RANDOM WALK MEETING TIMES on GRAPHS Contents 1. Introduction

Total Page:16

File Type:pdf, Size:1020Kb

RANDOM WALK MEETING TIMES on GRAPHS Contents 1. Introduction RANDOM WALK MEETING TIMES ON GRAPHS ETHAN NAEGELE Abstract. We discuss the bounds on expected meeting times for a game involving two tokens which pass from vertex to vertex randomly on an arbitrary n-vertex graph. At each unit of time, the player chooses which token to move, and the game ends when the two tokens collide. We find the coefficients of the approximate bounds for the meeting times, which are of order n3, and the player strategies which give rise to such extremal meeting times. Contents 1. Introduction 1 2. Preliminaries 2 3. Strategies 4 4. Bounds 9 Acknowledgments 14 References 14 1. Introduction We investigate a game played on some connected, undirected graph G. The game to be discussed is played as follows: two tokens are placed at initial vertices (x; y) on G. At each unit of time (say, each second), the player chooses which of the two tokens is to be moved. The selected token moves according to the uniform distribution on its neighbors. When both tokens meet at the same vertex, the game ends. In this paper, we investigate the expected meeting times for each of the three main modes of play: Angel, Demon, and Random. Angel plays to minimize the meeting time; Demon plays to maximize it; Random flips a fair coin to select which token to move. The motivation for studying such games is well summarized in [1]. These games are useful in understanding \token-management" schemes, which pass a \token," some abstract object between nodes, or \processors" in a network. In the desired state, there is generally one token in the network. Were the system to enter some undesired state in which the network contains multiple tokens, the way to return to the desired state would be to remove the tokens by colliding them together at the same processor. It becomes of our interest, then, to study the maximum amount of time we should expect to wait in the worst case scenario, described by the Demon player. We would also like to find how much shorter we should expect to wait in the worst case scenario when we are trying to end the undesired state as soon as possible, i.e., the Angel player. Naturally, we also ask what the strategies are which result in these extremal Demon and Angel games, so that we may implement them, 1 2 ETHAN NAEGELE and so that we can understand under what conditions these meeting times arise. In response to these questions, we synthesize the main results from [4], [2], and [7]. We first build motivation for understanding how this game works by finding strategies for different graphs. We find the existence of pure optimal strategies for both Angel and Demon on any graph G, as well as finding an explicit strategy for the Demon game played on a path. We also deduce a general pure optimal strategy which utilizes a remote vertex for Demon and a central vertex for Angel. After developing an intuition for the game, a natural question arises: how long is the game expected to last? To answer this, we look for the graph which maximizes the hitting time of a random walk across all n-vertex graphs. The graph which achieves this is known as the lollipop graph (see Figure 1). We then calculate that 4 3 the maximal hitting time on such a graph is of order 27 n , and we develop this calculation explicitly. We use this calculation to obtain the Demon's bound, then again in obtaining the lower bound for the Angel by employing his pure optimal strategy. Then, since the random game must have bounds which lie between these two, we obtain the bounds on each of the three modes of play. 2. Preliminaries We assume basic knowledge of probability, random walks, and graph theory. It should be noted that we use the notation o(1) to denote some function f : N ! R f(n) such that limn!1 1 = 0. We again emphasize that G is required to be undirected and connected, so that the notion of maximum meeting time is always well-defined, and when we refer to \any graph G," we imply that G is also undirected and connected. The following definitions are required: Definition 2.1. The hitting time HG(x; y) is the expected time for a random walk starting at vertex x on graph G to reach vertex y. We may also define a special quantity involving hitting time as M HG (x; y) := HG(x; y) + M · e(G); where M is a positive real number, and e(G) is the number of edges on graph G. We denote V (G) as the set of vertices on G. Now let us define for fixed M the M M quantity H (n) := maxfHG (x; y): jV (G)j = n and x; y 2 V (G)g: Definition 2.2. An n-vertex graph G is (n; M)-extremal if there exists a pair of M M vertices x; y such that HG (x; y) = H (n). We also have some special vertices which are useful for later results. A remote vertex is a vertex r such that HG(r; x) ≤ HG(x; r) for all x of G. Similarly, a central vertex is a vertex c such that HG(x; c) ≤ HG(c; x) for all x. It is noted in [7] that for any G, some c and r both exist. Applying these definitions, we define the \potential