Ecology of Organohalide-Respiring <I>Dehalococcoides Mccartyi</I

Total Page:16

File Type:pdf, Size:1020Kb

Ecology of Organohalide-Respiring <I>Dehalococcoides Mccartyi</I University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2016 Ecology of Organohalide-Respiring Dehalococcoides mccartyi: Corrinoid Cofactor-Related Community Interactions and Controls over Strain Selection Burcu Şimşir University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Civil and Environmental Engineering Commons, and the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Şimşir, Burcu, "Ecology of Organohalide-Respiring Dehalococcoides mccartyi: Corrinoid Cofactor-Related Community Interactions and Controls over Strain Selection. " PhD diss., University of Tennessee, 2016. https://trace.tennessee.edu/utk_graddiss/4111 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Burcu Şimşir entitled "Ecology of Organohalide-Respiring Dehalococcoides mccartyi: Corrinoid Cofactor-Related Community Interactions and Controls over Strain Selection." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Environmental Engineering. Frank E. Löffler, Major Professor We have read this dissertation and recommend its acceptance: Terry Hazen, Qiang He, Gary Sayler Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Ecology of Organohalide-Respiring Dehalococcoides mccartyi: Corrinoid Cofactor-Related Community Interactions and Controls over Strain Selection A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Burcu Şimşir December 2016 by Burcu Şimşir, 2016 All Rights Reserved. ii To my angels of my life, my Grandmother Ayşe and my Mom Figen for the unconditional love and support iii “Rise to the challenge, to live your own life. Success is not something that can be measured or worn on a watch or hung on a wall… [It] is the certain knowledge that you have become yourself, the person you were meant to be from all time.” George Sheehan iv Acknowledgements This dissertation could not have been completed without great support and encouragement that I have received from so many people over the years. The PhD journey has not been easy but when I look back over the years at the end, I only find great experiences, successes, people, friendships, lessons and beautiful memories, which have made me grow in to the person who I am now. I would like to offer my most heartfelt thanks to the people who have touched my life during this journey. I would first and foremost like to thank my advisor, Dr. Frank Löffler. Thank you for giving me the opportunity to meet and explore the “Microbe Life”, which amazes me every single day. You have motivated me and gave me countless opportunities to explore and learn the subject with interesting discussions, freedom, guidance and support, for which I am very grateful. Part of my success is related to your contagious enthusiasm for science. Thank you! Dr. Jun Yan, my “Uncle Jun” deserves special recognition for being a great guiding spirit during this hard work. I owe much gratitude to you for all the guidance and support. I learned so much from our interesting discussions and fruitful collaboration. You are an amazing teacher, research mate, and uncle! I am so happy that we worked so well with each other; the work described in this dissertation could not be done without your guidance. Thank you! I would also like to thank my dissertation committee, Dr. Terry Hazen, Dr. Qiang He and Dr. Kostas Konstantinidis and Dr. Gary Sayler. Thank you for your guidance, expertise and kind support over the course of this degree. v Many thanks are to supportive and great current and former lab mates in the Löffler’s Lab. Special thanks to Yi Yang, Jeongdae Im, Jay Lee, Steve Higgins and Jenny Onley, you all are amazing friends and coworkers. Kirsti Ritalahti, Gillian Walshe Langford, Kathleen Cusick and Silke Nissen, thank you all for everything you have taught me, and great memories we shared. I would like to acknowledge Dan Williams, thank you Dan for our interesting discussions, and your kind help. I would also like to thank other faculty, staff and students I have met at University of Tennessee for all help and support. I also owe much gratitude to Dr. Göksel Demirer, my undergraduate degree-advisor. Thank you for giving me the opportunity to work on your project during the last two years of my undergraduate degree, which opened the doors of science journey. I learned so much from you as an amazing scientist and a teacher but also a great person. I am so grateful for all the inspiration and support, which encouraged me to pursue a graduate degree. I would also like to thank other faculty, staff and student from Middle East Technical University for all encouragement and support. I would also like to acknowledge Dr. Duane Graves. I