CONTENTS Limestone

Total Page:16

File Type:pdf, Size:1020Kb

CONTENTS Limestone Prospecting and development........................................4 Quarrying........................................................................5 Making primary cuts ................................................ 5 Bed lifting................................................................. 5 Block subdivision ..................................................... 5 Hoisting.................................................................... 5 Yard operations..............................................................5 Storage and transportation...................................... 5 Scabbling................................................................. 5 Milling .............................................................................6 Drafting and pattern making .................................... 6 Block handling ......................................................... 6 Sawing..................................................................... 6 Planing..................................................................... 6 Turning and fluting................................................... 6 Cutting and carving.................................................. 6 Finishing .................................................................. 6 Physical and chemical properties...................................7 Specifications .................................................................7 Marketing........................................................................7 Crushed and broken stone ................................................7 Uses ...............................................................................7 LIMESTONE AND DOLOMITE Wide range of applications ...................................... 7 Uses for which physical properties are most BY OLIVER BOWLES important.................................................................. 7 Information Circular 7738 Concrete aggregate ............................................. 7 Road stone........................................................... 8 Railroad ballast .................................................... 8 Asphalt filler ......................................................... 8 Riprap .................................................................. 8 Coal-mine dusting................................................ 8 Sewage filter beds ............................................... 8 Stucco and terrazzo............................................. 8 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary Poultry grit............................................................ 8 BUREAU OF MINES Sand..................................................................... 8 Thos. H. Miller, Acting Director Roofing gravel...................................................... 9 Yard and playground surfacing............................ 9 Work on manuscript completed June 1955. The Bureau of Mines will Concrete-block manufacture................................ 9 welcome reprinting of this paper, provided the following footnote acknowledgment is made: “Reprinted from Bureau of Mines Chalk, whiting, and whiting substitutes................ 9 Information Circular 7738.” Uses for which chemical properties are most important.................................................................. 9 March 1956 Cement manufacture ........................................... 9 LIMESTONE AND DOLOMITE Lime manufacture ................................................ 9 by Agricultural uses .................................................. 9 Oliver Bowles 1/ Mineral wool......................................................... 9 Chemical and industrial uses............................... 9 Uses of dolomite and high-magnesian CONTENTS limestone............................................................ 10 Distribution of deposits.................................................10 Introduction........................................................................ 2 New England States .............................................. 10 Composition and origin ..................................................... 2 New York, New Jersey, and Pennsylvania............ 10 Maryland, Delaware, Virginia, West Virginia, North Branches of the industry ................................................... 3 Carolina, and South Carolina ................................ 10 Dimension stone ............................................................... 3 Tennessee, Mississippi, Alabama, Georgia, and Florida.................................................................... 11 Requisite qualities ......................................................... 3 Wisconsin and Michigan........................................ 11 Uses............................................................................... 3 Illinois, Indiana, Ohio, and Kentucky ..................... 11 Structural units............................................................... 3 States Between Mississippi River and Rocky Location of deposits....................................................... 4 Mountain Area ....................................................... 11 Reprinted from Bureau of Mines Information Circular 7738 – Page 1 of 17 Western and Pacific Coast States .........................12 COMPOSITION AND ORIGIN Prospecting and development..................................... 13 Stripping....................................................................... 13 The essential constituent of limestone is calcium carbonate (CaCO ). If the magnesium carbonate Mining methods ........................................................... 13 3 content is small the rock is known as a “high-calcium” Drilling.......................................................................... 14 limestone. If 10 percent or more of magnesium Blasting........................................................................ 14 carbonate is present it is called “magnesian” or Loading........................................................................ 14 “dolomitic” limestone. When the content of magnesium Haulage ....................................................................... 