Understanding Internet Protocol

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Internet Protocol 4 LESSON Understanding Internet Protocol OBJECTIVE DOMAIN MATRIX SKILLS /C ONCEPTS MTA E XAM O BJECTIVE MTA E XAM O BJECTIVE N UMBER Working with IPv4 Understand IPv4. 3.2 Working with IPv6 Understand IPv6. 3.3 KEY TERMS anycast address logicallo gical IP addressadd re ss Automatic Private IP Addressing (APIPA) loopbacklo op ba ck IP addressad dr ess broadcast address masked classful network architecture multicast address classless inter-domain routing (CIDR) multicasting default gateway network address translation (NAT) DNS server address node dual IP stack port address translation (PAT) dynamic IP address private IP addresses global routing prefix public IP addresses interface ID static IP address IP conflict subnetting IPv4 TCP/IP IPv4-mapped addresses truncated IPv6 unicast address IPv6 subnet unmasked IPv6 tunneling variable-length subnet masking (VLSM) 68 Understanding Internet Protocol | 69 As a network administrator, you will use the Transmission Control Protocol/Internet Protocol ( TCP/IP ) communications protocol suite most often. Most techs refer to this simply as Internet Protocol or IP. Although the newer IPv6 has many advantages over its predecessor, IPv4 is still used in the majority of local area networks. In this lesson, we will cover both. To truly be a master of IP networks, a network administrator must know how the different versions of IP work and how to configure, analyze, and test them in the GUI and in the command line. By utilizing knowledge about IP classes and reserved ranges, a well planned network can be implemented. And by taking advantage of technologies like network address translation and subnetting, a more efficient and secure network can be developed. Finally, by incorporating IPv6 whenever possible, you are opening the door to the future of data communications and enabling easier administra- tion, bigger and more powerful data transmissions, and a more secure IP network. To return to our ongoing example, say that Proseware, Inc., expects its network admin- istrators to be able to set up a fully functional IPv4/IPv6 network. In this lesson, we will discuss how to enable computers on the LAN or the Internet to communicate through layer 3 IP addressing. By the end of the lesson, you will be able to configure advanced IP network connections on LANs, WANs, and the Internet. I Working with IPv4v4 Internetrnet ProtocolP ro toco l versionve rsio n 4 or IPv4IP v4 isi s theth e mostmo st frequentlyf re qu en tly usedus ed communicationsc om protocol. IP resides on the network layer of the OSI model, and IP addresses consist of four numbers, each between 0 and 255. The protocol suite is built into most operating systems and used by most Internet connections in the United States and many other countries. As mentioned in Lesson 1, it is composed of a network portion and a host portion, which THE BOTTOM LINE are defined by the subnet mask. In order for an IP address to function, there must be a properly configured IP address and compatible subnet mask. To connect to the Internet, you will also need a gateway address and DNS server address. Advanced examples of IP configurations include subnetting, network address translation (NAT), and classless inter- domain routing (CIDR). Categorizing IPv4 Addresses CERTIFICATION READY IPv4 addresses have been categorized into five IP classes. Some have been reserved for How do you categorize private use, whereas the rest are utilized by public connections. This classification system IPv4? helps define what networks can be used on a LAN and what IP addresses can be used on 3.2 the Internet. The IPv4 classification system is known as the classful network architecture and is broken down into five sections, three of which are commonly used by hosts on networks—Classes A, B, and C. All five sections are displayed in Table 4-1. The first octet of the IP address defines which class the address is a member of. 70 | Lesson 4 Table 4-1 IPv4 classful network architecture IP R ANGE D EFAULT S UBNET N ETWORK /N ODE T OTAL N UMBER T OTAL N UMBER OF CLASS (1 ST OCTET ) M ASK P ORTIONS OF N ETWORKS U SABLE A DDRESSES A 0–127 255.0.0.0 Net.Node.Node.Node 2 7 or 128 2 24 – 2 or 16,777,214 B 128–191 255.255.0.0 Net.Net.Node.Node 2 14 or 16,384 2 16 – 2 or 65,534 C 192–223 255.255.255.0 Net.Net.Net.Node 2 21 or 2,097,151 2 8 – 2 or 254 D 224–239 N/A N/A N/A N/A E 240–255 N/A N/A N/A N/A Class A network addresses are used by the government, ISPs, big corporations, and large uni- versities. Class B network addresses are used by mid-sized companies and smaller ISPs. Class C network addresses are used by small offices and home offices. In the table, ththee tetermrm nonodede is sysynonymousno nymous with “host.“host.” If an IP address is Class A, the first octet is consideredde re d to bbee ththee “n“network”et wo rk ” poportion.rt io n. TThehe ootherth er tthreehr ee ooctetsct ets araree then the node or host portion of theth e address.ad dr es s. So,S o, a computerc om pu te r mightmi gh t be ono n theth e 11 networkn et wo rk anda nd have an indi- vidual host ID ofo f 38.250.1,38 .2 50 .1 , makingma ki ng the entiree nt ir e IP addressa dd re ss 11.38.250.1.1 1. 