Bank and Terrace Condition by Reach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geomorphometric Delineation of Floodplains and Terraces From
Earth Surf. Dynam., 5, 369–385, 2017 https://doi.org/10.5194/esurf-5-369-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Geomorphometric delineation of floodplains and terraces from objectively defined topographic thresholds Fiona J. Clubb1, Simon M. Mudd1, David T. Milodowski2, Declan A. Valters3, Louise J. Slater4, Martin D. Hurst5, and Ajay B. Limaye6 1School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh, EH8 9XP, UK 2School of GeoSciences, University of Edinburgh, Crew Building, King’s Buildings, Edinburgh, EH9 3JN, UK 3School of Earth, Atmospheric, and Environmental Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK 4Department of Geography, Loughborough University, Loughborough, LE11 3TU, UK 5School of Geographical and Earth Sciences, East Quadrangle, University of Glasgow, Glasgow, G12 8QQ, UK 6Department of Earth Sciences and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA Correspondence to: Fiona J. Clubb ([email protected]) Received: 31 March 2017 – Discussion started: 12 April 2017 Revised: 26 May 2017 – Accepted: 9 June 2017 – Published: 10 July 2017 Abstract. Floodplain and terrace features can provide information about current and past fluvial processes, including channel response to varying discharge and sediment flux, sediment storage, and the climatic or tectonic history of a catchment. Previous methods of identifying floodplain and terraces from digital elevation models (DEMs) tend to be semi-automated, requiring the input of independent datasets or manual editing by the user. In this study we present a new method of identifying floodplain and terrace features based on two thresholds: local gradient, and elevation compared to the nearest channel. -
5Site Assessment
Site Assessment 55.1 Collecting Site Data 5.2 Analyzing and Interpreting Site Data 5.3 Project Site Risk Assessment 5.4 Document Key Design Considerations and Recommendations 5.5 Reference Reach: The Pattern for Stream- Simulation Design Stream Simulation Steps and Considerations in Site Assessment Sketch a planview map Topographic survey l Site and road topography. l Channel longitudinal profile. l Channel and flood-plain cross sections. Measure size and observe arrangement of bed materials l Pebble count or bulk sample. l Bed mobility and armoring. l Bed structure type and stability (steps, bars, key features). Describe bank characteristics and stability Conduct preliminary geotechnical investigation l Bedrock. l Soils. l Engineering properties. l Mass wasting. l Ground water. Analyze and interpret site data l Bed material size and mobility. l Cross section analysis. Flood-plain conveyance. Bank stability. Lateral adjustment potential. l Longitudinal profile analysis. Vertical adjustment potential. l General channel stability. Document key design considerations and recommendations. RESULTS Geomorphic characterization of reach. Engineering site plan map for design. Understanding of site risk factors and potential channel changes over structure lifetime. Detailed project objectives, including extent and objectives of any channel restoration. Design template for simulated streambed (reference reach). Figure 5.1—Steps and considerations in site assessment. Chapter 5—Site Assessment After verifying that the site is suitable for a crossing and will probably be suitable for stream simulation, the next step is to conduct a thorough site assessment. In this phase, you will collect the topographic and other data necessary for designing both the stream-simulation channel and the crossing structure and road approaches. -
River Terraces and Alluvial Fans: the Case for an Integrated Quaternary Fluvial Archive
University of Plymouth PEARL https://pearl.plymouth.ac.uk 01 University of Plymouth Research Outputs University of Plymouth Research Outputs 2016-10-21 River terraces and alluvial fans: The case for an integrated Quaternary fluvial archive Mather, A http://hdl.handle.net/10026.1/6673 10.1016/j.quascirev.2016.09.022 Quaternary Science Reviews All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. This is an accepted manuscript of an article published by Elsevier in Quaternary Science Reviews available at: http://dx.doi.org/10.1016/j.quascirev.2016.09.022 River terraces and alluvial fans: the case for an integrated Quaternary fluvial archive 1Mather, A.E., 1Stokes, M., 2Whitfield, E. 1School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK 2School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK Abstract The fluvial archive literature is dominated by research on river terraces with appropriate mention of adjacent environments such as lakes. Despite modern sedimentary basins comprising a significant (>88%) volume of distributive fluvial systems, of which alluvial fans (>1km, <30km in scale) are a significant part, interaction with these environments tends to be neglected and discussed in separate literature. This paper examines the dynamic role of alluvial fans within the fluvial landscape and their interaction with river systems, highlighting the potential value of alluvial fans to the wider fluvial archive community. -