14 carbonate approaches 45 percent it is known as dolomite, which is the double carbonate of calcium and Primary crushing.......................................................... 14 magnesium (CaCO3.MgCO3). The term “limestone” in its Secondary crushing..................................................... 14 broader sense includes dolomite. Fine grinding................................................................ 15 Screening..................................................................... 15 Limestones are named on the basis of their prevailing impurities, provided the impurities are present in Washing....................................................................... 15 considerable quantities. Thus siliceous or cherty Marketing..................................................................... 15 limestones contain considerable quantities of silica; Prices........................................................................... 16 argillaceous limestones contain clay; and ferruginous Royalties...................................................................... 16 limestones contain iron oxides, which make the rock reddish or yellowish. Carbonaceous or bituminous Bibliography..................................................................... 17 limestones contain peat or other organic materials, 1/ Formerly commodity specialist, Branch of Construction and which may make the rock dark gray or black. Chemical Materials, Bureau of Mines. Limestones consist chiefly of calcareous shells of organisms that inhabit oceans and lakes. Countless ILLUSTRATIONS generations of them have lived and died, and their shells have accumulated, sometimes to great depths, on sea Fig. 1. Blocks of dimension limestone turned down ready for and lake floors. Such supplies are supplemented by subdivision........................................................................5 chemically precipitated calcium and magnesium 2. Limestone is scooped from the quarry floor into a 22-ton carbonates. Some deposits consist almost entirely of truck by power shovel at Jones and Laughlin Steel Co. the carbonates and become the sources of pure, high- quarry in West Virginia. ..................................................15 grade limestones. In other places sand, clay, iron oxide, or other detrital material may be mixed or interbedded 3. Electric shovel with 1-1/2-yard bucket, loading limestone into a diesel-powered truck in Barberton, Ohio...............15 with the carbonates in larger or smaller quantities. During later ages beds of sand or clay may have been 4. One of the diesel-powered trucks used for hauling superimposed, and the resulting earth pressure limestone from working faces to shaft in Barberton, gradually consolidated the carbonates and other Ohio................................................................................15 minerals into firm rock. Through long geologic ages of earth adjustment some of the rocks so formed may have been elevated to occupy land areas where they can be INTRODUCTION exploited for commercial use. Limestone, including dolomite, is the most widely used of In most instances the original shells have been so all rocks - nearly 300 million tons annually in the United comminuted by wave action or reduced by pressure and States alone. It occurs in some form in every State and earth movement
Recommended publications
  • Bloomington for the Years 1883, 1887, 1892, 1898, 1907, 1913, 1927, and 1947
    PREFACE TO THE REVISED EDITION It has now been over twenty-seven years since something inspired me to care about how many early limestone mills there were in the Indiana Limestone District and where they were located. Whatever it was, I am glad the spirit moved me and I have been able to preserve a record of their existence. I have now visited or revisited almost all of the one hundred and six mills identified in the original work. The only reason I have to say “almost” is because a few of the sites are now buried under tons of limestone grout piles or are flat open areas where the stone on which the mill previously sat has now been quarried.1 Housing additions and business buildings have made their contribution to obliterating these old mill sites. And while that is as it should be, it makes me happy to have at least in some way preserved the memory of when those once busy businesses were striving to provide the stone to build America. Rather than merely keeping the exact same title of the original work and calling this a revision, for that is what it is, I chose to add “Illustrated” to the title and thus make it have a new, albeit similar, one. There are so many pictures and new maps that a slightly different title seemed justified. The part of the original that is revised is not much in the way of new material but the correction of several errors that I made before. I only wish I could say I have found them all.
    [Show full text]
  • Guide to Concrete Repair Second Edition
    ON r in the West August 2015 Guide to Concrete Repair Second Edition Prepared by: Kurt F. von Fay, Civil Engineer Concrete, Geotechnical, and Structural Laboratory U.S. Department of the Interior Bureau of Reclamation Technical Service Center August 2015 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Acknowledgments Acknowledgment is due the original author of this guide, W. Glenn Smoak, for all his efforts to prepare the first edition. For this edition, many people were involved in conducting research and field work, which provided valuable information for this update, and their contributions and hard work are greatly appreciated. They include Kurt D. Mitchell, Richard Pepin, Gregg Day, Jim Bowen, Dr. Alexander Vaysburd, Dr. Benoit Bissonnette, Maxim Morency, Brandon Poos, Westin Joy, David (Warren) Starbuck, Dr. Matthew Klein, and John (Bret) Robertson. Dr. William F. Kepler obtained much of the funding to prepare this updated guide. Nancy Arthur worked extensively on reviewing and editing the guide specifications sections and was a great help making sure they said what I meant to say. Teri Manross deserves recognition for the numerous hours she put into reviewing, editing and formatting this Guide. The assistance of these and numerous others is gratefully acknowledged. Contents PART I: RECLAMATION'S METHODOLOGY FOR CONCRETE MAINTENANCE AND REPAIR Page A.