function" Z(z) = HG(c; z) − HG(z; c): Intuitively, we can think of the potential of z as a measure of how far z is from being central; c has a potential of 0, whereas r has the maximum potential, which is easy to see from the aforementioned hitting time inequalities. RANDOM WALK MEETING TIMES ON GRAPHS 3 We also define the Demon's harmonic function as φ(x; y) = HG(x; y) + HG(y; r) − HG(r; y) 1 = (C(x; y) − Z(x) − Z(y)) + Z(r); 2 where C(x; y) = HG(x; y) + HG(y; x). We can think of C(x; y) as the \round trip time," or the expected amount of time it takes for a random walk to travel from x to y, then back to x. We define the Angel's harmonic function as (x; y) = HG(x; y) + HG(c; r) − HG(c; y) 1 = (C(x; y) − Z(x) − Z(y)): 2 In our investigation of which n-vertex graphs produce the maximal hitting time, it is useful to define the lollipop graph. m Definition 2.3. A lollipop graph Ln is an n-vertex graph containing a clique of m vertices which is connected to a path of t := n − m vertices (see Figure 1). In the setup that follows, we will have the starting point x of our random walk on m Ln be some vertex which is in the clique, z is the vertex in the clique which is also an endpoint of the path (it is the point where the path and the clique intersect), and y is the vertex which is the endpoint of the path that is farthest from the clique. 6 An L9 lollipop graph is shown in Figure 1 below, with the points x; y; and z as defined above. Note that this particular graph, as we will see, is part of a class of lollipop graphs which maximize HG(x; y), because the number of vertices in the 2 clique of the graph is 3 the total number of vertices: x z y 6 Figure 1. The lollipop graph L9. From Figure 1, we develop an intuition for why HG(u; v) 6= HG(v; u) for any pair u; v of vertices. In particular, if we consider the graph from Figure 1, we see that H(x; z) = 6−1 = 5; since deg u = 5 for any vertex u 6= z in the clique. However, we have H(z; x) > 5, since the random walk starting on z can not only reach any other vertex in the clique but may also retreat further down the path with probability p > 0, thereby extending the expected time to reach x. If w is a neighboring vertex of x, then we denote this as w ∼ x. As a convention used for a general function f on vertices of graphs, we write f(¯x; y) to denote the average value of f(w; y) over all the neighbors w of x and with some second, fixed input y. A \strategy" in the context of the token game is a set of criteria used by the player to assign some probability p such that with tokens on vertices x and y, the player moves the token on x with probability p. For example, the Random player 1 implements a strategy which states that at every move, p = 2 is assigned to either token. 4 ETHAN NAEGELE The goal of the token game depends upon the player. Demon wishes to avoid token collision as long as possible; Angel wishes to collide the tokens as soon as possible; Random is a \neutral" player which has no ultimate goal. Functions with a subscript or superscript of S, such as χS, denote the value of the function when the player follows strategy S. The function MG(x; y) denotes the maximum expected meeting time over all strategies S with starting vertices x; y. Lastly, some proofs require a notion of a \distance" metric on a graph G. The \distance" between two vertices x and y on G is the number of edges on the shortest path from x to y.
Recommended publications
  • Entanglement Entropy and Schmidt Numbers in Quantum Networks Of
    Entanglement entropy and Schmidt numbers in quantum networks of coupled quantum oscillator a a a M. A. Jafarizadeh ∗, S. Nami †F. Eghbalifam ‡, aDepartment of Theoretical Physics and Astrophysics, University of Tabriz, Tabriz 51664, Iran. June 9, 2021 Abstract We investigate the entanglement of the ground state in the quantum networks that their nodes are considered as quantum harmonic oscillators. To this aim, the Schmidt numbers and entanglement entropy between two arbitrary partitions of a network, are arXiv:1407.4044v1 [quant-ph] 15 Jul 2014 calculated. In partitioning an arbitrary graph into two parts there are some nodes in each parts which are not connected to the nodes of the other part. So these nodes of each part, can be in distinct subsets. Therefore the graph separates into four subsets. The nodes of the first and last subsets are those which are not connected to the nodes of other ∗E-mail:[email protected] †E-mail:[email protected] ‡E-mail:[email protected] 1 Entanglement entropy 2 part. In theorem I, by using generalized Schur complement method in these four subsets, we prove that all graphs which their connections between all two alternative subsets are complete, have the same entropy. A large number of graphs satisfy this theorem. Then the entanglement entropy in the limit of large coupling and large size of system, is investigated in these graphs. One of important quantities about partitioning, is conductance of graph. The con- ductance of graph is considered in some various graphs. In these graphs we compare the conductance of graph and the entanglement entropy.
