Variable Stars in the Globular Cluster M 13?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Estimating the Parameters of Globular Cluster M 30 (NGC 7099) from Time-Series Photometry
Astronomy & Astrophysics manuscript no. ngc7099 c ESO 2018 September 23, 2018 Estimating the parameters of globular cluster M 30 (NGC 7099) from time-series photometry⋆,⋆⋆ N. Kains1, D. M. Bramich1, A. Arellano Ferro2, R. Figuera Jaimes1,3, U. G. Jørgensen4,5, S. Giridhar6 and K.A. Alsubai7, J. M. Andersen8,5, V. Bozza9,10, P. Browne3, M. Burgdorf11, S. Calchi Novati9,12, Y. Damerdji13, C. Diehl14,15, P. Dodds3, M. Dominik3,⋆⋆⋆, A. Elyiv13,16, X.-S. Fang17,18, E. Giannini14, S.-H. Gu17,18, S. Hardis4, K. Harpsøe4,5, T.C. Hinse19,4, A. Hornstrup20, M. Hundertmark3, J. Jessen-Hansen21, D. Juncher4,5, E. Kerins22, H. Kjeldsen21, H. Korhonen4,5, C. Liebig3, M. N. Lund21, M. Lundkvist21, L. Mancini23, R. Martin24, M. Mathiasen4, M.T. Penny25, M. Rabus26, S. Rahvar27,28, D. Ricci29,13, K. Sahu30, G. Scarpetta9,31, J. Skottfelt4,5, C. Snodgrass32, J. Southworth33, J. Surdej13, J. Tregloan-Reed33, C. Vilela33, O. Wertz13, and A. Williams24 (The MiNDSTEp consortium) (Affiliations can be found after the references) Received ... ; accepted ... Abstract Aims. We present the analysis of 26 nights of V and I time-series observations from 2011 and 2012 of the globular cluster M 30 (NGC 7099). We used our data to search for variable stars in this cluster and refine the periods of known variables; we then used our variable star light curves to derive values for the cluster’s parameters. Methods. We used difference image analysis to reduce our data to obtain high-precision light curves of variable stars. We then estimated the cluster parameters by performing a Fourier decomposition of the light curves of RR Lyrae stars for which a good period estimate was possible. -
Determining Pulsation Period for an RR Lyrae Star
Leah Fabrizio Dr. Mitchell 06/10/2010 Determining Pulsation Period for an RR Lyrae Star As children we used to sing in wonderment of the twinkling stars above and many of us asked, “Why do stars twinkle?” All stars twinkle because their emitted light travels through the Earth’s atmosphere of turbulent gas and clouds that move and shift causing the traversing light to fluctuate. This means that the actual light output of the star is not changing. However there are a number of stars called Variable Stars that actually produce light of varying brightness before it hits the Earth’s atmosphere. There are two categories of variable stars: the intrinsic, where light fluctuation is due from the star physically changing and producing different luminosities, and extrinsic, where the amount of starlight varies due to another star eclipsing or blocking the star’s light from reaching earth (AAVSO 2010). Within the category of intrinsic variable stars are the pulsating variables that have a periodic change in brightness due to the actual size and light production of the star changing; within this group are the RR Lyrae stars (“variable star” 2010). For my research project, I will observe an RR Lyrae and find the period of its luminosity pulsation. The first RR Lyrae star was named after its namesake star (Strobel 2004). It was first found while astronomers were studying the longer period variable stars Cepheids and stood out because of its short period. In comparison to Cepheids, RR Lyraes are smaller and therefore fainter with a shorter period as well as being much older. -
Searching for RR Lyrae Stars in M15