    [Show full text]
  • Granite Deterioration in the Graveyard of Saint James the Less, Philadelphia
    University of Pennsylvania ScholarlyCommons Theses (Historic Preservation) Graduate Program in Historic Preservation 1990 Granite Deterioration in the Graveyard of Saint James the Less, Philadelphia Kathryn Marit Sather University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/hp_theses Part of the Historic Preservation and Conservation Commons Sather, Kathryn Marit, "Granite Deterioration in the Graveyard of Saint James the Less, Philadelphia" (1990). Theses (Historic Preservation). 307. https://repository.upenn.edu/hp_theses/307 Copyright note: Penn School of Design permits distribution and display of this student work by University of Pennsylvania Libraries. Suggested Citation: Sather, Kathryn Marit (1990). Granite Deterioration in the Graveyard of Saint James the Less, Philadelphia. (Masters Thesis). University of Pennsylvania, Philadelphia, PA. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/hp_theses/307 For more information, please contact [email protected]. Granite Deterioration in the Graveyard of Saint James the Less, Philadelphia Disciplines Historic Preservation and Conservation Comments Copyright note: Penn School of Design permits distribution and display of this student work by University of Pennsylvania Libraries. Suggested Citation: Sather, Kathryn Marit (1990). Granite Deterioration in the Graveyard of Saint James the Less, Philadelphia. (Masters Thesis). University of Pennsylvania, Philadelphia, PA. This thesis or dissertation is available at ScholarlyCommons: https://repository.upenn.edu/hp_theses/307 UNIVERSITVy PENNSYLVANIA. UBKARIES GRANITE DETERIORATION IN THE GRAVEYARD OF SAINT JAMES THE LESS, PHILADELPHIA Kathryn Marit Sather A THESIS in The Graduate Program in Historic Preservation Presented to the faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE 1990 Samuel Y.
    [Show full text]
  • T€ Siinitiiiiesis F1H T F
    :t€ SIiNiTiIiIESIS F1H t f U U L1 TRANSPORTATION RESEARCH BOARD EXECUTIVE COMMITTEE 1991 Officers Chairman C. MICHAEL WALTON, Bess Harris Jones Centennial Professor of Natural Resource Policy Studies and Chairman, Civil Engineering Department, University of Texas at Austin Vice Chairman WILLIAM W. MILLAR, Executive Director, Port of Allegheny County Executive Director THOMAS B. DEEN, Transportation Research Board Members JAMES B. BUSBY IV, Federal Aviation Administrator, US. Department of Transportation (ex officio) GILBERT E. CARMICHAEL, Federal Railroad Administrator, U.S. Department of Transportation (ex officio) BRIAN W. CLYMER, Urban Mass Transportation Administrator, US. Department of Transportation (ex officio) JERRY R. CURRY, National Highway Traffic Safety Administrator, U.S. Department of Transportation (ex officio) TRAVIS P. DUNGAN, Research & Special Programs Administrator, US. Department of Transportation (ex officio) FRANCIS B. FRANCOIS, Executive Director, American Association of State Highway and Transportation Officials (ex officio) JOHN GRAY, President, National Asphalt Pavement Association (ex officio) THOMAS H. HANNA, President and Chief Executive Officer, Motor Vehicle Manufacturers Association of the United States. Inc. (ex officio) HENRY J. HATCH, Chief of Engineers and Commander, U.S. Army Corps of Engineers (ex officio) THOMAS D. LARSON, Federal Highway Administrator, US. Department of Transportation (ex officio) GEORGE H. WAY, JR., Vice President for Research and Test Department, Association of American Railroads (ex officio) ROBERT J. AARONSON, President, Air Transport Association of America JAMES M. BEGGS, Chairman, Spacehab, Inc. J. RON BRJNSON, President and Chief Executive Officer, Board of Commissioners of,The Port of New Orleans L. GARY BYRD, Consulting Engineer, Alexandria, Virginia - A. RAY CHAMBERLAIN, Executive Director, Colorado Department of Highways L.