    [Show full text]
  • ABC Index on Subdivision Graphs and Line Graphs
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728 p-ISSN: 2319–765X PP 01-06 www.iosrjournals.org ABC index on subdivision graphs and line graphs A. R. Bindusree1, V. Lokesha2 and P. S. Ranjini3 1Department of Management Studies, Sree Narayana Gurukulam College of Engineering, Kolenchery, Ernakulam-682 311, Kerala, India 2PG Department of Mathematics, VSK University, Bellary, Karnataka, India-583104 3Department of Mathematics, Don Bosco Institute of Technology, Bangalore-61, India, Recently introduced Atom-bond connectivity index (ABC Index) is defined as d d 2 ABC(G) = i j , where and are the degrees of vertices and respectively. In this di d j vi v j di .d j paper we present the ABC index of subdivision graphs of some connected graphs.We also provide the ABC index of the line graphs of some subdivision graphs. AMS Subject Classification 2000: 5C 20 Keywords: Atom-bond connectivity(ABC) index, Subdivision graph, Line graph, Helm graph, Ladder graph, Lollipop graph. 1 Introduction and Terminologies Topological indices have a prominent place in Chemistry, Pharmacology etc.[9] The recently introduced Atom-bond connectivity (ABC) index has been applied up until now to study the stability of alkanes and the strain energy of cycloalkanes. Furtula et al. (2009) [4] obtained extremal ABC values for chemical trees, and also, it has been shown that the star K1,n1 , has the maximal ABC value of trees. In 2010, Kinkar Ch Das present the lower and upper bounds on ABC index of graphs and trees, and characterize graphs for which these bounds are best possible[1].
    [Show full text]
  • Cliques and a New Measure of Clustering: with Application to U.S
    Cliques and a New Measure of Clustering: with Application to U.S. Domestic Airlines Steve Lawford† and Yll Mehmeti Data, Economics and Interactive Visualization (DEVI) group, ENAC (University of Toulouse), 7 avenue Edouard Belin, CS 54005, 31055, Toulouse, Cedex 4, France †Corresponding author. Email: [email protected] Abstract We propose a higher-order generalization of the well-known overall clustering coefficient for triples C(3) to any number of nodes. We give analytic formulae for the special cases of three, four, and five nodes and show that they have very fast runtime performance for small graphs. We discuss some theoretical properties and limitations of the new measure, and use it to provide insight into dynamic changes in the structure of U.S. airline networks. 1 Introduction Complex networks are widely used to describe important systems, with applications to biology, technology and infrastructure, and social and economic relationships [4, 5, 25, 59, 69, 83]. A network or “graph” involves a set of nodes or “vertices” that are linked by edges. For example, an airline company’s transportation of passengers can be thought of as a network of airports (nodes) joined by routes that have regular service (edges). The statistical physics and graph theory communities have focused in particular on the topology and dynamics of random and real-world networks, and have been successful in identifying robust structural features and organizational principles.1 These include the small-world property, characterized by systems that are highly clustered but have short characteristic path lengths; and scale-free networks, which means that the number of neighbours of a node, or its “degree”, follows a power-law distribution whereby the topology of the system is dominated by a few high degree nodes [7, 22, 72].
    [Show full text]
  • DOMINATOR CHROMATIC NUMBER of SOME GRAPHS the Dominator
    International Journal of Pure and Applied Mathematics Volume 119 No. 7 2018, 787-795 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu DOMINATOR CHROMATIC NUMBER OF SOME GRAPHS T.Manjula1 and R.Rajeswari2 1Research Scholar Sathyabama University Chennai, India 2Professor Department of Mathematics Sathyabama University Chennai, India ABSTRACT The dominator coloring of a graph G is defined as a proper coloring of G where each vertex of the graph dominates every vertex of atleast one color class. The dominator chromatic number is the least number of color classes used in a dominator coloring of a graph G.Thedominator chromatic number and domination number ofdragon graph andlollipop graph are obtained and a relationship between the chromatic number, domination number and dominator chromatic number is expressed in this paper. Keywords: Coloring, Domination, Dominator coloring, Dragon graph, Lollipop graph 1. INTRODUCTION Let G be a graph with vertex set V and edge set E. A dominating set S is a subset of the vertex set V such that every vertexin the graph either belongs to S or has a neighbor in S. If no proper subset of S is a dominating set, thenS is called a minimum dominating set. The domination number denoted by γ(G) is the order of a minimum dominating set. Dominating sets are useful in routing problems, scheduling problems, assignment problems, computer communication networks, land surveying, assignment problems, coding theory etc.. A proper vertex coloring of a graph G is allocation of colors to the vertices such that two neighboring vertices belong to the different color class.
