD8␣o mice to gen- CD8 expression on CD8-committed thymocytes (9, 22, o o erate IIЊCD8␣ mice, and were bred with CD8␤ mice to gener- 23). This classical view of CD8 T cell differentiation is de- ate IIЊCD8␤o mice. picted in Fig. 1 A. CD8 transgenic mice constructed with human CD2 (hCD2)- In contrast, the kinetic signaling model of lineage com- based CD8 transgenes encoding either full-length CD8 or tail- mitment proposes that signaled DP thymocytes terminate less CD8 molecules have been described (29, 30). Transgenic CD8 gene expression and transcriptionally convert into and endogenous CD8 proteins expressed different allelic forms CD4ϩ8 intermediate thymocytes that still retain the po- of CD8 with transgenic CD8 proteins being CD8␣.1 and en- tential to differentiate into either CD4 or CD8 T cells dogenous CD8␣ proteins being CD8␣.2. The CD8 transgenic (24–26). So kinetic signaling postulates that lineage com- mouse lines expressed transgenic and endogenous CD8 proteins at comparable levels. The CD8␣.1 transgene was introduced by mitment occurs after DP thymocytes have converted into The Journal of Experimental Medicine o o ␣o o ␤ CD4ϩ8 intermediate thymocytes. According to the ki- mating into MHC-II , II CD8 , and II CD8 mice to generate MHC-IIo mice that either expressed both endogenous and netic signaling model, lineage direction is determined in ␣ ϩ transgenic CD8 proteins or expressed only transgenic CD8 CD4 8 intermediate thymocytes simply by whether proteins. TCR-mediated positive selection signals persist or cease. If ϩ Line 30 transgenic mice expressing a transgene encoding TCR signaling persists, intermediate CD4 8 thymocytes hCD2 cDNA under the control of the CD4 locus control region differentiate into CD4 T cells, but if TCR signaling (including the CD4 silencer element) were provided by D. Litt- ceases, intermediate CD4ϩ8 thymocytes differentiate into man (Skirball Institute of Biomolecular Medicine, New York, CD8 T cells. As a result, a critical step in the differentia- NY; 31). Surface expression of hCD2 protein on thymocytes and tion of intermediate CD4ϩ8 thymocytes into CD8 T T cells in Line 30 mice serves as a faithful reporter
Recommended publications
  • Major Histocompatibility Complex-Restricted
    MAJOR HISTOCOMPATIBILITY COMPLEX-RESTRICTED SELF-RECOGNITION IN RESPONSES TO TRINITROPHENYL-FICOLL A Novel Cell Interaction Pathway Requiring Self-Recognition of Accessory Cell H-2 Determinants by Both T Cells and B Cells By RICHARD J. HODES, KAREN S. HATHCOCK, AND ALFRED SINGER From the Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20205 Most thymus-dependent (T) lymphocyte populations are restricted in their function by a requirement for recognition of"self" major histocompatibility complex (MHC) 1 gene products. Thus, T cells that mediate help (Tn) (1-5), antigen-specific prolifera- tion (6, 7), cell-mediated lympholysis (8, 9), delayed-type hypersensitivity (10), and immune suppression (11) require recognition of MHC products expressed by the cells with which they interact. In addition to MHC restriction of T cell recognition, the possibility that B cells as well as T cells may be capable of MHC-restricted self- recognition has recently been evaluated (12-15). In a recent report (15), the possibility that trinitrophenyl (TNP)-Ficoll-responsive B cells are MHC restricted in their interaction with accessory cells was assessed under T-independent (TI) response conditions. In the absence of any detectable requirement for T cells, it was demon- strated that TNP-Ficoll-responsive B cells, as a consequence of their development in a fully MHC-allogeneic chimeric host environment, were unable to cooperate with accessory cells expressing syngeneic donor-type MHC determinants but could coop- erate with accessory cells expressing allogeneic host-type MHC products. These findings raised a number of other questions. Although they demonstrated that B cells could express MHC-restricted self-recognition in the absence of T cells, these studies did not determine the effects that T cells or their soluble products could exert on this B cell function.