    [Show full text]
  • Tooling & Consumables
    TOOLING & CONSUMABLES PRODUCT DIRECTORY DIAMOND BLADES • DIAMOND TOOLING • TROWEL ACCESSORIES • TERMINATOR ACCESSORIES CAGES & CUTTERS • CORE BITS • CHEMICALS rtell F a am B il y o f C o m p a n i e s www.blanchardmachinery.net THE BARTELL FAMILY OF COMPANIES HISTORY 1946 BARTELL INCORPORATED BY ART BARTELL INTRODUCTION OF THE FIRST 1962 BARTELL TROWEL SPE FOUNDED BY TONY MANSFIELD 1983 SPE MOVES TO NEW 5 ACRE SITE IN RURAL LINCOLNSHIRE 1989 1993 INNOVATECH FOUNDED BY ROGER WIGGINS INNOVATECH AQUIRES FIRST 1997 TERMINATOR PATENT 1999 BARTELL SOLD TO TEREX SPE AWARDED HIREX SUPPLIER OF THE YEAR INNOVATECH SELLS ITS FIRST TO THE UK RENTAL INDUSTRY 2001 BATTERY POWERED TERMINATOR AQUIRED BALSTFORCE COMPANY AND MERGED INTO SPE 2004 SPE BECAME RECOGNIZED AND ACCREDITED TRAINERS IN SURFACE INNOVATECH DEVELOPS ITS FIRST PREPARATION EQUIPMENT BY THE 2005 PLANETARY GRINDER HIRE ASSOCIATION OF EUROPE SPE HELPED DEVELOP, DRAFT, AND WRITE THE Q&A PAPERSFOR THE NVQ APPRENTICE MORRISON BROUGHT TO CANADA SCHEME THROUGH NSAC WHICH WERE A 2006 FROM SOUTH CAROLINA PART OF THE CITB BARTELL MORRISON INC. 2013 BARTELL MORRISON INC. ACQUIRES INNOVATECH ACQUIRES THE SPE GROUP THE INTRODUCTION OF THE BARTELL FAMILY OF COMPANIES Blanchard Machinery Inc. 1890 North East 150 Street North Miami Fla.33181 TABLE OF CONTENTS [email protected] www.blanchardmachinery.net Content Page Small/Medium Diameter Turbo 4"-14" Blades - Wet or Dry 4 Small Diameter Segmented 4"-10" Blades - Wet or Dry 5 Medium Diameter Segmented 12"-20" Blades - Wet or Dry 6 Large Diameter Segmented
    [Show full text]
  • Dimension Stone Feasibility Study
    DIMENSION STONE FEASIBILITY STUDY: DEVELOPMENT POTENTIAL IN MICHIGAN'S UPPER PENINSULA H. James Bourque and Associates 402 Ashmun Street, P.O. Box 292 Sault Ste. Marie, MI 49783 (906) 635-9191 July 1, 1999 Page 2 Table of Contents Acknowledgements ................................................................................................... 4 Project Background.................................................................................................... 5 In Recent Years . ...................................................................................................... 5 Study Methods............................................................................................................ 7 Geology of the Upper Peninsula................................................................................. 7 Dimension Stone Production ...................................................................................... 8 1997 Dimension Stone Production By Types: ...........................................................9 Dimension Stone Pricing ...........................................................................................11 Sandstone ..............................................................................................................12 Granite...................................................................................................................12 Limestone ..............................................................................................................12 Stone Sites Investigated
    [Show full text]
  • Special Contract Requirements
    E-1 CA FTNP YOSE 500(5) & 918(1) Southside Drive and Bridalveil Parking SPECIAL CONTRACT REQUIREMENTS The following Special Contract Requirements amend and supplement the Standard Specifications for Construction of Roads and Bridges, on Federal Highway Projects (FP-14), U.S. Department of Transportation, Federal Highway Administration. E-2 CA FTNP YOSE 500(5) & 918(1) Southside Drive and Bridalveil Parking Section 101. – TERMS, FORMAT, AND DEFINITIONS 101.03 Abbreviations. (a) Acronyms. Add the following: EEBACS — Engineer’s Estimating, Bidding, Award, and Construction System GSA – General Services Administration NPS – National Park Service YNP – Yosemite National Park (b) US Customary abbreviations and symbols. Delete the text and substitute the following: ºF — degrees Fahrenheit temperature A — ampere electric current ac. — acre area BTU — British Thermal Unit energy cu. in. or in3 — cubic inches volume cu. ft., cf, ft3 or CUFT — cubic feet volume cu. yd., cy, yd3 or CUYD — cubic yards volume D — day time deg. or º — degree plane angle Fc — foot-candles luminous intensity fl. oz. — fluid ounces volume ft. or ' — foot or feet length gal. or GAL — gallon volume H — Henry inductance hr. or HR — hour time Hz — hertz (s-1) frequency in. or " inch or inches length K — kelvin temperature lb or LB, lbs — pound, pounds mass Lbf — pound-force force lnft or LNFT linear foot length mi. — miles length min. or m — minute time min. or ' — minute plane angle oz. — ounces mass Psi — pounds/square inch pressure Q — cubic feet/second flow rate sec. or s — second time E-3 CA FTNP YOSE 500(5) & 918(1) Southside Drive and Bridalveil Parking sec.
    [Show full text]
  • Short Notice to Quarrying Sector
    DRAFT REPORT STATE-OF-THE-ART: ORNAMENTAL STONE QUARRYING IN EUROPE Nicos Arvantides Tom Heldal 1 OSNET quarrying sector Nicos Arvantides Institute of Geology and Mineral exploration (IGME) 1. Fragon str. 54626 Thessaloniki Greece [email protected] Tom Heldal Geological Survey of Norway (NGU) N-7491 Trondheim Norway [email protected] Preface This report is an attempt to summarize some characteristics of the ornamental stone quarrying industry throughout Europe and underline some challenges that this sector is facing. Furthermore, it seeks to highlight some of the most important innovative technologies and methods contributing to improve the viability and sustainability of ornamental stone quarrying. In addition to quarrying itself, the report also deals with other important aspects directly relevant to quarrying – such as exploration, some environmental issues, management of deposits and handling and use of waste rock. For other aspects related to the ornamental stone production, including environmental, the work by the other sectors within OSNET is recommended. These are: Processing, Stone characterization, Tools and equipment, Risk assessment, safety and environment and Technology transfer. Ornamental stone quarrying in Europe is characterized by a great variation in traditions, extraction methods and, not at least, rock types. To give a complete picture of everything happening within the sector would demand far more pages and time than available, but we hope that we have not forgotten too much. The members of the OSNET quarrying sector come from Greece, Italy, Portugal, Sweden, Finland and Norway. Clearly, the report will be "coloured" by examples and case studies from these countries, but we hope – and believe - they have a more general validity.
    [Show full text]
  • Revised Dating for Plug & Feather Method and Flat Wedge Method By
    Revised Dating for Plug & Feather Method and Flat Wedge Method By James Gage & Mary Gage © 2015 Revised 8/21/2015 At a Glance Flat Wedge Method – Developed in the late 1790s in the Danvers/Lynnfield area of Massachusetts, introduced into the Quincy quarries in 1803, and rapidly spread from there. Earliest dated example is 1800. Commercial Plug & Feather Method – New dating 1818 to present. Earliest dated examples are from 1818 (MA) and 1823 (CT, MA, & NH) Detailed Discussion Researchers have relied upon Shaw’s 1859 speech (see page 36 in “The Art of Splitting Stone”) for the early history of the commercial plug & feather method and particularly dating its introduction into the Quincy quarries to circa 1803. Over the years questions have occasionally been raised over the reliability of this source. The lack of pre-1818 examples of the plug & feather method has been very puzzling. New research in the past two years has shed new light on the details of the Shaw speech. Shaw retold in detail the story given to him by Lt. Governor Robbins. Robbins was directly involved in the efforts to build a new state prison in Charlestown, MA. In 1803, Robbins discovered a new more efficient and cost effective method of splitting stone while traveling through Salem, MA. Up to that point, splitting stones into blocks suitable for buildings had been a slow, labor intensive and costly process. The split stone Robbins saw in the foundation was supplied by a Mr. Galusha who purchased it from a stone splitter named Mr. Tarbox. Robbins talked with Tarbox who explained how the splitting method worked.