    [Show full text]
  • Old and New Results on Algebraic Connectivity of Graphs
    Linear Algebra and its Applications 423 (2007) 53–73 www.elsevier.com/locate/laa Old and new results on algebraic connectivity of graphs Nair Maria Maia de Abreu Federal University of Rio de Janeiro, Rua João Lira, 106/401 Leblon, Rio de Janeiro 22430-210, Brazil Received 30 June 2006; accepted 24 August 2006 Available online 17 October 2006 Submitted by R.A. Brualdi Abstract This paper is a survey of the second smallest eigenvalue of the Laplacian of a graph G, best-known as the algebraic connectivity of G, denoted a(G). Emphasis is given on classifications of bounds to algebraic connectivity as a function of other graph invariants, as well as the applications of Fiedler vectors (eigenvectors related to a(G)) on trees, on hard problems in graphs and also on the combinatorial optimization problems. Besides, limit points to a(G) and characterizations of extremal graphs to a(G) are described, especially those for which the algebraic connectivity is equal to the vertex connectivity. © 2006 Elsevier Inc. All rights reserved. AMS classification: 05C50 Keywords: Laplacian of graph; Algebraic connectivity; Vertex and edge connectivities; Bounds for the algebraic con- nectivity; Fiedler vectors; Limit points; Extremal graphs; Laplacian integral graphs 1. Introduction The Laplacian matrix of a graph and its eigenvalues can be used in various areas of mathematics, mainly discrete mathematics and combinatorial optimization, with interpretation in several phys- ical and chemical problems. The adjacency matrix and its eigenvalues have been investigated more than the Laplacian matrix, see [6,14,17,18], and according to Mohar [64] the Laplacian eigenvalues are more intuitive and much more important than the spectrum of the adjacency matrix.
    [Show full text]
  • On the Star Coloring of Graphs Formed from the Cartesian Product of Some Simple Graphs
    of Math al em rn a u ti o c International Journal of Mathematics And its Applications J s l A a n n d o i i Volume 4, Issue 4 (2016), 115{122. (Special Issue) t t a s n A r e p t p ISSN: 2347-1557 n l I i c • a t 7 i o 5 n 5 • s Available Online: http://ijmaa.in/ 1 - 7 4 I 3 S 2 S : N International Journal of Mathematics And its Applications On the Star Coloring of Graphs Formed From the Cartesian Product of Some Simple Graphs Research Article∗ L.Jethruth Emelda Mary1 and A.Lydia Mary Juliette Rayen1 1 Department of Mathematics, St. Joseph's College of Arts & Science, Manjakuppam, Cuddalore (Tamil Nadu), India. Abstract: Let G = (V; E) be an undirected simple graph. The star chromatic number of a graph G is the least number of colors needed to color the path on four vertices with three distinct colors. The purpose of this paper is to study the star coloring of some graph families formed from the Cartesian product of some simple graphs. Keywords: Proper coloring, Chromatic number, Star coloring, Star chromatic number, Cartesian product of graphs, Prism graph, Barbell graph, Fan graph, Windmill graph, Lollipop graph. c JS Publication. 1. Introduction and Preliminaries In this paper, we have taken the graphs to be finite, undirected and loopless. Let us acknowledge the terminology of graph theory in [2]. The path P of a graph is a walk in which no vertices are repeated. In 1973, the concept of star coloring was introduced by Gr¨unbaum [4] and also he introduced the notion of star chromatic number.