    [Show full text]
  • The Basis of T Cell Development and Lineage Choice in the Thymus
    Chiba Medical J. 94E:19-23, 2018 doi:10.20776/S03035476-94E-3-P19 〔 Chiba Medical Society Award Review 〕 The basis of T cell development and lineage choice in the thymus Motoko Y. Kimura Department of Medical Immunology and Department of Immunology Graduate School of Medicine, Chiba University, Chiba 260-8670. (Accepted March 22, 2018) Abstract The thymus is the only organ that produces T cells where immature thymocytes are properly educated and make the correct decision to become appropriate lineage T cells such as CD4+ or CD8+ T cells. This process is referred to as‘ lineage choice’. Failure in T cell development and/or lineage choice is a direct cause of severe immunodeficiency and/or severe autoimmune disorders. Thus, it is extremely important to understand the molecular mechanisms of thymocyte development and lineage choice and many immunologists have studied this issue intensively. A diverse TCR repertoire( nearly 1018) is generated by TCR gene rearrangement in immature thymocytes. It contains autoreactive T cells as well as useless T cells that cannot recognize self- MHC molecules. These useless T cells are negatively selected( i.e. clonal deletion), and only cells that moderately recognize self-MHC molecules are positively selected. These processes are termed negative and positive selection. Positively selected cells further differentiate into either CD4T cells or CD8T cells, depending on their specificity to MHC-II or MHC-I respectively. How can the lineage choice of T cells, which have a huge TCR repertoire, be properly determined during their development? In this review, I will update the recent understanding of the molecular mechanisms underlying the CD4/CD8 lineage choices in the thymus and explain the mechanisms of error-free MHC-I-dependent CD8 T cell development.
    [Show full text]
  • EARLY DEVELOPMENT of the T CELL REPERTOIRE in Vivo
    EARLY DEVELOPMENT OF THE T CELL REPERTOIRE In Vivo Treatment of Neonatal Mice with Anti-Ia Antibodies Interferes with Differentiation of I-restricted T Cells But Not K/D-restricted T Ceils By ADAM. KRUISBEEK,* MARION J. FULTZ, SUSAN O. SHARROW, ALFRED SINGER, AND JAMES J. MOND Downloaded from http://rupress.org/jem/article-pdf/157/6/1932/1394059/1932.pdf by guest on 29 September 2021 From the Immunology Branch, National Cancer Institute, National Institutes of Health, and the Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20205 A large number of studies have indicated that the activation of T helper cells for both antibody (1-6) and cytolytic T lymphocyte (CTL) 1 (7-11) 2 responses is restricted by products of the I region of the major histocompatibility complex (MHC), while the activation of CTL themselves is restricted by products of the K/D regions of the MHC (12-14). However, it is less clear how and when during their developmental pathway T ceils acquire their MHC-restricted self-recognition specificity. Studies with chimeras (12, 15, 16) and thymus-grafted nude mice (17, 18) have indicated that the MHC phenotype of the thymus dictates the particular MHC determinants that T cells recognize as self-recognition elements. In addition, the MHC phenotype of the extra-thymic environment has been implicated in the process that determines the restriction specificities of T cells (11, 14, 17, 19, 20). In vivo manipulation of the expression of MHC products may yield a better understanding of how the host environment (thymic or extra-thymic) determines restriction specificities of T ceils.
    [Show full text]
  • Function Foxp3 and Its Effect on Regulatory T Cell Regulation Of
    Regulation of MHC Class I Expression by Foxp3 and Its Effect on Regulatory T Cell Function This information is current as Jie Mu, Xuguang Tai, Shankar S. Iyer, Jocelyn D. of September 26, 2021. Weissman, Alfred Singer and Dinah S. Singer J Immunol 2014; 192:2892-2903; Prepublished online 12 February 2014; doi: 10.4049/jimmunol.1302847 http://www.jimmunol.org/content/192/6/2892 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2014/02/12/jimmunol.130284 Material 7.DCSupplemental http://www.jimmunol.org/ References This article cites 38 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/192/6/2892.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Regulation of MHC Class I Expression by Foxp3 and Its Effect on Regulatory T Cell Function Jie Mu,1 Xuguang Tai,1 Shankar S.