38.2 50 .1 . In lookingl at the table, you might alsoso haveh av e noticednoti ce d a pattern.pa tt er n. InI n particular,pa rt ic ul ar , ClassCl as s B addressesad dr es se s use twotw octets as the network portion (e.g., 128.1). The other two octets are the host portion. Meanwhile, Class C addresses use the first three octets as the network portion (e.g., 192.168.1). Here, the last octet is the host portion. There are several other notations we need to make to this table. First, as shown, the range for Class A is 0–127. However, the 127 network number isn’t used by hosts as a logical IP address. Instead, this network is used for loopback IP addresses , which allow for testing. For example, every computer that runs IPv4 is assigned a logical IP address such as 192.168.1.1. However, every computer is also automatically assigned the address 127.0.0.1, and any address on the 127 network (for example, 127.200.16.1) redirects to the local loopback. Therefore, this network number cannot be used when designing your logical IP network, but it can definitely be used to aid in testing. Second, as you look at Table 4-1, note the default subnet masks for each class. Notice how they ascend in a corresponding fashion to the network/node portions. Memorize the default subnet masks for Class A, B, and C. Third, be aware that the total number of usable addresses is always going to be two less than the mathematical amount. For example, in a Class C network such as 192.168.50.0, there are 256 mathematical values: the numbers including and between 0 and 255. However, the first and last addresses can’t be used. The number 0 and the number 255 cannot be used as logical IP addresses for hosts because they are already utilized automatically. The 0 in the last octet of 192.168.50.0 defines a network number, not a single IP address, it is the entire net- work. And 192.168.50.255 is known as the broadcast address , which is used to communicate with all hosts on the network. So, because you can never use the first and last addresses, you are left with two fewer addresses—in this case, 254 usable IP addresses. This applies to big- ger networks as well. For instance, a Class A network can use 16,777,214 addresses instead of 16,777,216. If we examine this more carefully, we will see that the number zero in binary equals 00000000 and the number 255 in binary is 11111111. Thus, we can’t use the “all zeros” octet and the “all ones” octet. This rule applies to total hosts, but not to total networks within a particular class. We build on this concept in the subnetting section later in this Understanding Internet Protocol | 71 lesson. One other related notion is the network 0, which generally isn’t used but is listed in the table because it is technically considered part of Class A. Next, Class D and Class E are not used by regular hosts. Therefore, they are not given a network/node classification, and as a result of that, they are not given a specific number of networks or total hosts they can utilize. Instead, Class D is used for what is known as multicasting—transmitting data to multiple computers (or routers). Class E was reserved for future use, but this has given way to IPv6 instead. Finally, try to get into the habit of converting IP octets into their binary form. For example, the binary range of the first octet in Class A (0–127) is 00000000–01111111. For Class B, it is 10000000–10111111, and for Class C, it is 11000000–11011111. To practice doing this, you can use one of many decimal-to-binary conversion methods (such as the one shown in Table 4-2), or for now, you can use the scientific calculator in Windows by navigating to the Run prompt and typing calc.exe .
Recommended publications
  • Rudiments of Routing
    Rudiments of Routing Moving bits from the source to the destination is a major function of computer networking. On the current Internet, the Network layer is responsible for achieving this. AS 2 AS 1 Inter-domain routing OSPF and RIP Inter-domain routing OSPF and RIP Intra-domain routing BGP In general, most routing within Autonomous Systems use Routing Information Protocol (RIP), or its enhanced version Open Shortest Path First (OSPF). The current de facto Intra-domain routing standard is Border Gateway Protocol(BGP), Version 4. You need to concern yourself with these protocols if you are dealing with routers inside or between Autonomous Systems. At the host level, however, most likely you need only a static routing table. This is a table of routes that the OS kernel keeps. It is possible to add to and delete from routes in the kernel routing table relatively easily. We discuss routing tables based on RIP (RFC2453). When looking at routing tables, remember that most Unix-like operating systems use mnemonic names for their interfaces. For example, in Linux, the Ethernet interfaces on a machine are called eth0, eth1, eth2, etc. On the newer SUN/Solaris machines the interfaces are named eri0, eri1, etc. PPP interfaces are usually names ppp0, ppp1 etc. You can see all the configured interfaces on a host using the ifconfig command which is usually found in /sbin/ directory (but not always). You can see the routing table with ªnetstat -rº command. Here©s a screen shot of these commands run on matrix.newpaltz.edu which is a SUN/Solaris machine: The output from /sbin/ifconfig command shows that there are two configured interfaces, one an Ethernet and the other the loopback interface.