Searching for RR Lyrae Stars in M15 ARCC Scholar thesis in partial fulfillment of the requirements of the ARCC Scholar program Khalid Kayal February 1, 2013 Abstract The expansion and contraction of an RR Lyrae star provides a high level of interest to research in astronomy because of the several intrinsic properties that can be studied. We did a systematic search for RR Lyrae stars in the globular cluster M15 using the Catalina Real-time Transient Survey (CRTS). The CRTS searches for rapidly moving Near Earth Objects and stationary optical transients. We created an algorithm to create a hexagonal tiling grid to search the area around a given sky coordinate. We recover light curve plots that are produced by the CRTS and, using the Lafler-Kinman search algorithm, we determine the period, which allows us to identify RR Lyrae stars. We report the results of this search. i Glossary of Abbreviations and Symbols CRTS Catalina Real-time Transient Survey RR A type of variable star M15 Messier 15 RA Right Ascension DEC Declination RF Radio frequency GC Globular cluster H-R Hertzsprung-Russell SDSS Sloan Digital Sky Survey CCD Couple-Charged Device Photcat DB Photometry Catalog Database FAP False Alarm Probability ii Contents 1 Introduction 1 2 Background on RR Lyrae Stars 5 2.1 What are RR Lyraes? . 5 2.2 Types of RR Lyrae Stars . 6 2.3 Stellar Evolution . 8 2.4 Pulsating Mechanism . 9 3 Useful Tools and Surveys 10 3.1 Choosing M15 . 10 3.2 Catalina Real-time Transient Survey . 11 3.3 The Sloan Digital Sky Survey . -
Cepheid Variable Stars Cepheid Variable Stars As Distance Indicators
Cepheid Variable Stars Cepheid variable stars as distance indicators. Certain stars that have used up their main supply of hydrogen fuel are unstable and pulsate. RR Lyrae variables have periods of about a day. Their brightness doubles from dimest to brightest. Typical light curve for a Cepheid variable star. Cepheid variables have longer periods, from one day up to about 50 days. Their brightness also doubles from dimest to brightest. From the shape of the ``light curve'' of a Cepheid variable star, one can tell that it is a Cepheid variable. The period is simple to measure, as is the apparent brightness at maximum brightness. Cepheids as distance indicators Cepheids are important beyond their intrinsic interest as pulsating stars. Astronomomers have found that their is a relation between the period of a Cepheid and its luminosity. http://zebu.uoregon.edu/~soper/MilkyWay/cepheid.html (1 of 3) [5/25/1999 10:34:08 AM] Cepheid Variable Stars This enables astronomers to determine distances: ● Find the period. ● This gives the luminosity. ● Measure the apparent brightness. ● Determine the distance from the luminosity and brightness. The same applies to RR Lyrae variable stars. Once you know that a star is an RR Lyrae variable (eg. from the shape of its light curve), then you know its luminosity. Where did this period-luminosity relation come from? ● American astronomer Henrietta Leavitt looked at many Cepheid variables in the Small Magellanic Cloud (a satellite galaxy to ours.) ● She found the period luminosity relation (reported in 1912). ● One needs a distance measurement from some other method for at least one Cepheid. -
``But I Am Constant As the Northern Star of Whose True-Fixed and Resting Quality There Is No Fellow in the Firmament.'' William
``But I am constant as the Northern Star Of whose true-fixed and resting quality There is no fellow in the firmament.'' William Shakespeare, Julius Caesar, 3, 1 Astronomy C - Variable Stars - 2008 A. Pulsating Variables: 1) Long Period Variables a) Mira type b) Semiregular 2) Cepheids 3) RR Lyrae B. Cataclysmic (Eruptive) Variables: 1) R Coronae Borealis 2) Flare Stars 3) Dwarf Novae 4) X-Ray Binaries 5) Supernovae a) Type II b) Type Ia C. Strangers in the Night Astronomy C - Variable Stars - 2008 A. Pulsating Variables: 1) Long Period Variables a) Mira type R Cygni b) Semiregular V725 SGR 2) Cepheids W Virginis 3) RR Lyrae AH Leo B. Cataclysmic (Eruptive) Variables: 1) R Coronae Borealis RY Sagittarii 2) Flare Stars UV Ceti 3) Dwarf Novae SU Ursae Majoris 4) X-Ray Binaries J1655-40, RX J0806.3+1527 5) Supernovae a) Type II G11.2-0.3, SN2006gy b) Type Ia DEM L71, Kepler’s SNR C. Strangers in the Night: V838 Mon Light Curves – Variation over Time Maximum (Maxima) Minimum (Minima) Period Apparent Magnitude vs Julian Day A. Pulsating Variable Stars; 1) Long Period Variables (LPVs) a) Miras 80 – 1000 days, 2.5 – 5.0 mag R Cygni b) Semiregular Variables 30 – 1000 days, 1.0 – 2.0 mag V725 Sgr Semiregular Mira Instability Strip 2) Cepheid Variable Stars W Virginis (Type 2) [Periods of .8 – 35 days, .3 – 1.2 mag] Type I and Type II Cepheid Variable Stars Type I (Classical) Cepheids: Young high-metallicity stars about 4 times more luminous than Type II Cepheids Type II Cepheids: Older low- metallicity stars about 4 times less luminous than classical Cepheids. -