    [Show full text]
  • Coreceptor Reversal in the Thymus: Signaled CD4 8 Thymocytes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Immunity, Vol. 13, 59±71, July, 2000, Copyright 2000 by Cell Press Coreceptor Reversal in the Thymus: Signaled CD4؉8؉ Thymocytes Initially Terminate CD8 Transcription Even When Differentiating into CD8؉ T Cells Enrico Brugnera,*§ Avinash Bhandoola,* thymocytes into mature SP T cells is referred to as ªposi- Ricardo Cibotti,*k Qing Yu,* tive selectionº and requires termination of one or the Terry I. Guinter,* Yoshio Yamashita,²# other coreceptor molecule. The choice of which core- Susan O. Sharrow,* and Alfred Singer*³ ceptor molecule to extinguish is referred to as ªlineage *Experimental Immunology Branch commitmentº (Janeway, 1988) and is a critical one for National Cancer Institute signaled DP thymocytes, as a functionally competent Bethesda, Maryland 20892 immune system requires each T cell to express TCR ² Immunobiology Program and coreceptor molecules with concordant MHC speci- Oklahoma Medical Research Foundation ficities (Ellmeier et al., 1999). That is, immunocompe- Oklahama City, Oklahoma 73104 tence requires that TCR with specificity for MHC class II (MHC II) antigenic complexes be expressed on CD4SP T cells, while TCR with specificity for MHC class I (MHC I) antigenic complexes be expressed on CD8SP T cells. Summary Different mechanisms have been proposed to explain how DP thymocytes can differentiate into SP T cells A central paradigm of T cell development is that expressing TCR and coreceptor molecules with match- CD4؉8؉ (DP) thymocytes differentiate into CD4؉ or ing MHC specificities (Janeway, 1988; Davis et al., 1993; CD8؉ T cells in response to intrathymic signals that von Boehmer, 1996; Basson et al., 1998; Chan et al., extinguish transcription of the inappropriate corecep- 1998; Hedrick and Sharp, 1998; Singer et al., 1999).
    [Show full text]
  • Tcrhibcl-2Hi) Subset of CD4+CD8+ Thymocytes Has Selectively Terminated CD4 Or CD8 Synthesis
    Haverford College Haverford Scholarship Faculty Publications Biology 1996 Lineage commitment in the thymus: only the most differentiated (TCRhibcl-2hi) subset of CD4+CD8+ thymocytes has selectively terminated CD4 or CD8 synthesis Jennifer Punt Haverford College Harumi Suzuki Larry C. Granger Susan O. Sharrow Follow this and additional works at: https://scholarship.haverford.edu/biology_facpubs Repository Citation Punt, J. A ., H. Suzuki, L. C. Granger, S.O. Sharrow, and A. Singer. (1996). Lineage commitment in the thymus: Only the most differentiated (TCR hi bcl - 2 hi ) subset of CD4 + CD8 + thymocytes has selectively terminated CD4 or CD8 synthesis. J.Exp. Med . , 184: 2091 - 2099. This Journal Article is brought to you for free and open access by the Biology at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact [email protected]. Published December 1, 1996 Lineage Commitment in the Thymus: Only the Most Differentiated (TCRhibcl-2hi) Subset of CD41CD81 Thymocytes Has Selectively Terminated CD4 or CD8 Synthesis By Jennifer A. Punt, Harumi Suzuki, Larry G. Granger, Susan O. Sharrow, and Alfred Singer From the Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland Summary Lineage commitment is a developmental process by which individual CD41CD81 (double Downloaded from positive, DP) thymocytes make a decision to differentiate into either CD41 or CD81 T cells. However, the molecular event(s) that defines lineage commitment is controversial. We have previously proposed that lineage commitment in DP thymocytes can be molecularly defined as the selective termination of CD4 or CD8 coreceptor synthesis.
    [Show full text]
  • How Thymocytes Achieve Their Fate Dan R
    How Thymocytes Achieve Their Fate Dan R. Littman J Immunol 2016; 196:1983-1984; ; This information is current as doi: 10.4049/jimmunol.1600032 of September 29, 2021. http://www.jimmunol.org/content/196/5/1983 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/02/18/196.5.1983.DC1 Material References This article cites 18 articles, 4 of which you can access for free at: http://www.jimmunol.org/content/196/5/1983.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Th eJournal of Pillars of Immunology Immunology How Thymocytes Achieve Their Fate Dan R. Littman ne of the central principles of adaptive immunity is worthy of further investigation, motivating the experiments the subdivision of T lymphocytes into functionally described in the Pillars of Immunology article by Alfred Singer O distinct subsets.