    [Show full text]
  • Command-Line IP Utilities This Document Lists Windows Command-Line Utilities That You Can Use to Obtain TCP/IP Configuration Information and Test IP Connectivity
    Guide to TCP/IP: IPv6 and IPv4, 5th Edition, ISBN 978-13059-4695-8 Command-Line IP Utilities This document lists Windows command-line utilities that you can use to obtain TCP/IP configuration information and test IP connectivity. Command parameters and uses are listed for the following utilities in Tables 1 through 9: ■ Arp ■ Ipconfig ■ Netsh ■ Netstat ■ Pathping ■ Ping ■ Route ■ Tracert ARP The Arp utility reads and manipulates local ARP tables (data link address-to-IP address tables). Syntax arp -s inet_addr eth_addr [if_addr] arp -d inet_addr [if_addr] arp -a [inet_address] [-N if_addr] [-v] Table 1 ARP command parameters and uses Parameter Description -a or -g Displays current entries in the ARP cache. If inet_addr is specified, the IP and data link address of the specified computer appear. If more than one network interface uses ARP, entries for each ARP table appear. inet_addr Specifies an Internet address. -N if_addr Displays the ARP entries for the network interface specified by if_addr. -v Displays the ARP entries in verbose mode. -d Deletes the host specified by inet_addr. -s Adds the host and associates the Internet address inet_addr with the data link address eth_addr. The physical address is given as six hexadecimal bytes separated by hyphens. The entry is permanent. eth_addr Specifies physical address. if_addr If present, this specifies the Internet address of the interface whose address translation table should be modified. If not present, the first applicable interface will be used. Pyles, Carrell, and Tittel 1 Guide to TCP/IP: IPv6 and IPv4, 5th Edition, ISBN 978-13059-4695-8 IPCONFIG The Ipconfig utility displays and modifies IP address configuration information.
    [Show full text]
  • Lab 5.5.2: Examining a Route
    Lab 5.5.2: Examining a Route Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway S0/0/0 10.10.10.6 255.255.255.252 N/A R1-ISP Fa0/0 192.168.254.253 255.255.255.0 N/A S0/0/0 10.10.10.5 255.255.255.252 10.10.10.6 R2-Central Fa0/0 172.16.255.254 255.255.0.0 N/A N/A 192.168.254.254 255.255.255.0 192.168.254.253 Eagle Server N/A 172.31.24.254 255.255.255.0 N/A host Pod# A N/A 172.16. Pod#.1 255.255.0.0 172.16.255.254 host Pod# B N/A 172.16. Pod#. 2 255.255.0.0 172.16.255.254 S1-Central N/A 172.16.254.1 255.255.0.0 172.16.255.254 All contents are Copyright © 1992–2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 1 of 7 CCNA Exploration Network Fundamentals: OSI Network Layer Lab 5.5.1: Examining a Route Learning Objectives Upon completion of this lab, you will be able to: • Use the route command to modify a Windows computer routing table. • Use a Windows Telnet client command telnet to connect to a Cisco router. • Examine router routes using basic Cisco IOS commands. Background For packets to travel across a network, a device must know the route to the destination network. This lab will compare how routes are used in Windows computers and the Cisco router.