am glad that I got to work with you on Third Creek project, which taught me about the practitioners’ perspectives in the field. Thank you for the interesting discussions and the great support. I also benefited greatly from my interactions with Dr. Kostas Konstantinidis. Thank you for giving me the opportunities to visit Konstantinidis’s Lab at Georgia Tech to learn bioinformatics tools. Special thanks to Despina Tsemenzti and Miguel Rodríguez for everything you taught me, and kind help. I would also like to thank Dr. Gina Austin, thank you for the endless support and motivating me to go through the most difficult year of this journey. You are an amazing teacher and a friend. I have learned so much about life from the discussions we had, which all will guide my future journeys. Most importantly, I like to give very special thanks to my family and friends, who always were there for me and cheered me during these challenging years. vi I owe much gratitude firstly to my Mom Figen Şimşir, thank you for the endless love and support; this dissertation could not have been completed without your encouragement and help. I would also like to thank my grandparents Ayşe and Faruk İşler, my father Murat Şimşir, my brothers Buğra and Burkay Şimşir, my uncle Metin İşler, my aunt Gamze Öztürk, aunt-in-law and uncle-in-law Yeliz Şimşir and Berat Öztürk, and my beloved cousin Doğukan İşler for always being there for me, for the unconditional love, support, and the many prayers you sent my way, which were always felt. I also like to thank my little angels Hira and Ada for warming my heart all the time even from so far away. I am so blessed to have you all. I also like to thank my spiritual sister, Ezgi Köker- Thank you for always being there and the unconditional love. I also owe much gratitude to my beloved fiancé Gökhan Sarıalp. It has not been easy for us being so far away from each other, thank you for being patient during these challenging years. I am so grateful for your constant encouragement, belief that I can accomplish anything, your constant love and endless support. Now it is time for our journey, I love you! I would also like to thank Gökhan’s parents Gül, and Orhan Sarıalp for their love and prayers. Many thanks are to my Knoxville family for making Knoxville my home. To Duygu and Elçin- Thank you for being always with me through lots of laughter and tears. To my Greek-dominated gang, Kostas, Loukas, Panos, Marissa, and Grace- You are all amazing people, thanks for all the support, the motivation trips, and the Greek dinners. To my Knoxville-Turkish crew, Levent, Kübra, Yasemin, Mehmet and Ogün- I am so thankful for your friendship and support. You all helped me to make Knoxville, my home and all the years in PhD life so special for me. Thank you all! vii Abstract Organohalides such as tetrachloroethene (PCE) and trichloroethene (TCE) are among the most prevalent toxic groundwater contaminants. Remediation of organohalide- contaminated sites has high priority, and efficient and cost-effective remedies are needed to prevent environment and human exposure through contaminated water. Bacterial organohalide-respiration plays a major role in organohalide detoxification. Dehalococcoides mccartyi (Dhc) are key mediators in bioremediation, since only Dhc strains have been documented in complete detoxification of chlorinated ethenes to benign ethene. Dhc depends on other microorganisms in the environment for essential growth requirements (e.g., hydrogen and vitamins). For successful implementation of the reductive dechlorination to remediate contaminated sites, microbial interactions controlling Dhc reductive dechlorination must be elucidated. The overall objective of this research was to address the key gaps in the scientific understanding of the controls over Dhc reductive dechlorination activity, including Dhc corrinoid-related interactions with other microorganisms. Detailed hydrogeological and microbial characterization of mixed chlorinated solvent contaminated Third Creek site (Knoxville, TN) attributed an important role to the creek sediment, where organohalide-respiring bacteria (e.g., Dhc and Dehalobacter) co-exist, for detoxification of contaminants. Different chlorinated solvent-amendments affected Dhc strain selection and non-dechlorinating microbial composition in enrichment cultures derived from Third Creek sediment. Corrinoid- auxotroph Dhc require corrinoid cofactor for the reductive dehalogenase enzyme systems. Microorganisms including Acetobacterium, Clostridium, Geobacter, and methanogens were identified as corrinoid-producers in the enrichment cultures. 5,6- dimethyl-benzimidazole cobamide (DMB-Cba) was the most abundant corrinoid in enrichment cultures to support Dhc reductive dechlorination.