    [Show full text]
  • Assessing T Cell Intrinsic and Extrinsic IL-15 Expression with Il15 Gene Reporter Mice
    Immune Netw. 2018 Feb;18(1):e13 https://doi.org/10.4110/in.2018.18.e13 pISSN 1598-2629·eISSN 2092-6685 Review Article Out-sourcing for Trans-presentation: Assessing T Cell Intrinsic and Extrinsic IL-15 Expression with Il15 Gene Reporter Mice Joo-Young Park, Davinna L. Ligons, Jung-Hyun Park* Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA Received: Oct 29, 2017 ABSTRACT Revised: Feb 13, 2018 Accepted: Feb 13, 2018 IL-15 is a cytokine of the common γ-chain family that is critical for natural killer (NK), *Correspondence to invariant natural killer T (iNKT), and CD8 memory T cell development and homeostasis. The Jung-Hyun Park role of IL-15 in regulating effector T cell subsets, however, remains incompletely understood. Experimental Immunology Branch, National IL-15 is mostly expressed by stromal cells, myeloid cells, and dendritic cells (DCs). Whether Cancer Institute, NIH Building 10, Room 5B17, T cells themselves can express IL-15, and if so, whether such T cell-derived IL-15 could play 10 Center Drive, Bethesda, MD 20892, USA. an autocrine role in T cells are interesting questions that were previously addressed but E-mail: [email protected] answered with mixed results. Recently, three independent studies described the generation Copyright © 2018. The Korean Association of of IL-15 reporter mice which facilitated the identification of IL-15-producing cells and helped Immunologists to clarify the role of IL-15 both in vitro and in vivo. Here, we review the findings of these studies This is an Open Access article distributed and place them in context of recent reports that examined T cell-intrinsic IL-15 expression under the terms of the Creative Commons Attribution Non-Commercial License (https:// during CD4 effector T cell differentiation.
    [Show full text]
  • CHARACTERIZATION of ANTIGEN-SPECIFIC, Ia-RESTRICTED, L3T4 + CYTOLYTIC T LYMPHOCYTES and ASSESSMENT of THYMIC INFLUENCE on THEIR SELF SPECIFICITY
    CHARACTERIZATION OF ANTIGEN-SPECIFIC, Ia-RESTRICTED, L3T4 + CYTOLYTIC T LYMPHOCYTES AND ASSESSMENT OF THYMIC INFLUENCE ON THEIR SELF SPECIFICITY BY HANA GOLDING, TERRY I. MUNITZ, AND ALFRED SINGER From the Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20205 The specificity of many T cells for self major histocompatibility complex (MHC)~-encoded determinants is influenced by the MHC phenotype of the thymus in which their precursors had differentiated (1, 2). However, the intra- thymic events that influence the developing T cell repertoire are poorly under- stood. To enhance our understanding of these events it is necessary to know if the thymus influences the self specificity of all T cells equally, or primarily influences the self specificity of certain subsets of T cells. Previous studies examining the self specificity of individual T cell subpopulations noted that, in both radiation bone marrow chimeras and thymic chimeras, the self specificity of class II-restricted T helper (Th) cells was profoundly skewed toward the haplotype of the chimeric thymus (3-5), whereas the self specificity of class I- restricted cytolytic T lymphocyte precursors (pCTL) did not appear to be significantly skewed toward the thymic haplotype (6-8). This dichotomy was not due to differences in the antigen responses used to assess the self specificities of these two T cell subpopulations, since the dichotomy was subsequently observed between antihapten Th cells and antihapten pCTL present in a single-response system to hapten-modified self (9, 10). Thus, these results indicated that, in the chimera model of T cell differentiation, not all T cell subpopulations were equally influenced by the MHC phenotype of the chimeric thymus.