    [Show full text]
  • Historic Stone Highway Culverts in New Hampshire Asset Management Manual
    Historic Stone Highway Culverts in New Hampshire Asset Management Manual Prepared for: New Hampshire Department of Transportation, Bureau of Environment, Concord. Prepared by: Historic Documentation Company, Inc., Portsmouth, RI September 2009 TABLE OF CONTENTS 1.0 INTRODUCTION .........................................................................................................1 1.1 Purpose......................................................................................................................1 1.2 Why Preserve Historic Stone Culverts .....................................................................2 2.0 IDENTIFYING HISTORIC STONE CULVERTS.......................................................4 2.1 General Information .................................................................................................4 2.2 New Hampshire Stone Culverts................................................................................7 2.3 Stone Box Culverts ...................................................................................................8 2.4 Stone Arch Culverts................................................................................................14 3.0 MAINTAINING HISTORIC STONE CULVERTS ..................................................16 3.1 General Maintenance Discussion ...........................................................................16 3.2 Inspection & Maintenance Program ......................................................................17 3.3 Clear Waterway .....................................................................................................18
    [Show full text]
  • Washington Geology, V, 21, No. 4, December 1993
    WASHINGTON GEOLOGY Washington Department of Natural Resources, Division of Geology and Earth Resources Vol. 21, No. 4, December 1993 Hercules No. 1 quarry in Tenino sandstone at Lemon Hill in Tenino (ca. 1908), operated by the Hercules Sandstone Co. A coal- or wood-fired, steam-driven, double channeler under 200 pounds of steam is cutting blocks. The channeler moved 40 feet each half hour and cut a groove 2 inches deep on each pass; it took many passes to cut the 52-inch depth of these blocks. A set of three tempered steel bits was located on each side of the channeler; two bits were arranged with blades perpendicular to the channel length, and the center bit was set at 45 degrees to the other bits. Bits used to make the first cut in the channels were 2.5 inches wide, but were progressively changed and were 1 inch wide for the deepest part of the groove. A man walked on each side of this machine, using a long-handled spoon to remove stone chips from the grooves. The machine ran 24 hours a day. A derrick moved the channeler to new positions. Water for the boiler was brought up in barrels. Hoses on the left are for steam drills run by power from the channeler. Men on the right in this photo are using wedges to split off parts of the outermost block. Blocks were also split off at the base with wedges. The comer of the "platform" has broken at a joint. Photo courtesy of Larry Scheel. In This Issue: Washington's stone industry-A history, p.
    [Show full text]
  • Strengthening of Reinforced Concrete Structures.Pdf
    Contents iii Strengthening of reinforced concrete structures Using externally-bonded FRP composites in structural and civil engineering Edited by L C Hollaway and M B Leeming CRC Press Boca Raton Boston New York Washington, DC Cambridge England SORPR 3 12/19/98, 2:33 PM iv Contents Published by Woodhead Publishing Limited, Abington Hall, Abington Cambridge CB1 6AH, England Published in North and South America by CRC Press LLC, 2000 Corporate Blvd, NW Boca Raton FL 33431, USA First published 1999, Woodhead Publishing Ltd and CRC Press LLC Reprinted 2001 © 1999, Woodhead Publishing Ltd The authors have asserted their moral rights. This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the authors and the publishers cannot assume responsibility for the validity of all materials. Neither the authors nor the publishers, nor anyone else associated with this publication, shall be liable for any loss, damage or liability directly or indirectly caused or alleged to be caused by this book. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording, or by any information storage or retrieval system, without permis- sion in writing from the publishers. The consent of Woodhead Publishing and CRC Press does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from Woodhead Publish- ing or CRC Press for such copying.
    [Show full text]