Recommended publications
  • Experimental Validation of in Silico Modelpredicted Isocitrate
    Experimental validation of in silico model-predicted isocitrate dehydrogenase and phosphomannose isomerase from Dehalococcoides mccartyi The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Islam, M. Ahsanul, Anatoli Tchigvintsev, Veronica Yim, Alexei Savchenko, Alexander F. Yakunin, Radhakrishnan Mahadevan, and Elizabeth A. Edwards. “Experimental Validation of in Silico Model-Predicted Isocitrate Dehydrogenase and Phosphomannose Isomerase from Dehalococcoides Mccartyi.” Microbial Biotechnology (September 16, 2015): n/a–n/a. As Published http://dx.doi.org/10.1111/1751-7915.12315 Publisher Wiley Blackwell Version Final published version Citable link http://hdl.handle.net/1721.1/99704 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/4.0/ bs_bs_banner Experimental validation of in silico model-predicted isocitrate dehydrogenase and phosphomannose isomerase from Dehalococcoides mccartyi M. Ahsanul Islam,† Anatoli Tchigvintsev, Veronica and confirmed experimentally. Further bioinformatics Yim, Alexei Savchenko, Alexander F. Yakunin, analyses of these two protein sequences suggest Radhakrishnan Mahadevan and Elizabeth A. their affiliation to potentially novel enzyme families Edwards* within their respective larger enzyme super families. Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Introduction Canada As one of the smallest free-living organisms, Dehalococcoides mccartyi are important for their ability to Summary detoxify ubiquitous and stable groundwater pollutants Gene sequences annotated as proteins of unknown such as chlorinated ethenes and benzenes into benign or or non-specific function and hypothetical proteins less toxic compounds (Maymó-Gatell et al., 1997; Adrian account for a large fraction of most genomes. In et al., 2000; 2007a; He et al., 2003; Löffler et al., 2012).
    [Show full text]
  • Detection of a Bacterial Group Within the Phylum Chloroflexi And
    Microbes Environ. Vol. 21, No. 3, 154–162, 2006 http://wwwsoc.nii.ac.jp/jsme2/ Detection of a Bacterial Group within the Phylum Chloroflexi and Reductive-Dehalogenase-Homologous Genes in Pentachlorobenzene- Dechlorinating Estuarine Sediment from the Arakawa River, Japan KYOSUKE SANTOH1, ATSUSHI KOUZUMA1, RYOKO ISHIZEKI2, KENICHI IWATA1, MINORU SHIMURA3, TOSHIO HAYAKAWA3, TOSHIHIRO HOAKI4, HIDEAKI NOJIRI1, TOSHIO OMORI2, HISAKAZU YAMANE1 and HIROSHI HABE1*† 1 Biotechnology Research Center, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan 2 Department of Industrial Chemistry, Faculty of Engineering, Shibaura Institute of Technology, Minato-ku, Tokyo 108–8548, Japan 3 Environmental Biotechnology Laboratory, Railway Technical Research Institute, 2–8–38 Hikari-cho, Kokubunji-shi, Tokyo 185–8540, Japan 4 Technology Research Center, Taisei Corporation, 344–1 Nase, Totsuka-ku, Yokohama 245–0051, Japan (Received April 21, 2006—Accepted June 12, 2006) We enriched a pentachlorobenzene (pentaCB)-dechlorinating microbial consortium from an estuarine-sedi- ment sample obtained from the mouth of the Arakawa River. The sediment was incubated together with a mix- ture of four electron donors and pentaCB, and after five months of incubation, the microbial community structure was analyzed. Both DGGE and clone library analyses showed that the most expansive phylogenetic group within the consortium was affiliated with the phylum Chloroflexi, which includes Dehalococcoides-like bacteria. PCR using a degenerate primer set targeting conserved regions in reductive-dehalogenase-homologous (rdh) genes from Dehalococcoides species revealed that DNA fragments (approximately 1.5–1.7 kb) of rdh genes were am- plified from genomic DNA of the consortium. The deduced amino acid sequences of the rdh genes shared sever- al characteristics of reductive dehalogenases.
