New GJA8 Variants and Phenotypes Highlight Its Critical Role in a Broad Spectrum of Eye Anomalies

Total Page:16

File Type:pdf, Size:1020Kb

New GJA8 Variants and Phenotypes Highlight Its Critical Role in a Broad Spectrum of Eye Anomalies Human Genetics (2019) 138:1027–1042 https://doi.org/10.1007/s00439-018-1875-2 ORIGINAL INVESTIGATION New GJA8 variants and phenotypes highlight its critical role in a broad spectrum of eye anomalies Fabiola Ceroni1 · Domingo Aguilera‑Garcia2,3 · Nicolas Chassaing4,5 · Dorine Arjanne Bax1 · Fiona Blanco‑Kelly2,3,6,7 · Patricia Ramos2,3 · Maria Tarilonte2,3 · Cristina Villaverde2,3 · Luciana Rodrigues Jacy da Silva2,3 · Maria Juliana Ballesta‑Martínez8 · Maria Jose Sanchez‑Soler8 · Richard James Holt1 · Lisa Cooper‑Charles9 · Jonathan Bruty9 · Yvonne Wallis9 · Dominic McMullan9 · Jonathan Hofman10 · David Bunyan11 · Alison Stewart12 · Helen Stewart6 · Katherine Lachlan13,14 · DDD Study15 · Alan Fryer16 · Victoria McKay16 · Joëlle Roume17 · Pascal Dureau18 · Anand Saggar19 · Michael Grifths9 · Patrick Calvas4,5 · Carmen Ayuso2,3 · Marta Corton2,3 · Nicola K Ragge1,10 Received: 22 November 2017 / Accepted: 9 February 2018 / Published online: 20 February 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract GJA8 encodes connexin 50 (Cx50), a transmembrane protein involved in the formation of lens gap junctions. GJA8 muta- tions have been linked to early onset cataracts in humans and animal models. In mice, missense mutations and homozygous Gja8 deletions lead to smaller lenses and microphthalmia in addition to cataract, suggesting that Gja8 may play a role in both lens development and ocular growth. Following screening of GJA8 in a cohort of 426 individuals with severe con- genital eye anomalies, primarily anophthalmia, microphthalmia and coloboma, we identifed four known [p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn), and p.(Gly94Arg)] and two novel [p.(Phe70Leu) and p.(Val97Gly)] likely pathogenic variants in seven families. Five of these co-segregated with cataracts and microphthalmia, whereas the variant p.(Gly94Arg) was identifed in an individual with congenital aphakia, sclerocornea, microphthalmia and coloboma. Four missense variants of unknown or unlikely clinical signifcance were also identifed. Furthermore, the screening of GJA8 structural variants in a subgroup of 188 individuals identifed heterozygous 1q21 microdeletions in fve families with coloboma and other ocular and/or extraocular fndings. However, the exact genotype–phenotype correlation of these structural variants remains to be established. Our data expand the spectrum of GJA8 variants and associated phenotypes, confrming the importance of this gene in early eye development. Introduction anomalies, such as early onset cataract and anterior segment dysgenesis (ASD). They are associated with extraocular fea- Anophthalmia (absent eye), microphthalmia (small eye) tures in just over half of cases (Shah et al. 2012) and can and coloboma (optic fssure closure defects), collectively form part of a syndrome (Slavotinek 2011). The etiology referred to as AMC, form a spectrum of developmental of AMC is characterised by marked genetic heterogeneity. eye disorders, with an overall estimated incidence of 6–13 This refects the complexity underlying eye morphogenesis, per 100,000 births (Shah et al. 2011; Skalicky et al. 2013). a conserved process that requires a series of highly coordi- AMC can occur alone or in combination with other ocular nated events, both at the molecular and the structural level, and is tightly regulated by a network of transcription factors, extracellular signaling molecules, cell-cycle regulators, and Marta Corton and Nicola Ragge: joint senior authors. adhesion proteins (Reis and Semina 2015). Electronic supplementary material The online version of this Connexins (Cxs) are a homogeneous family of transmem- article (https​://doi.org/10.1007/s0043​9-018-1875-2) contains brane proteins with a crucial role in intercellular communi- supplementary material, which is available to authorized users. cation. They present a conserved topology, which consists of four transmembrane α-helices (TM1–TM4) joined by * Nicola K Ragge [email protected]; [email protected] two extracellular loops (ECL1 and ECL2) and one cytoplas- mic loop (ICL), fanked by a short cytoplasmic N-terminal Extended author information available on the last page of the article Vol.:(0123456789)1 3 1028 Human Genetics (2019) 138:1027–1042 domain (NT) and a long cytoplasmic and less conserved (Chung et al. 2007), indicating that any signifcant dysregu- C-terminal domain (CT). Cxs oligomerise in hexameric lation of Gja8 could be deleterious for eye development. complexes called connexons, and allow the transmembrane In humans, missense and frameshift mutations in GJA8 passage of ions and small solutes (≤ 1 kDa). Connexons can (OMIM 600897) have been associated with cataracts (Beyer function independently as hemichannels (HCs) or they can et al. 2013; Yu et al. 2016). Rarely, the phenotype also dock with their counterparts on the juxtaposed cell to form includes additional ocular abnormalities, mainly micro- a gap junction channel (GJC), enabling the direct exchange cornea and iris hypoplasia (Devi and Vijayalakshmi 2006; of small molecules. Given their role in cell–cell communica- Hansen et al. 2007; Hu et al. 2010; Sun et al. 2011; Prokudin tion and tissue homeostasis, Cxs have been implicated in a et al. 2014; Ma et al. 2016), but in a few cases also microph- variety of biological and pathological processes (Pfenniger thalmia (Ma et al. 2016) and sclerocornea (Ma et al. 2018). et al. 2011; García et al. 2016), including myelin-related Interestingly, defects in the formation of the lens have also diseases (Cx32 and Cx47), heart malformations and arrhyth- been observed (Ma et al. 2018). The cataracts described in mia (Cx40), hearing loss and skin disorders (Cx26, Cx30, these individuals vary in both their location (e.g., nuclear, Cx30.3, and Cx31), oculodentodigital dysplasia, a syndrome zonular, lamellar, or total) and appearance (e.g., total, pul- also involving microphthalmia, microcornea, cataract and/ verulent, or dense). The mutations are predominantly het- or spherophakia (Cx43), and early onset cataract (Cx46 and erozygous and only few homozygous variants have been Cx50). reported, all in consanguineous families (Ponnam et al. As with AMC, developmental or early onset cataracts are 2007; Schmidt et al. 2008 Ponnam et al. 2013; Ma et al. a clinically heterogeneous group of disorders, presenting as 2016). These pathogenic variants lead to amino acid altera- isolated anomalies or part of a syndrome. More than 110 tions distributed throughout the protein (Yu et al. 2016), genes have been implicated in congenital cataracts (Gillespie although mostly localised between the domains TM1 and et al. 2014), with mutations in Cxs accounting for around TM2. They are predicted to afect protein function through 16% of cases with a known genetic cause (Shiels and Hejt- various mechanisms, such as by inducing misfolding and/ mancik 2017). Since the lens does not have any blood sup- or mislocalisation or by altering channel properties (Beyer ply, it strongly depends on an extensive network of GJCs et al. 2013). for the intercellular communications that are critical for its Copy number variants (CNVs) in the distal region of development and the maintenance of its transparency. The chromosome 1q21 and including GJA8 are rare in the gen- most abundant Cxs in the lens are Cx46 and Cx50, which eral population, but have recurrently been identifed in indi- can also form mixed hexamers. Cx46, encoded by GJA3, viduals with a broad range of diferent clinical diagnoses is expressed only in fber cells, whereas Cx50, encoded by (Brunetti-Pierri et al. 2008; Meford et al. 2008; Stefansson GJA8, is present throughout the lens. et al. 2008; Bernier et al. 2016). These primarily include Genetic studies in mice have demonstrated that the developmental delay, microcephaly and psychiatric disor- homozygous knockout of either Gja3 or Gja8 leads to cata- ders, although the enrichment of 1q21 CNVs in individuals racts, but with important phenotypic diferences. The dele- with these disorders could partly be related to ascertain- tion of Gja3 causes severe progressive nuclear cataracts, but ment bias. However, some cases also have eye anomalies, does not alter ocular growth (Gong et al. 1997). In contrast, such as cataracts (Brunetti-Pierri et al. 2008; Meford et al. Gja8-null mice develop milder nuclear cataracts at an early 2008; Rosenfeld et al. 2012; Bernier et al. 2016; Ha et al. postnatal age and exhibit signifcantly smaller lenses and 2016), microphthalmia (Meford et al. 2008), and coloboma microphthalmia (White et al. 1998; Rong et al. 2002), indi- (Brunetti-Pierri et al. 2008). Among the genes afected by cating that the two Cxs have overlapping, but distinct func- these recurrent microdeletions/microduplications, GJA8 rep- tions. In addition, the targeted replacement of Gja8 with resents a strong candidate for the ocular anomalies described Gja3 (Cx50KI46 knockin mice) prevents the loss of crys- in some of the 1q21 CNV carriers. talline solubility, but not the postnatal growth defect result- To investigate further the importance of GJA8 in human ing from the Gja8 deletion (White 2002), confrming the eye morphogenesis and provide a better understanding of the functional diversity of the two proteins and the involvement range of developmental ocular anomalies associated with of Gja8 in the control of normal ocular growth. This is also mutations in this gene, we screened GJA8 in a cohort of 426 supported by mouse lines carrying missense mutations in unrelated patients (304 UK, 121 Spanish and