Arxiv:1009.4206V1
AJ, IN PRESS Preprint typeset using LATEX style emulateapj v. 8/13/10 TIME-SERIES PHOTOMETRY OF GLOBULAR CLUSTERS: M62 (NGC 6266), THE MOST RR LYRAE-RICH GLOBULAR CLUSTER IN THE GALAXY? R. CONTRERAS,1,2 M. CATELAN,2 H. A. SMITH,3 B. J. PRITZL,4 J. BORISSOVA,5 C. A.KUEHN3 AJ, in press ABSTRACT We present new time-series CCD photometry, in the B and V bands, for the moderately metal-rich ([Fe/H] ≃ −1.3) Galactic globular cluster M62 (NGC 6266). The present dataset is the largest obtained so far for this cluster, and consists of 168 images per filter, obtained with the Warsaw 1.3m telescope at the Las Campanas Observatory (LCO) and the 1.3m telescope of the Cerro Tololo Inter-American Observatory (CTIO), in two separate runs over the time span of three months. The procedure adopted to detect the variable stars was the optimal image subtraction method (ISIS v2.2), as implemented by Alard. The photometry was performed using both ISIS and Stetson’s DAOPHOT/ALLFRAME package. We have identified 245 variable stars in the cluster fields that have been analyzed so far, of which 179 are new discoveries. Of these variables, 133 are fundamental mode RR Lyrae stars (RRab), 76 are first overtone (RRc) pulsators, 4 are type II Cepheids, 25 are long-period variables (LPV), 1 is an eclipsing binary, and 6 are not yet well classified. Such a large number of RR Lyrae stars places M62 among the top two most RR Lyrae-rich (in the sense of total number of RR Lyrae stars present) globular clusters known in the Galaxy, second only to M3 (NGC 5272) with a total of 230 known RR Lyrae stars. -
A Deeper Look at Leo Iv: Star Formation History and Extended Structure
A DEEPER LOOK AT LEO IV: STAR FORMATION HISTORY AND EXTENDED STRUCTURE The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Sand, David J., Anil Seth, Edward W. Olszewski, Beth Willman, Dennis Zaritsky, and Nitya Kallivayalil. “A DEEPER LOOK AT LEO IV: STAR FORMATION HISTORY AND EXTENDED STRUCTURE.” The Astrophysical Journal 718, no. 1 (July 1, 2010): 530–542. © 2010 The American Astronomical Society As Published http://dx.doi.org/10.1088/0004-637x/718/1/530 Publisher IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/95689 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal, 718:530–542, 2010 July 20 doi:10.1088/0004-637X/718/1/530 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A DEEPER LOOK AT LEO IV: STAR FORMATION HISTORY AND EXTENDED STRUCTURE∗ David J. Sand1,5, Anil Seth1, Edward W. Olszewski2, Beth Willman3, Dennis Zaritsky2, and Nitya Kallivayalil4,6 1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138, USA; [email protected] 2 Steward Observatory, University of Arizona, Tucson, AZ 85721, USA 3 Haverford College, Department of Astronomy, 370 Lancaster Avenue, Haverford PA 19041, USA 4 MIT Kavli Institute for Astrophysics & Space Research, 70 Vassar Street, Cambridge, MA 02139, USA Received 2009 November 26; accepted 2010 May 24; published 2010 July 1 ABSTRACT We present MMT/Megacam imaging of the Leo IV dwarf galaxy in order to investigate its structure and star formation history, and to search for signs of association with the recently discovered Leo V satellite. -
Variable Stars in the Globular Cluster M 13 Ability of V7 Was Confirmed by Shapley (1915B)