    [Show full text]
  • Microbial Community and Geochemical Analyses of Trans-Trench Sediments for Understanding the Roles of Hadal Environments
    The ISME Journal (2020) 14:740–756 https://doi.org/10.1038/s41396-019-0564-z ARTICLE Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments 1 2 3,4,9 2 2,10 2 Satoshi Hiraoka ● Miho Hirai ● Yohei Matsui ● Akiko Makabe ● Hiroaki Minegishi ● Miwako Tsuda ● 3 5 5,6 7 8 2 Juliarni ● Eugenio Rastelli ● Roberto Danovaro ● Cinzia Corinaldesi ● Tomo Kitahashi ● Eiji Tasumi ● 2 2 2 1 Manabu Nishizawa ● Ken Takai ● Hidetaka Nomaki ● Takuro Nunoura Received: 9 August 2019 / Revised: 20 November 2019 / Accepted: 28 November 2019 / Published online: 11 December 2019 © The Author(s) 2019. This article is published with open access Abstract Hadal trench bottom (>6000 m below sea level) sediments harbor higher microbial cell abundance compared with adjacent abyssal plain sediments. This is supported by the accumulation of sedimentary organic matter (OM), facilitated by trench topography. However, the distribution of benthic microbes in different trench systems has not been well explored yet. Here, we carried out small subunit ribosomal RNA gene tag sequencing for 92 sediment subsamples of seven abyssal and seven hadal sediment cores collected from three trench regions in the northwest Pacific Ocean: the Japan, Izu-Ogasawara, and fi 1234567890();,: 1234567890();,: Mariana Trenches. Tag-sequencing analyses showed speci c distribution patterns of several phyla associated with oxygen and nitrate. The community structure was distinct between abyssal and hadal sediments, following geographic locations and factors represented by sediment depth. Co-occurrence network revealed six potential prokaryotic consortia that covaried across regions. Our results further support that the OM cycle is driven by hadal currents and/or rapid burial shapes microbial community structures at trench bottom sites, in addition to vertical deposition from the surface ocean.
    [Show full text]
  • A Systems-Level Investigation of the Metabolism of Dehalococcoides Mccartyi and the Associated Microbial Community
    A Systems-Level Investigation of the Metabolism of Dehalococcoides mccartyi and the Associated Microbial Community by Mohammad Ahsanul Islam A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Mohammad Ahsanul Islam 2014 A Systems-Level Investigation of the Metabolism of Dehalococcoides mccartyi and the Associated Microbial Community Mohammad Ahsanul Islam Doctor of Philosophy Department of Chemical Engineering and Applied Chemistry University of Toronto 2014 Abstract Dehalococcoides mccartyi are a group of strictly anaerobic bacteria important for the detoxification of man-made chloro-organic solvents, most of which are ubiquitous, persistent, and often carcinogenic ground water pollutants. These bacteria exclusively conserve energy for growth from a pollutant detoxification reaction through a novel metabolic process termed organohalide respiration. However, this energy harnessing process is not well elucidated at the level of D. mccartyi metabolism. Also, the underlying reasons behind their robust and rapid growth in mixed consortia as compared to their slow and inefficient growth in pure isolates are unknown. To obtain better insight on D. mccartyi physiology and metabolism, a detailed pan- genome-scale constraint-based mathematical model of metabolism was developed. The model highlighted the energy-starved nature of these bacteria, which probably is linked to their slow growth in isolates. The model also provided a useful framework for subsequent analysis and visualization of high-throughput transcriptomic data of D. mccartyi. Apart from confirming expression of the majority genes of these bacteria, this analysis helped review the annotations of ii metabolic genes.
    [Show full text]
  • CENSUS® – Reductive Dechlorination
    CENSUS® – Reductive Dechlorination CENSUS Detect and quantify Dehalococcoides and other bacteria capable of reductive dechlorination Under anaerobic conditions, certain bacteria can use chlorinated ethenes Successful reductive dechlorination can be hindered by a few site-specific (PCE, TCE, DCE, and VC) as electron acceptors in a process called reductive factors that cannot be evaluated with chemical and geochemical tests including: dechlorination. The net result is the sequential dechlorination of PCE and • a lack of a key dechlorinating bacteria including Dehalococcoides, the TCE through daughter products DCE and VC to non-toxic ethene, which only known bacteria that completely dechlorinates PCE and TCE to volatilizes or can be further metabolized. non-toxic ethene • reasons for incomplete dechlorination and the accumulation