    [Show full text]
  • (1,2)-Pitchfork Domination and Its Inverse on Some Special Graphs
    Bol. Soc. Paran. Mat. (3s.) v. ???? (??) : 1–8. c SPM –ISSN-2175-1188 on line ISSN-0037-8712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.52252 Applying the (1,2)-Pitchfork Domination and Its Inverse on Some Special Graphs Mohammed A. Abdlhusein abstract: Let G be a finite graph, simple, undirected and with no isolated vertex. For any non-negative integers j and k, a dominating set D of V (G) is called a pitchfork dominating set of G if every vertex in it dominates j vertices (at least) and k vertices (at most) from V − D. A set D−1 of V − D is an inverse pitchfork dominating set if it is pitchfork dominating set. In this paper, pitchfork domination and inverse pitchfork domination are applied when j = 1 and k = 2 on some special graphs such as: tadpole graph, lollipop graph, lollipop flower graph , daisy graph and Barbell graph. Key Words: Dominating set, Inverse dominating set, Pitchfork domination, Inverse pitchfork dom- ination. Contents 1 Introduction 1 2 Pitchfork Domination 2 3 Inverse Pitchfork Domination 4 4 Acknowledgement 7 1. Introduction Let G be a graph with no isolated vertex has a vertex set V of order n and an edge set E of size m. The number of edges incident on vertex w is denoted by deg(w) and represent the degree of w. A vertex of degree 0 is called isolated and a vertex of degree 1 is a leaf. The vertex that adjacent with a leaf is a support vertex. The minimum and maximum degrees of vertices in G are denoted by δ(G) and ∆(G), respectively.
    [Show full text]
  • The Eccentric-Distance Sum of Some Graphs
    Electronic Journal of Graph Theory and Applications 5 (1) (2017), 51–62 The eccentric-distance sum of some graphs Padmapriya P., Veena Mathad Department of Studies in Mathematics University of Mysore, Manasagangotri Mysuru - 570 006, India [email protected], veena [email protected] Abstract Let G = (V; E) be a simple connected graph. The eccentric-distance sum of G is defined as X ξds(G) = [e(u) + e(v)]d(u; v), where e(u) is the eccentricity of the vertex u in G fu;v}⊆V (G) and d(u; v) is the distance between u and v. In this paper, we establish formulae to calculate the eccentric-distance sum for some graphs, namely wheel, star, broom, lollipop, double star, friendship, multi-star graph and the join of Pn−2 and P2. Keywords: eccentricity, star, path, broom, lollipop graph, double star, complete k-partite Mathematics Subject Classification : 05C10 DOI:10.5614/ejgta.2017.5.1.6 1. Introduction Let G be a simple connected graph with the vertex set V (G) and the edge set E(G). The degree of a vertex u 2 V (G) is denoted by d(u) and is the number of vertices adjacent to u. For vertices u; v 2 V (G), the distance d(u; v) is defined as the length of any shortest path connecting u and v in G and D(u) denotes the sum of distances between u and all other vertices of G. The eccentricity e(u) of a vertex u is the largest distance between u and any other vertex v of G, i.e., e(u) = maxfd(u; v); v 2 V (G)g.
    [Show full text]
  • Spectra of Eccentricity Matrices of Graphs Arxiv:1902.02608V1
    Spectra of eccentricity matrices of graphs Iswar Mahato∗ R. Gurusamyy M. Rajesh Kannanz S. Arockiarajx February 8, 2019 Abstract The eccentricity matrix of a connected graph G is obtained from the distance matrix of G by retaining the largest distances in each row and each column, and setting the remaining entries as 0. In this article, a conjecture about the least eigenvalue of eccentricity matrices of trees, presented in the article [Jianfeng Wang, Mei Lu, Francesco Belardo, Milan Randic. The anti-adjacency matrix of a graph: Eccentricity matrix. Discrete Applied Mathematics, 251: 299-309, 2018.], is solved affirmatively. In addition to this, the spectra and the inertia of eccentricity matrices of various classes of graphs are investigated. AMS Subject Classification(2010): 05C12, 05C50. Keywords. Adjacency matrix, Distance matrix, Eccentricity matrix, Inertia, Least eigenvalue, Tree. 1 Introduction Let G = (V (G);E(G)) be a finite simple graph with vertex set V (G) = fv1; v2; : : : ; vng and edge set E(G) = fe1; : : : ; emg. If two vertices vi and vj are adjacent, we write vi ∼ vj, and the edge between them is denoted by eij. The degree of the vertex vi is denoted by di. The adjacency matrix of G is an n × n matrix, denoted by A(G), whose rows and columns are arXiv:1902.02608v1 [math.CO] 7 Feb 2019 ∗Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India. Email: [email protected] yDepartment of Mathematics, Mepco Schlenk Engineering College, Sivakasi 626 005, Tamil Nadu, India. Email: [email protected] zDepartment of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
    [Show full text]
  • Spectral Characterizations of Lollipop Graphs
    Available online at www.sciencedirect.com Linear Algebra and its Applications 428 (2008) 2415–2423 www.elsevier.com/locate/laa Spectral characterizations of lollipop graphs Willem H. Haemers a, Xiaogang Liu b, Yuanping Zhang c,∗,1 a Department of Econometrics and OR, Tilburg University, Tilburg, The Netherlands b School of Science, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China c School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China Received 6 November 2006; accepted 11 October 2007 Available online 4 March 2008 Submitted by R.A. Brualdi Abstract The lollipop graph, denoted by Hn,p, is obtained by appending a cycle Cp to a pendant vertex of a path Pn−p. We will show that no two non-isomorphic lollipop graphs are cospectral with respect to the adjacency matrix. It is proved that for p odd the lollipop graphs Hn,p and some related graphs Hn,p are determined by the adjacency spectrum, and that all lollipop graphs are determined by its Laplacian spectrum. © 2007 Published by Elsevier Inc. Keywords: Spectrum of a graph; Cospectral graphs; Eigenvalues 1. Introduction Let G = (V (G), E(G)) be a graph with vertex set V (G) ={v1,v2,...,vn} and edge set E(G). All graphs considered here are simple and undirected. Let matrix A(G) be the (0,1)-adjacency matrix of G and dk the degree of the vertex vk. The matrix L(G) = D(G) − A(G) is called the Laplacian matrix of G, where D(G) is the n × n diagonal matrix with {d1,d2,...,dn} as diagonal entries (and all other entries 0).