Astronomy & Astrophysics manuscript no. h3895 October 23, 2018 (DOI: will be inserted by hand later) Variable stars in the globular cluster M 13 G. Kopacki, Z. Kołaczkowski, and A. Pigulski Wrocław University Observatory, Kopernika 11, 51-622 Wrocław, Poland Received .....; accepted ..... Abstract. Results of a search for variable stars in the central region of the globular cluster M 13 are presented. Prior to this study, 36 variable and suspected variable stars were known in this cluster (Osborn 2000; Clement et al. 2001). Of these stars, five were not observed by us. We find v3, v4, v10, v12, and v13 to be constant in light. Surprisingly, only two out of the ten variable star candidates of Kadla et al. (1980) appear to be variable. Both are RRc variables. Additionally, three RR Lyrae stars and one SX Phoenicis variable are discovered. Three close frequencies are detected for an RRc star v36. It appears that this variable is another multi-periodic RR Lyrae star pulsating in non-radial modes. Light curves of the three known BL Herculis stars and all known RR Lyrae stars are presented. The total number of known RR Lyrae stars in M 13 is now nine. Only one is an RRab star. The mean period of RRc variables amounts to 0.36 ± 0.05 d, suggesting that M 13 should be included in the group of Oosterhoff type II globular clusters. Mean V magnitudes and ranges of variation are derived for seven RR Lyrae and three BL Herculis variables. Almost all observed bright giants show some degree of variability. -
RR Lyrae Stars and the Distance to the Center of the Galaxy
Activity 25: RR Lyrae Stars and the Distance to the Center of the Galaxy ©2014 W. W. Norton & Company, Inc. 15 Post-25.1: What aspect about globular clusters and our observations of the distances to them modified our view of the Milky Way Galaxy and our place in it? a. They all orbit the center of the galaxy, and the center of their distribution is not where we are. b. Some of the globular clusters are very far away and must belong to the Andromeda Galaxy. c. We found out that there are hundreds of globular clusters hidden by columns of dust. d. The most distant globular clusters are metal-rich and so must have originated in the disk. ©2014 W. W. Norton & Company, Inc. 16 Post-25.1: What aspect about globular clusters and our observations of the distances to them modified our view of the Milky Way Galaxy and our place in it? a. They all orbit the center of the galaxy, and the center of their distribution is not where we are. b. Some of the globular clusters are very far away and must belong to the Andromeda Galaxy. c. We found out that there are hundreds of globular clusters hidden by columns of dust. d. The most distant globular clusters are metal-rich and so must have originated in the disk. ©2014 W. W. Norton & Company, Inc. 17 Post-25.2: Astronomers need to measure the distances to the stars in the Milky Way globular clusters. What method should they use to find the distances? a. -
Blications of the Astronomical Society of the Pacific, 115:755–760, 2003 June ᭧ 2003
Publications of the Astronomical Society of the Pacific, 115:755–760, 2003 June ᭧ 2003. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. Differential Time-Series CCD Photometry of BL Camelopardalis Revisited Chulhee Kim Department of Earth Science Education, Chonbuk National University, Korea; [email protected] and Y.-B. Jeon and S.-L. Kim Department of Earth Science Education, Chonbuk National University, Korea; and Korea Astronomy Observatory, Yeoungcheon 770-880, Korea Received 2003 January 11; accepted 2003 February 28 ABSTRACT. New differential time-series observations of BL Camelopardalis were secured using B and V filters. It was confirmed that BL Cam is an optical double star. Differential magnitudes were obtained through a photometric profile reduction procedure to eliminate the influence of a faint adjacent star. Variations inO Ϫ C values for light maxima were investigated. We found that the parabolic period variation was recently reversed. The periods of BL Cam were investigated, and five frequencies were determined using Fourier analysis. We also investigated the relationship between metallicities and period ratios, and we compared the theoretical and observational relationships. It was found that the theoretical relationship is better than the observational one for BL Cam. 1. INTRODUCTION been discovered. Interestingly, three of the 12 are double-mode pulsators (McNamara 1997; Martin & Rodrı´guez 1995). BL Camelopardalis ( p 03h47m19s, p ϩ63Њ22 7 a d BL Cam was first discovered by Giclas, Burnham, & Thomas [J2000.0],V p 13.10 ,V p 0.33 mag) was classified as an D (1970) as a possible white dwarf candidate. -