of daughter PCE TCE cis-DCE VC Ethene products (DCE stall) CENSUS® provides the most direct avenue to investigate the potentials and limitations to implementing corrective action plan decisions and to target a variety of organisms involved in the reductive dechlorination pathway. Target Code Contaminants Environmental Relevance / Data Interpretation Dehalococcoides qDHC PCE, TCE, Only known group of bacteria capable of complete dechlorination of PCE and/or TCE to ethene DCE, VC Absence of Dehalococcoides suggests dechlorination of DCE and VC is improbable and accumulation of daughter products is likely The presence of Dehalococcoides even in low copy numbers indicates the potential for complete reductive dechlorination
    [Show full text]
  • Evolution of the 3-Hydroxypropionate Bicycle and Recent Transfer of Anoxygenic Photosynthesis Into the Chloroflexi
    Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi Patrick M. Shiha,b,1, Lewis M. Wardc, and Woodward W. Fischerc,1 aFeedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608; bEnvironmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and cDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 Edited by Bob B. Buchanan, University of California, Berkeley, CA, and approved August 21, 2017 (received for review June 14, 2017) Various lines of evidence from both comparative biology and the provide a hard geological constraint on these analyses, the timing geologic record make it clear that the biochemical machinery for of these evolutionary events remains relative, thus highlighting anoxygenic photosynthesis was present on early Earth and provided the uncertainty in our understanding of when and how anoxy- the evolutionary stock from which oxygenic photosynthesis evolved genic photosynthesis may have originated. ca. 2.3 billion years ago. However, the taxonomic identity of these A less recognized alternative is that anoxygenic photosynthesis early anoxygenic phototrophs is uncertain, including whether or not might have been acquired in modern bacterial clades relatively they remain extant. Several phototrophic bacterial clades are thought recently. This possibility is supported by the observation that to have evolved before oxygenic photosynthesis emerged, including anoxygenic photosynthesis often sits within a derived position in the Chloroflexi, a phylum common across a wide range of modern the phyla in which it is found (3). Moreover, it is increasingly environments. Although Chloroflexi have traditionally been thought being recognized that horizontal gene transfer (HGT) has likely to be an ancient phototrophic lineage, genomics has revealed a much played a major role in the distribution of phototrophy (8–10).
    [Show full text]
  • Anaerobic Bacteria Confirmed Plenary Speakers
    OFFICIALOFFICIAL JOURNALJOURNAL OFOF THETHE AUSTRALIAN SOCIETY FOR MICROBIOLOGY INC.INC. VolumeVolume 3636 NumberNumber 33 SeptemberSeptember 20152015 Anaerobic bacteria Confirmed Plenary speakers Professor Peter Professor Dan Assoc Prof Susan Lynch Dr Brian Conlon Professor Anna Hawkey Andersson University of California Northeastern Durbin University of Upsalla University San Francisco University, Boston Johns Hopkins Birmingham Environmental pollution Colitis, Crohn's Disease Drug discovery in Dengue and vaccines Nosocomial by antibiotics and its and Microbiome soil bacteria infection control and role in the evolution of Research antibiotic resistance resistance As with previous years, ASM 2016 will be co-run with NOW CONFIRMED! EduCon 2016: Microbiology Educators’ Conference 2016 Rubbo Oration Watch this space for more details on the scientific and Professor Anne Kelso social program, speakers, ASM Public Lecture, workshops, CEO NHMRC ASM awards, student events, travel awards, abstract deadlines and much more.. Perth, WA A vibrant and beautiful city located on the banks of the majestic Swan river. Come stay with us in WA and experience our world class wineries and restaurants, stunning national parks, beaches and much more.. www.theasm.org.au www.westernaustralia.theasm.org.au Annual Scientific Meeting and Trade Exhibition The Australian Society for Microbiology Inc. OFFICIAL JOURNAL OF THE AUSTRALIAN SOCIETY FOR MICROBIOLOGY INC. 9/397 Smith Street Fitzroy, Vic. 3065 Tel: 1300 656 423 Volume 36 Number 3 September 2015 Fax: 03 9329 1777 Email: [email protected] www.theasm.org.au Contents ABN 24 065 463 274 Vertical For Microbiology Australia Transmission 102 correspondence, see address below. Jonathan Iredell Editorial team Guest Prof. Ian Macreadie, Mrs Jo Macreadie Editorial 103 and Mrs Hayley Macreadie Anaerobic bacteria 103 Editorial Board Dena Lyras and Julian I Rood Dr Chris Burke (Chair) Dr Gary Lum Under the Prof.