    [Show full text]
  • Crosstalk in the Mouse Thymus Willem Van Ewijk, Elisabeth W
    viewpoint Crosstalk in the mouse thymus Willem van Ewijk, Elisabeth W. Shores and Alfred Singer The development of mature T cells within the thymus is dependent upon intact cortical and medullary microenviromnents. In turn, tbymic microen- viromnents themseh,es are dependent on lymphoid cells to maintain their integrity Here, Willem van Ewijk and colleagues discuss experiments tbat have establisbed the pbenomenon of 'crosstalk' witbin the mouse thymus and suggest a mecbanism whereby lymphoid and stromal cells influence each otber in a consecutive manner during T-cell development. Prothymocytes, upon entering the thymus, communicate During migration, thymocytes acquire receptors for with a varieD" of nonlymphoid {stromal) cell types during growth factors, begin expression of adhesion molecules their development ~-~. The sequential interaction of and co-receptors, such as CD4 and CD8, and finally thvmocvtes with bone-marrow-derived macrophages, develop a T-cell receptor (TCR)/CD3 complex at the cortical epithelial cells and interdigitating reticulum cells cell surface~. Most importa,tly, the T-cell repertoire is (dendritic cells) leads to the proliferation, maturation shaped during differentiation, such that T cells with and selection of the developing T cells. The sequence high affinity for self major histocompatibili.~' complex of these lympho--stromal interactions reflects an intra- (MHC) molecules, or self peptides presented by these thvmic migration route, where prothymocytes travel molecules, are clonally eliminated 6. By contrast, T cells from the cortico--medullary junction through the thymic with affinity for foreign peptides presented by self parenchyma towards the outer (subcapsular) cortex. MHC molecules are positively selected 7,s. From there, differentiating thvmocytes move down the cortex to enter the thymic medulla as mature T cells.
    [Show full text]
  • Molecular Constraints on CDR3 for Thymic Selection of MHC-Restricted Tcrs from a Random Pre-Selection Repertoire
    ARTICLE https://doi.org/10.1038/s41467-019-08906-7 OPEN Molecular constraints on CDR3 for thymic selection of MHC-restricted TCRs from a random pre-selection repertoire Jinghua Lu1, François Van Laethem2, Abhisek Bhattacharya2, Marco Craveiro 2, Ingrid Saba2, Jonathan Chu1, Nicholas C. Love2, Anastasia Tikhonova2, Sergei Radaev1, Xiaoping Sun3, Annette Ko3, Tomer Arnon4,5, Eric Shifrut4, Nir Friedman 4, Nan-Ping Weng3, Alfred Singer2 & Peter D. Sun1 1234567890():,; The αβ T cell receptor (TCR) repertoire on mature T cells is selected in the thymus, but the basis for thymic selection of MHC-restricted TCRs from a randomly generated pre-selection repertoire is not known. Here we perform comparative repertoire sequence analyses of pre- selection and post-selection TCR from multiple MHC-sufficient and MHC-deficient mouse strains, and find that MHC-restricted and MHC-independent TCRs are primarily dis- tinguished by features in their non-germline CDR3 regions, with many pre-selection CDR3 sequences not compatible with MHC-binding. Thymic selection of MHC-independent TCR is largely unconstrained, but the selection of MHC-specific TCR is restricted by both CDR3 length and specific amino acid usage. MHC-restriction disfavors TCR with CDR3 longer than 13 amino acids, limits positively charged and hydrophobic amino acids in CDR3β, and clonally deletes TCRs with cysteines in their CDR3 peptide-binding regions. Together, these MHC-imposed structural constraints form the basis to shape VDJ recombination sequences into MHC-restricted repertoires. 1 Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA. 2 Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
    [Show full text]
  • Function Foxp3 and Its Effect on Regulatory T Cell Regulation Of
    Regulation of MHC Class I Expression by Foxp3 and Its Effect on Regulatory T Cell Function This information is current as Jie Mu, Xuguang Tai, Shankar S. Iyer, Jocelyn D. of September 25, 2021. Weissman, Alfred Singer and Dinah S. Singer J Immunol 2014; 192:2892-2903; Prepublished online 12 February 2014; doi: 10.4049/jimmunol.1302847 http://www.jimmunol.org/content/192/6/2892 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2014/02/12/jimmunol.130284 Material 7.DCSupplemental http://www.jimmunol.org/ References This article cites 38 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/192/6/2892.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Regulation of MHC Class I Expression by Foxp3 and Its Effect on Regulatory T Cell Function Jie Mu,1 Xuguang Tai,1 Shankar S.
    [Show full text]