Fluvial Terrace on the Huntington River – Deglacial and Post-Glacial History of Northern Vermont
Geol 151 – Geomorphology Fall 2008 Your Name_________________________ Survey Partners_________________________ _________________________ _________________________ Fluvial Terrace on the Huntington River – Deglacial and Post-glacial History of Northern Vermont Fig 5.2 from Whalen, 1998. Schematic evolution of valley formation Introduction: We will return to the Huntington River Audubon Center this week to learn how to rapidly survey (using Pop-Levles) a flight of fluvial terraces formed during the deglacial and post-glacial history of the Huntington and Winooski River valleys, Vermont. In addition to these fast surveys, we will construct more detailed cross-sections of several fluvial features and terrace risers (scarps) cut into floodplains abandoned by the Huntington River during the Holocene using instruments called Auto-Levels. Finally, we will place the data we collect in the context of a pre-existing and comprehensive body of work assembled by Tim Whalen in 1998 in order to understand better how the landscape we tread upon today was created in the past through the actions of ice, falling levels of pro- glacial lakes, flowing water, changing climate, and the activities of humans over the past 200 years. What to hand in: This handout with all questions answered, your Pop Level and Auto Level field sketches drawn to scale, an excel plot of your auto-level cross-section (Completed by end of class on Friday), and your concept sketches of the Huntington River longitudinal profiles. 1 Geol 151 – Geomorphology Fall 2008 Gear we will need: • 5 GPS units • 5 of each the ortho and topo laminated maps. • 5 pop levels • 100 m, and several 30 m tapes. -
Sean Moss, Senior Planner City of El Cerrito Planning Division 10890 San Pablo Avenue El Cerrito, CA 94530
CEQA Historic Resource Assessment Letter Report: 10167 San Pablo Avenue, El Cerrito, CA 94530 LETTER REPORT November 14, 2017 To: Sean Moss, Senior Planner City of El Cerrito Planning Division 10890 San Pablo Avenue El Cerrito, CA 94530 John Cook, Director of Environmental Services Circlepoint 200 Webster Street, Suite 200 Oakland, CA 94607 From: Bryan Larson, Partner/Historian Samuel Skow, Research Assistant III JRP Historical Consulting, LLC 2850 Spafford Street Davis, CA 95618 Subject: California Environmental Quality Act (CEQA) Historical Resource Assessment for the Property at 10167 San Pablo Avenue, El Cerrito, Contra Costa County, California. PROJECT DESCRIPTION The City of El Cerrito is authorizing a plan to demolish the existing building on the parcel at 10167 San Pablo Avenue (Assessor Parcel Number [APN] 510-034-003) and to construct a new 48,641-square-foot, six-story, multi-family residential building with a total of 62 dwelling units and 31 parking spaces.1 BACKGROUND In 2007, the City began a process to prepare a Specific Plan for San Pablo Avenue. The major goals of the Specific Plan were to articulate a vision for the future of San Pablo Avenue, identify improvements, and adopt context-sensitive regulations that could be applied along its length and to adjacent areas. In 2014, the City certified the Specific Plan Environmental Impact Report (EIR) (State Clearinghouse #2014042025) and adopted the San Pablo Avenue Specific Plan. The Specific Plan includes (1) a Form-Based Code (FBC) to provide clear signals to developers as to the type, location, and shape of desired developments; (2) multimodal transportation goals and policies including streetscape design improvements, and design standards as part of the Complete Streets Plan; and (3) infrastructure improvements to support new development. -
Mega Palace 5211 Route 38; Pennsauken, Nj 08109
STORMWATER MANAGEMENT REPORT MEGA PALACE 5211 ROUTE 38; PENNSAUKEN, NJ 08109 PREPARED FOR: MEGA PALACE INVESTMENT, LP 5201 ROUTE 38 PENNSAUKEN, NJ 08109 PREPARED BY: CIVIL & ENVIRONMENTAL CONSULTANTS, INC. 370 EAST MAPLE AVE; SUITE 304 LANGHORNE, PA 19047 CEC PROJECT 194-266 FEBRUARY 2020 REVISED MAY 2020 MEGA PALACE STORMWATER MANAGEMENT REPORT TABLE OF CONTENTS 1.0 GENERAL PROJECT DESCRIPTION .........................................................................3 1.1 Site/Project Information .......................................................................................... 3 1.2 Owner of Record: Mega Palace Investment, LP ..................................................... 3 1.3 Existing Conditions ................................................................................................. 3 1.4 Soil Information ...................................................................................................... 4 1.5 Geologic Conditions ............................................................................................... 4 1.6 Proposed Development ........................................................................................... 5 2.0 STORMWATER MANAGEMENT.................................................................................5 2.1 Existing Stormwater Drainage ................................................................................ 5 2.1.1 Stonegate 1 ...................................................................................................5 2.1.2 Saigon Plaza .................................................................................................5 -