    [Show full text]
  • Evolution of the 3-Hydroxypropionate Bicycle and Recent Transfer of Anoxygenic Photosynthesis Into the Chloroflexi
    Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi Patrick M. Shiha,b,1, Lewis M. Wardc, and Woodward W. Fischerc,1 aFeedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608; bEnvironmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and cDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 Edited by Bob B. Buchanan, University of California, Berkeley, CA, and approved August 21, 2017 (received for review June 14, 2017) Various lines of evidence from both comparative biology and the provide a hard geological constraint on these analyses, the timing geologic record make it clear that the biochemical machinery for of these evolutionary events remains relative, thus highlighting anoxygenic photosynthesis was present on early Earth and provided the uncertainty in our understanding of when and how anoxy- the evolutionary stock from which oxygenic photosynthesis evolved genic photosynthesis may have originated. ca. 2.3 billion years ago. However, the taxonomic identity of these A less recognized alternative is that anoxygenic photosynthesis early anoxygenic phototrophs is uncertain, including whether or not might have been acquired in modern bacterial clades relatively they remain extant. Several phototrophic bacterial clades are thought recently. This possibility is supported by the observation that to have evolved before oxygenic photosynthesis emerged, including anoxygenic photosynthesis often sits within a derived position in the Chloroflexi, a phylum common across a wide range of modern the phyla in which it is found (3). Moreover, it is increasingly environments. Although Chloroflexi have traditionally been thought being recognized that horizontal gene transfer (HGT) has likely to be an ancient phototrophic lineage, genomics has revealed a much played a major role in the distribution of phototrophy (8–10).
    [Show full text]
  • Dehalobacter Restrictus PER-K23T
    Standards in Genomic Sciences (2013) 8:375-388 DOI:10.4056/sigs.3787426 Complete genome sequence of Dehalobacter restrictus T PER-K23 Thomas Kruse1*, Julien Maillard2, Lynne Goodwin3,4, Tanja Woyke3, Hazuki Teshima3,4, David Bruce3,4, Chris Detter3,4, Roxanne Tapia3,4, Cliff Han3,4, Marcel Huntemann3, Chia-Lin Wei3, James Han3, Amy Chen3, Nikos Kyrpides3, Ernest Szeto3, Victor Markowitz3, Natalia Ivanova3, Ioanna Pagani3, Amrita Pati3, Sam Pitluck3, Matt Nolan3, Christof Holliger2, and Hauke Smidt1 1 Wageningen University, Agrotechnology and Food Sciences, Laboratory of Microbiology, Dreijenplein 10, NL-6703 HB Wageningen, The Netherlands. 2 Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental Biotechnology, Station 6, CH- 1015 Lausanne, Switzerland. 3 DOE Joint Genome Institute, Walnut Creek, California, USA 4 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA *Corresponding author: Thomas Kruse ([email protected]) Keywords: Dehalobacter restrictus type strain, anaerobe, organohalide respiration, PCE, TCE, reductive dehalogenases Dehalobacter restrictus strain PER-K23 (DSM 9455) is the type strain of the species Dehalobacter restrictus. D. restrictus strain PER-K23 grows by organohalide respiration, cou- pling the oxidation of H2 to the reductive dechlorination of tetra- or trichloroethene. Growth has not been observed with any other electron donor or acceptor, nor has fermentative growth been shown. Here we introduce the first full genome of a pure culture within the ge- nus Dehalobacter. The 2,943,336 bp long genome contains 2,826 protein coding and 82 RNA genes, including 5 16S rRNA genes. Interestingly, the genome contains 25 predicted re- ductive dehalogenase genes, the majority of which appear to be full length.