    [Show full text]
  • DVR Network Setup Connect the DVR to a Router Using a Networking
    DVR Network Setup Connect the DVR to a router using a networking cable. The cable should snap in on both ends. Connect a monitor and mouse to the DVR. Power on the DVR. On a computer connected to the same router as the DVR: Go to the Start Menu and Search or Run "cmd". If using Windows 8 or 10, press Windows + X and select "Command Prompt" Type in "ipconfig" and press enter. Write down the IP address, subnet mask, and default gateway. If using Mac OS X, go to System Preferences->Network->Advanced and note the IPv4 address, subnet mask, and router (gateway) address. You can skip the wizard on the DVR if it comes up. On the DVR , go to Menu->Configuration->Network->General. The default login is user “admin” and password “aaaa1111” (or “12345” on revision 1 units). Uncheck “Enable DHCP” Set the IPv4 address to the same as the PC's except the last 3 digits . The last 3 digits must be unique on the network (not used by any other device including the default gateway). If you don't know which addresses are already in use, check your router's list of connected devices. The last 3 digits should be less than 254 and greater than 1. Some routers may have additional restrictions on the range of allowed addresses. Here we have selected "112" for the last 3 digits. Write down the new IP address. Set the IPv4 Subnet and Default Gateway numbers to be same as the PC's. The Prefered DNS Server can be either your Gateway number (192.168.1.1 in this example) or the DNS address provided by your ISP.
    [Show full text]
  • Hikvision IP Camera Setup
    Hikvision IP camera setup Introduction: In this guide we will go through the necessary steps to enable a Hikvision IP camera to be accessible on a network and viewable through a web browser. Step 1: First plug your camera into your network switch or router and make sure it has power either through POE or using a power supply. Next, locate the CD that came with your Hikvision IP camera and insert it into a PC. There should be a folder named SADP. Inside you will see a file labeled SADP Setup, double click this file to begin the installation. Once the installation is done the program should automatically open and list any Hikvision devices connected to your network. (The Default IP address is 192.0.0.64) Step 2: Next you will need to find the Default Gateway for your network. To do this click on the start menu, in the search bar at the bottom type in "cmd" then press enter. This will bring up the command prompt window. In the command prompt window type "ipconfig" then press enter. This will bring up information such as your IP address, Subnet Mask, and Default Gateway. Now, find where it says Default Gateway and you should have a set of numbers listed to the right. Write this down or take note of it because we will use it here soon. (You can see in the example below our Default Gateway is: 192.168.1.1, keep in mind that yours may be different, that is okay.) Step 3: Now that we have the Default Gateway go back to the SADP program and select your IP camera by clicking on it.
    [Show full text]
  • Changing the IP Address Scope of the Media Gateway to Allow Use of Customer-Owned Routers
    Changing the IP Address scope of the media gateway to allow use of customer-owned routers This method does not require making any changes to the customer-owned router and can be completed by accessing the Media Gateway’s router and the powercycling of devices. The HomeConnect functionality may not be available on some devices when using this method. HomeConnect functionality may not work correctly using this method and devices connected to the Gateway’s Ethernet ports or wireless may not be able to communicate with devices connected to the customer’s router. Description The wireless can be enabled on both the Ultra TV Media Gateway and the customer- owned router at the same time. The DHCP is enabled on the customer-owned router and the Media Gateway, and both have a separate IP address scope to assign to connected devices. The customer- owned router is connected to the “1” Ethernet port of the Gateway using the Internet/WAN port on the router. Example This image shows how devices are connected to the Media Gateway and the customer-owned router. Configuring the Gateway 1. Access the Media Gateway: a. Enter “192.168.0.1” into the address bar of any web browser. b. Press the “Enter” key. c. Enter “technician” in the User Name field. d. Enter “WOWpass” in the Password field. If the user name and password combination do not work, the customer must call WOW! to have the password reset. e. Click the “Apply” button. 2. Click the “LAN Setup” tab. 3. Enter “192.168.2.1” in the IP Address field.