A Cultural and Natural History of the San Pablo Creek Watershed
A Cultural and Natural History of the San Pablo Creek Watershed by Lisa Owens-Viani Prepared by The Watershed Project (previously known as the Aquatic Outreach Institute) Note: This booklet focuses on the watershed from the San Pablo Dam and reservoir westward (downstream). For a history of the Orinda area, see Muir Sorrick's The History of Orinda, published by the Orinda Library Board in 1970. Orinda also has an active creek stewardship group, the Friends of Orinda Creeks, which has conducted several watershed outreach efforts in local schools (see www.ci.orinda.ca.us/orindaway.htm). This booklet was written as part of the Aquatic Outreach Institute's efforts to develop stewardship of the mid- to lower watershed. The San Pablo Creek watershed is a wealthy one-rich in history, culture, and natural resources. The early native American inhabitants of the watershed drank from this deep and powerful creek and caught the steelhead that swam in its waters. They ate the tubers and roots of the plants that grew in the fertile soils deposited by the creek, and buried their artifacts, the shells and bones of the creatures they ate, and even their own dead along its banks. Later, European settlers grew fruit, grain, and vegetables in the same rich soils and watered cattle in the creek. Even today, residents of the San Pablo Creek watershed rely on the creek, perhaps unknowingly: its waters quench the thirst and meet the household needs of about 10 percent of the East Bay Municipal Utility District's customers. Some residents rely on the creek in another way, though-as a reminder that something wild and self-sufficient flows through their midst, offering respite from the surrounding urbanized landscape. -
Cultural Resources Survey Report for the San Francisco Bay Trail at Point Molate, Contra Costa County, California
Appendix D CULTURAL RESOURCES REPORT Cultural Resources Survey Report for the San Francisco Bay Trail at Point Molate, Contra Costa County, California Prepared on Behalf of: Prepared By: East Bay Regional Park District NCE 2950 Peralta Oaks Court, P.O. Box 1760 P.O. Box 5381 Zephyr Cove, NV 89448 Oakland, CA 94605 NCE Project Number: 567.04.55 March 2018 Jeremy Hall With Contributions From: Cultural Resources Specialist Chad Moffett and Tim Smith NCE Architectural Historians Mead & Hunt ADMINISTRATIVE SUMMARY In 2009, the East Bay Regional Park District (EBRPD) entered into an agreement for the donation of an easement for the San Francisco Bay Trail (Bay Trail) along the shoreline of their southernmost property on the San Pablo Peninsula at Point Molate. In 2013-14, the EBRPD hired NCE to conduct an alignment study for a Class I bike path and as a result, recorded the trail easement. Recently, the Bay Area Toll Authority (BATA) approved the installation of a bike and pedestrian path on the Richmond-San Rafael Bridge to Marine Street, near Point Richmond, which would connect to the EBRPD’s easement at Stenmark Drive. The combined projects will connect trail users from both Richmond and Marin County to the San Pablo Peninsula. The proposed Bay Trail at Point Molate will be approximately 2.5 miles and extend north along the shoreline, through Chevron’s property, to the Point Molate Beach Park and Navel Fuel Depot property, owned and managed by the City of Richmond, giving the public access to the shoreline and the ability to connect to the Park via foot or bicycle. -
Fluvial Terrace Mapping: Eel and Van Duzen Rivers
GEOL 553 Lab 5: Fluvial Terrace Mapping: Eel and Van Duzen Rivers Summary In this lab, students learn about fluvial terraces as preserved along the Eel and Van Duzen Rivers in Humboldt County, California. Plate tectonic uplift, eustatic sea level, and millennial scale climate forcing factors have conspired to form and preserve these terrace landforms. Students will map the landforms using digital elevation data in the form of DEMs, shaded relief data, and slope data. The students will digitize their interpretations and make estimates of terrace elevations, relative to the active channel, from the digital data. The students will attempt to correlate terraces with each river system and between the two river systems. Finally, the students will create a map, prepare a figure plotting their terrace elevation results, and write a report. Goals Students will learn the following: To become familiar with fluvial terrace landforms To learn how to map these landforms in a GIS software application To learn how to correlate paired and unpaired terrace treads within a single river system, as well as between regional river systems. To hypothesize about the reasons why fluvial terraces may or may not correlate regionally. Background Fluvial processes are driven by gravity and mass fluxes, which include hydrologic and sedimentologic inputs and outputs. Potential energy is converted to kinetic energy via slope and moderated by base level. Steeper slopes lead to more energetic flow. The elevation of sea level or lake level is called base level. Changes in sea level or lake level can increase or decrease base level. Once rivers meet oceans or lakes, they no longer have elevation changes necessary to drive the energy transfer that causes rivers to flow. -