    [Show full text]
  • On the Extremal Properties of the Average Eccentricity✩ Aleksandar Ilić Faculty of Sciences and Mathematics, Višegradska 33, 18000 Niš, University of Niš, Serbia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Computers and Mathematics with Applications 64 (2012) 2877–2885 Contents lists available at SciVerse ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa On the extremal properties of the average eccentricityI Aleksandar Ili¢ Faculty of Sciences and Mathematics, Vi²egradska 33, 18000 Ni², University of Ni², Serbia article info a b s t r a c t Article history: The eccentricity of a vertex is the maximum distance from it to another vertex and the Received 25 February 2011 average eccentricity ecc.G/ of a graph G is the mean value of eccentricities of all vertices Received in revised form 22 April 2012 of G. The average eccentricity is deeply connected with a topological descriptor called Accepted 29 April 2012 the eccentric connectivity index, defined as a sum of products of vertex degrees and eccentricities. In this paper we analyze extremal properties of the average eccentricity, Keywords: introducing two graph transformations that increase or decrease ecc.G/. Furthermore, Distances we resolve four conjectures, obtained by the system AutoGraphiX, about the average Average eccentricity Vertex degree eccentricity and other graph parameters (the clique number and the independence AutoGraphiX number), refute one AutoGraphiX conjecture about the average eccentricity and the Extremal graph minimum vertex degree and correct one AutoGraphiX conjecture about the domination number. ' 2012 Elsevier Ltd. All rights reserved. 1. Introduction Let G D .V ; E/ be a connected simple graph with n D jV j vertices and m D jEj edges.
    [Show full text]
  • Embedding Index in Some Classes of Graphs
    Notes on Number Theory and Discrete Mathematics ISSN 1310-5132 Vol. 21, 2015, No. 2, 80–88 Embedding index in some classes of graphs M. Kamal Kumar1 and R. Murali2 1 Department of the Mathematics, CMR Institute of Technology Bangalore 560037, India e-mails: [email protected] 2 Department of the Mathematics, Dr. Ambedkar Institute of Technology Bangalore, India e-mail: [email protected] Abstract: A Subset S of the vertex set of a graph G is called a dominating set of G if each vertex of G is either in S or adjacent to at least one vertex in S. A partition D = {D1, D2, …, Dk} of the vertex set of G is said to be a domatic partition or simply a d-partition of G if each class Di of D is a dominating set in G. The maximum cardinality taken over all d-partitions of G is called the domatic number of G denoted by d (G). A graph G is said to be domatically critical or d-critical if for every edge x in G, d (G – x) < d (G), otherwise G is said to be domatically non d-critical. The embedding index of a non d-critical graph G is defined to be the smallest order of a d-critical graph H containing G as an induced subgraph denoted by θ (G) . In this paper, we find the θ (G) for the Barbell graph, the Lollipop graph and the Tadpole graph. Keywords: Domination number, Domatic partition, Domatic number, d-Critical graphs. AMS Classification: 05C69. 1 Introduction A subset S of the vertex set of a graph G is called a dominating set of G if each vertex of G is either in S or adjacent to at least one vertex in S.
    [Show full text]