Evolutionary Models of RR Lyrae Stars Young-Wook Lee Department of Astronomy, Yale University, New Haven, CT, USA
Evolutionary Models of RR Lyrae Stars Young-Wook Lee Department of Astronomy, Yale University, New Haven, CT, USA 1. Introduction As tracers of old stellar populations and as primary Population II standard candles, RR Lyrae stars have played an important role in the development of modern astronomy. Our knowledge of stellar evolution has identified these variable stars in a core helium burning phase of low-mass star evolution, the hoiizontal-branch (HB) phase. Consequently, not only to understand fully the nature of RR Lyrae stars, but also to apply them correctly as population probes and distance indicators, we must understand the underlying evolution ary effect of HB stars. In this paper, I briefly review the most important properties of RR Lyrae stars pre dicted from the HB evolutionary models, and present many pieces of supporting evidence for these models. For the implications of these models on the chronology of the Galactic formation and on the cosmological distance scale, the reader is referred to several recent publications by Lee (1992a,b,c,d). 2. Properties of RR Lyrae Stars Predicted from HB Population Models The construction of HB population models is straightforward, once we have all the evolu tionary tracks for HB stars of different masses for a given composition. It is generally as sumed that the distribution of mass on the HB is Gaussian, resulting from variable amounts of mass-loss on the giant-branch. For each HB star, the time elapsed since the zero-age HB (ZAHB) is obtained by using a uniform random number generator. When the HB stars fall into the instability strip, we treat them as RR Lyrae variables. -
NEW SX PHOENICIS VARIABLES in the GLOBULAR CLUSTER NGC 48331 Andrew N
Journal of the Southeastern Association for Research in Astronomy, 6, 00-00, November 8, 2018 c 2010. Southeastern Association for Research in Astronomy. All rights reserved. NEW SX PHOENICIS VARIABLES IN THE GLOBULAR CLUSTER NGC 48331 Andrew N. Darragh and Brian W. Murphy Department of Physics and Astronomy, Butler University, Indianapolis, IN, 46208 & SARA ABSTRACT We report the discovery of 6 SX Phoenicis stars in the southern globular cluster NGC 4833. Images were obtained from January through June 2011 with the Southeastern Association for Research in Astronomy 0.6 meter telescope located at Cerro Tololo Interamerican Observatory. The image sub- traction method of Alard & Lupton (1998) was used to search for variable stars in the cluster. We confirmed 17 previously cataloged variables by Demers & Wehlau(1977). In addition to the previously known variables we have identified 10 new variables. Of the total number of confirmed variables in our 10×10 arcmin2 field, we classified 10 RRab variables, with a mean period of 0.69591 days, 7 RRc, with a mean period of 0.39555 days, 2 possible RRe variables with a mean period of 0.30950 days, a W Ursae Majoris contact binary, an Algol-type binary, and the 6 SX Phoenicis stars with a mean period of 0.05847 days. The periods, relative numbers of RRab and RRc variables, and Bailey diagram are indicative of the cluster being of the Oosterhoff type II. We present the phased-light curves, periods of previously known variables and the periods and classifications of the newly discovered variables, and their location on the color-magnitude diagram.