Fluvial Geomorphic and Hydrologic Evolution and Climate Change Resilience in Young Volcanic Landscapes: Rhyolite Plateau and Lamar Valley, Yellowstone National Park
University of New Mexico UNM Digital Repository Earth and Planetary Sciences ETDs Electronic Theses and Dissertations Summer 7-15-2020 Fluvial Geomorphic and Hydrologic Evolution and Climate Change Resilience in Young Volcanic Landscapes: Rhyolite Plateau and Lamar Valley, Yellowstone National Park Benjamin Newell Burnett University of New Mexico Follow this and additional works at: https://digitalrepository.unm.edu/eps_etds Part of the Geology Commons, Geomorphology Commons, and the Hydrology Commons Recommended Citation Burnett, Benjamin Newell. "Fluvial Geomorphic and Hydrologic Evolution and Climate Change Resilience in Young Volcanic Landscapes: Rhyolite Plateau and Lamar Valley, Yellowstone National Park." (2020). https://digitalrepository.unm.edu/eps_etds/275 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Earth and Planetary Sciences ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. i Benjamin Newell Burnett Candidate Earth and Planetary Sciences Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Grant Meyer , Chairperson Dr. Peter Fawcett Dr. Leslie McFadden Dr. Julia Coonrod ii FLUVIAL GEOMORPHIC AND HYDROLOGIC EVOLUTION AND CLIMATE CHANGE RESILIENCE IN YOUNG VOLCANIC LANDSCAPES: RHYOLITE PLATEAU AND LAMAR VALLEY, -
Geomorphology and Stratigraphy of Inset Fluvial Deposits Along the Rio Grande Valley in the Central Albuquerque Basin, New Mexico
Geomorphology and stratigraphy of inset fluvial deposits along the Rio Grande valley in the central Albuquerque Basin, New Mexico Sean D. Connell, New Mexico Bureau of Geology and Mineral Resources, Albuquerque Office, New Mexico Institute of Mining and Technology, 2808 Central Ave. SE, Albuquerque, NM 87106, [email protected]; David W. Love, and Nelia W. Dunbar, New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 Abstract incision of the Rio Grande valley in the Albu- Connell et al. 2005) that formed when the querque area. river began cutting into underlying basin Five inset levels of Pleistocene fluvial depos- The (middle Pleistocene) Edith Formation its indicating former and present posi- fill of the Ceja and Sierra Ladrones Forma- appears to be the second oldest inset deposit. tions (upper Santa Fe Group). Incised val- tions of the Rio Grande are differentiated The (middle Pleistocene) Los Duranes For- between San Felipe Pueblo and Los Lunas, mation aggraded during the eruption of the leys tend to leave a record of previous river New Mexico. All have coarse-grained, well- Albuquerque Volcanoes (156 ka) and had positions in a suite of stepped terrace land- rounded cobble-gravel bases overlain by ceased by the time of the Cat Hills lava flow forms and deposits preserved along the varying amounts of finer-grained and more (98–110 ka). The Arenal Formation is inset borders of the valley (Gile et al. 1981). An poorly sorted sediments. This paper formal- into Los Duranes Formation and is late Pleis- understanding of the timing and location of izes (with modification) three fluvial depos- tocene in age. -
LSA, Historical Resource Evaluation of 10192 San
BERKELEY CARLSBAD FRESNO IRVINE PALM SPRINGS POINT RICHMOND RIVERSIDE January 26, 2017 ROCKLIN SAN LUIS OBISPO Lisa Vilhauer, Development Associate Branagh Development Inc. 3800 Mt. Diablo Boulevard, Suite 200 Lafayette, California 94549 Subject: Historical Resource Evaluation of 10192 San Pablo Avenue/State Route 123, El Cerrito, Contra Costa County, California (LSA Project #WDL1701) Dear Ms. Vilhauer: LSA prepared a Historical Resource Evaluation (HRE) of a one-story commercial building constructed in 1951 on a 0.275-acre parcel at 10192 San Pablo Avenue/State Route 123 (SR 123) in El Cerrito, Contra Costa County, California (APN: 504-012-036-1; Lots 49-52, Henderson-Tapscott Tract) (Figure 1 and 2). The building was originally constructed by the Union Oil and Gas Company (a.k.a., Unocal) for use as an automotive repair facility and gasoline filling station. It was last used as a private auto repair garage. This HRE was prepared to address the requirements of the California Environmental Quality Act (CEQA). The HRE included background research to provide information about the design, construction history, ownership, and prior occupancy of the building; and a field review by an architectural historian to document the building’s existing condition. Based on background research and field review, LSA concludes that the building at 10192 San Pablo Avenue/SR 123 does not appear eligible for inclusion in the California Register of Historical Resources (CRHR) due to a lack of historical significance. The City of El Cerrito does not maintain a local register of historical resources. As such, the building does not appear to be a historical resource for the purposes of CEQA.