    [Show full text]
  • Advances in Anaerobic Benzene Bioremediation: Microbes, Mechanisms, and Biotechnologies
    Advances in Anaerobic Benzene Bioremediation: Microbes, Mechanisms, and Biotechnologies Sandra Dworatzek, Phil Dennis and Jeff Roberts RemTech, Virtual October 15, 2020 Introduction and Acknowledgements • Sandra Dworatzek, Jennifer Webb (SiREM, Guelph, ON) • Elizabeth Edwards, Nancy Bawa, Shen Guo and Courtney Toth (University of Toronto, Toronto, ON) • Kris Bradshaw and Rachel Peters (Federated Co-operatives Ltd., Saskatoon, SK) • Krista Stevenson (Imperial Oil, Sarnia, ON) The Landscape of Hydrocarbon Bioremediation: A Lot Has Changed… Microbial bioremediation is currently the most common technology used to remediate petroleum hydrocarbons Microbial Remediation Phytoremediation Chemical Treatment Contain and Excavate Pump and Treat Other Near Cold Lake, Alberta Adapted from Elekwachi et al., 2014 (J Bioremed Biodeg 5) What Sites are Currently Being Targeted for Hydrocarbon Bioremediation? 4 Shallow Soils and Groundwater 1 2 (aerobic) Offshore Spills Ex situ Bioreactors (mostly aerobic) (mostly aerobic) 3 Tailings Ponds 5 Deeper Groundwater (aerobic and anaerobic) (intrinsically anaerobic) Groundwater Bioremediation Technologies Focusing on Anaerobic Microbial Processes Natural Attenuation Biostimulation Bioaugmentation unsaturated zone aquifer 3- PO4 sugars Plume source - 2- NO3 SO4 VFAs GW flow aquitard Bioaugmentation for anaerobic sites works! Dehalococcoides (Dhc) bioaugmentation is widely accepted to improve reductive dehalogenation of chlorinated ethenes 1 Month Post KB-1® Bioaugmentation Dhc TCE Bioaugmentation for anaerobic
    [Show full text]
  • Research Project Summary
    Division of Science, Research and Environmental Health Research Project Summary August 2016 Applying Innovative Diagnostic Tools at New Jersey Publicly Funded Sites Authors Donna E. Fennell, Ph.D.1 and Max Häggblom, Ph.D.2 Prepared By Robert Mueller, M.S. (Project Manager) 3 Abstract This project demonstrated the use of Environmental Molecular Diagnostic Tools (EMDs) for detecting microbial biodegradation of contaminants and identifying bacteria responsible for contaminant biodegradation or biotransformation at three contaminated sites in New Jersey. These sites were unique based on the contamination present, and EMDs were selected to address a particular issue at each site. EMDs is a collective term that describes a group of advanced and emerging techniques used to analyze biological and chemical characteristics of soils, sediments, groundwater, and surface water. Many of these tools were originally developed for applications in medicine, defense, and industry. Over the last decade, great advances have been made in adapting and applying EMDs for site characterization, remediation, monitoring, and closure. EMDs are important and valuable because they can provide key information not available using traditional analytical methods (e.g., groundwater analysis for volatile organic compounds). While they are intended to complement these traditional methods, EMDs can bring a new perspective to all stages in the environmental management decision-making process. As a result of this work, a bio-augmentation/bio-stimulation design was developed for an organic solvent plume at one site. At a second site, Stable Isotope Probing (SIP) was used to confirm the presence of dehalogenating organisms and bio-stimulation demonstrated rapid reductive dechlorination. Finally, aniline degrading organisms were studied using SIP.
    [Show full text]
  • Biochemistry and Physiology of Halorespiration by Desulfitobacterium Dehalogenans
    Biochemistry and Physiology of Halorespiration by Desulfitobacterium dehalogenans ..?.^TJ?*LE_ LANDBOUWCATALOGU S 0000 0807 1728 Promotor: Dr.W.M . deVo s hoogleraar in de microbiologie Co-promotoren: Dr.ir .A.J.M .Stam s universitair hoofddocent bij deleerstoelgroe p Microbiologie Dr.ir . G. Schraa universitair docent bij deleerstoelgroe p Microbiologie Stellingen 1. Halorespiratie is een weinig efficiente wijze van ademhalen. Dit proefschrift 2. Halorespiratie moet worden opgevat als verbreding en niet als specialisatie van het genus Desulfitobacterium. Dit proefschrift 3. Reductieve dehalogenases zijn geen nieuwe enzymen. 4. 16S-rRNA probes zijn minder geschikt voor het aantonen van specifieke metabole activiteiten in een complex ecosysteem. Loffler etal. (2000) AEM66 : 1369;Gottscha l &Kroonema n (2000)Bode m3 : 102 5. Het "twin-arginine" transportsysteem wordt niet goed genoeg begrepen om op basis van het voorkomen van het "twin-arginine" motief enzymen te lokaliseren. Berks etal. (2000)Mol .Microbiol .35 : 260 6. Asbesthoudende bodem is niet verontreinigd. 7. Biologische groente is een pleonasme. Stellingen behorende bij het proefschrift 'Biochemistry and physiology of halorespiration by Desulfitobacterium dehalogenans' van Bram A. van de Pas Wageningen, 6 december 2000 MJOQ^O \lZ°]0 ^ Biochemistry and Physiology of Halorespiration by Desulfitobacterium dehalogenans BramA. van de Pas Proefschrift ter verkrijging van de graad van doctor op gezag van derecto r magnificus van Wageningen Universiteit, dr. ir. L. Speelman, in het openbaar
    [Show full text]