    [Show full text]
  • Networking Basics
    Networking Basics Pre-class work…read/watch all the material at least once before class…I will clarify in class. Binary Training(Google search for “binary tutorial”): http://www.math.grin.edu/~rebelsky/Courses/152/97F/Readings/student-binary http://www.codeconquest.com/tutorials/binary/ https://www.youtube.com/watch?v=0qjEkh3P9RE https://www.youtube.com/watch?v=VBDoT8o4q00 Subnet Addressing and Masks(Google search for “subnet mask tutorial”: http://www.techopedia.com/6/28587/internet/8-steps-to-understanding-ip-subnetting http://www.subnetting.net/Tutorial.aspx https://www.youtube.com/watch?v=aA-8owNNy_c 2/10/2017 1 Table of Contents (3)What is the OSI Model? (6)What is a Hub, Switch, & Router/Access Server? (10)Mac Addresses and IP Addresses (15)The “3 GOLDEN PARAMETERS” (16)Day in the Life of a Packet (17)Duplex Issues (18)PC Configuration Guidance (21)Basic Discovery & Connectivity Tools (23)IPv4 Layers and Port Numbers 2/10/2017 2 What is the OSI Model? OSI – open systems interconnection Main functions Network dependent functions Application-oriented functions Seven layer model Each layer performs a well- defined set of functions 2/10/2017 3 Data Encapsulation Application User data Presentation converted for Data (PDU) transmission Session Add transport Segments Transport type header Add network Packets Network header (datagram) Add datalink Frames Datalink header Convert 11001010…100 Bits Physical to bits 2/10/2017 4 ISO’s OSI Reference Model Application Application Presentation Presentation Session Session Transport Transport
    [Show full text]
  • Lab 9.3.7 Workstation ARP – Instructor Version
    Lab 9.3.7 Workstation ARP – Instructor Version Objective • Introduce Address Resolution Protocol (ARP) and the arp –a workstation command. • Explore the arp command help feature using the -? option. Background / Preparation ARP is used as a tool for confirming that a computer is successfully resolving network Layer 3 addresses to Media Access Control (MAC) Layer 2 addresses. The TCP/IP network protocol relies on IP addresses like 192.168.14.211 to identify individual devices and to assist in navigating data packets between networks. While the IP address is essential to move data from one LAN to another, it cannot deliver the data in the destination LAN by itself. Local network protocols, like Ethernet or Token Ring, use the MAC, or Layer 2, address to identify local devices and deliver all data. A computer MAC address has been seen in prior labs. This is an example of a MAC address: • 00-02-A5-9A-63-5C A MAC address is a 48-bit address displayed in Hexadecimal (HEX) format as six sets of two HEX characters separated by dashes. In this format each hex symbol represents 4 bits. With some devices, the 12 hex characters may be displayed as three sets of four characters separated by periods or colons (0002.A59A.635C). ARP maintains a table in the computer of IP and MAC address combinations. In other words, it keeps track of which MAC address is associated with an IP address. If ARP does not know the MAC address of a local device, it issues a broadcast using the IP address.
    [Show full text]
  • Lab 2.8.1: Basic Static Route Configuration
    Lab 2.8.1: Basic Static Route Configuration Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway Fa0/0 172.16.3.1 255.255.255.0 N/A R1 S0/0/0 172.16.2.1 255.255.255.0 N/A Fa0/0 172.16.1.1 255.255.255.0 N/A R2 S0/0/0 172.16.2.2 255.255.255.0 N/A S0/0/1 192.168.1.2 255.255.255.0 N/A FA0/0 192.168.2.1 255.255.255.0 N/A R3 S0/0/1 192.168.1.1 255.255.255.0 N/A PC1 NIC 172.16.3.10 255.255.255.0 172.16.3.1 PC2 NIC 172.16.1.10 255.255.255.0 172.16.1.1 PC3 NIC 192.168.2.10 255.255.255.0 192.168.2.1 Learning Objectives Upon completion of this lab, you will be able to: • Cable a network according to the Topology Diagram. • Erase the startup configuration and reload a router to the default state. • Perform basic configuration tasks on a router. All contents are Copyright © 1992–2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 1 of 20 CCNA Exploration Routing Protocols and Concepts: Static Routing Lab 2.8.1: Basic Static Route Configuration • Interpret debug ip routing output. • Configure and activate Serial and Ethernet interfaces. • Test connectivity. • Gather information to discover causes for lack of connectivity between devices. • Configure a static route using an intermediate address.
    [Show full text]
  • Address Resolution Protocol (ARP) Data Link Layer Network Layer Data Link Layer Network Layer
    Homework 3 Discussion Address Resolution Protocol (ARP) Data Link Layer Network Layer Data Link Layer Network Layer Protocol Data Unit(PDU) Frames Packets Typical Device Switch/Bridge Router Range Local Area Network(LAN) Internet Identification Hardware Address (MAC) IP Address Address Resolution Protocol (ARP) • In the end, frame is the protocol data unit that get transmitted on the wire. Physical interfaces cannot understand IP addresses. • Each host and router needs a link layer address (MAC address) to identify itself in Local Area Network (subnet), and also a network layer address (IP address to) identify its position in the internet. • ARP provides a mechanism to translate IP addresses into hardware (MAC) addresses A host sends an IP packet within its Local Area Network Source MAC Destination MAC Source IP Destination IP 01:02:03:04:05 ? 10.0.0.1 10.0.0.3 …… 1. Is the destination IP in my subnet? - Yes 2. Send an ARP request to get the MAC of H3 H2 ARP request: Who has IP 10.0.0.3? IP: 10.0.0.2 MAC: 21:22:23:24:25:26 H1 Switch IP: 10.0.0.1 MAC: 01:02:03:04:05:06 H3 IP: 10.0.0.3 MAC: 31:32:33:34:35:36 A host sends an IP packet to a host its Local Area Network Source MAC Destination MAC Source IP Destination IP 01:02:03:04:05 31:32:33:34:35:36 10.0.0.1 10.0.0.3 …… 1. Is the destination IP in my subnet? - Yes 2.
    [Show full text]
  • Internet Deep Dive Webinar Handout Copy
    Introduction to IT Networking Featuring Robert Lastinger from Distech Controls Agenda • Internet • Static IP • DHCP • IP Routing • Gateway • Subnet • NAT • DNS and Hosting • External Access: Firewalls, VPNs Internet Internet Layer The Internet layer is responsible for placing data that needs to be transmitted into data packets known as IP datagrams. These will contain the source and destination addresses for the data within. This layer is also responsible for routing the IP datagrams. The main protocols included at Internet layer are IP (Internet Protocol), ICMP (Internet Control Message Protocol), ARP (Address Resolution Protocol), RARP (Reverse Address Resolution Protocol) and IGMP (Internet Group Management Protocol). Terms you will commonly hear that relate to this layer are IPV4 and IPV6. For the purposes of this training we will only be talking about IPV4. IP Addressing 192.168.99.11 192.168.12.1 192.168.12.101 192.168.12.100 192.168.12.2 Network mask: 255.255.255.0 (/24) Default gateway: 192.168.12.1 Notable IP Addresses • Loopback/localhost (127.0.0.0/8) • Private network (10.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12) • Network source address (0.0.0.0/8) • Reserved (anything between 224.0.0.0 and 255.255.255.254) • Limited broadcast (255.255.255.255) • Last IP in a subnet ONS-S8 and ONS-NC600 ONS-C1601pi ONS-YX Network ONS-C401i Router/core switch ONS-C2410p ONS-YX Optical fiber ONS-C401i ONS-C401i Ethernet Static IP IPV4 DHCP (Dynamic Host Configuration Protocol) DHCP Lease (Dynamic vs Reserved) Static IP Subnet Gateway DNS ( Domain Name System) DHCP DHCP DHCP – is a client/server protocol that automatically provides an Internet Protocol (IP) host with its IP address and other related configuration information such as the subnet mask and default gateway.
    [Show full text]
  • Chapter 16, “Configuring IP Services,”
    CHAPTER 16 Configuring IP Services Cisco MDS 9000 Family switches can route IP traffic between Ethernet and Fibre Channel interfaces. The IP static routing feature is used to route traffic between VSANs. To do so, each VSAN must be in a different IP subnetwork. Each Cisco MDS 9000 Family switch provides the following services for network management systems (NMS): • IP forwarding on the out-of-band Ethernet interface (mgmt0) on the front panel of the supervisor modules. • IP forwarding or in-band Fibre Channel interface using the IP over Fibre Channel (IPFC) function—IPFC specifies how IP frames can be transported over Fibre Channel using encapsulation techniques. IP frames are encapsulated into Fibre Channel frames so NMS information can cross the Fibre Channel network without using an overlay Ethernet network. • IP routing (default routing and static routing) —If your configuration does not need an external router, you can configure a default route using static routing. Switches are compliant with RFC 2338 standards for Virtual Router Redundancy Protocol (VRRP) features. VRRP is a restartable application that provides a redundant, alternate path to the gateway switch. This chapter includes the following sections: • Traffic Management Services, page 16-2 • Configuring the Ethernet Management Port, page 16-2 • Configuring the Default Gateway, page 16-3 • Configuring the Default Network, page 16-4 • Configuring IPFC, page 16-5 • Configuring IP Static Routes, page 16-6 • Displaying IP Interface Information, page 16-7 • Configuring Overlay VSANs, page 16-8 • Configuring Multiple VSANs, page 16-10 • Configuring VRRP, page 16-12 • Configuring DNS Server, page 16-19 • Default Settings, page 16-20 Cisco MDS 9000 Family Configuration Guide 78-14893-01, Cisco MDS SAN-OS Release 1.0(2) 16-1 Chapter 16 Configuring IP Services Traffic Management Services Traffic Management Services In-band options are compliant with and use the RFC 2625 standards.
    [Show full text]