Recommended publications
  • A Rare Missense Mutation in GJB3 (Cx31g45e) Is Associated with a Unique Cellular Phenotype Resulting in Necrotic Cell Death Easton, J
    University of Dundee A rare missense mutation in GJB3 (Cx31G45E) is associated with a unique cellular phenotype resulting in necrotic cell death Easton, J. A.; Alboulshi, A. K.; Kamps, M. A. F.; Brouns, G. H.; Broers, M. R.; Coull, B. J.; Oji, V.; van Geel, M.; van Steensel, M. A. M.; Martin, P. E. Published in: Experimental Dermatology DOI: 10.1111/exd.13542 Publication date: 2018 Document Version Peer reviewed version Link to publication in Discovery Research Portal Citation for published version (APA): Easton, J. A., Alboulshi, A. K., Kamps, M. A. F., Brouns, G. H., Broers, M. R., Coull, B. J., ... Martin, P. E. (2018). A rare missense mutation in GJB3 (Cx31G45E) is associated with a unique cellular phenotype resulting in necrotic cell death. Experimental Dermatology. https://doi.org/10.1111/exd.13542 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • GJA4/Connexin 37 Mutations Correlate with Secondary Lymphedema Following Surgery in Breast Cancer Patients
    biomedicines Article GJA4/Connexin 37 Mutations Correlate with Secondary Lymphedema Following Surgery in Breast Cancer Patients Mahrooyeh Hadizadeh 1,2, Seiied Mojtaba Mohaddes Ardebili 1, Mansoor Salehi 2, Chris Young 3, Fariborz Mokarian 4, James McClellan 5, Qin Xu 6, Mohammad Kazemi 2, Elham Moazam 4, Behzad Mahaki 7 ID and Maziar Ashrafian Bonab 8,* 1 Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; [email protected] (M.H.); [email protected] (S.M.M.A.) 2 Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan 81746753461, Iran; [email protected] (M.S.); [email protected] (M.K.) 3 School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK; [email protected] 4 Cancer Prevention Research Centre, Isfahan University of Medical Sciences, Isfahan 8184917911, Iran; [email protected] (F.M.); [email protected] (E.M.) 5 School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK; [email protected] 6 School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK; [email protected] 7 Department of Occupational Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; [email protected] 8 Department of Biological Sciences, University of Chester, Chester CH1 4BJ, UK * Correspondence: [email protected]; Tel.: +44-(0)1244-513-056 Received: 31 December 2017; Accepted: 13 February 2018; Published: 22 February 2018 Abstract: Lymphedema is a condition resulting from mutations in various genes essential for lymphatic development and function, which leads to obstruction of the lymphatic system.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • BIOTECHNO 2020 Proceedings
    BIOTECHNO 2020 The Twelfth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies ISBN: 978-1-61208-792-4 September 27th – October 1st, 2020 BIOTECHNO 2020 Editors Birgit Gersbeck-Schierholz, Leibniz Universität Hannover, Germany 1 / 34 BIOTECHNO 2020 Forward The Twelfth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies (BIOTECHNO 2020) continued a series of events covering these three main areas: bioinformatics, biomedical technologies, and biocomputing. Bioinformatics deals with the system-level study of complex interactions in biosystems providing a quantitative systemic approach to understand them and appropriate tool support and concepts to model them. Understanding and modeling biosystems requires simulation of biological behaviors and functions. Bioinformatics itself constitutes a vast area of research and specialization, as many classical domains such as databases, modeling, and regular expressions are used to represent, store, retrieve and process a huge volume of knowledge. Biotechnology is defined as the industrial use of living organisms or biological techniques developed through basic research. Bio-oriented technologies became very popular in various research topics and industrial market segments. Current human mechanisms seem to offer significant ways for improving theories, algorithms, technologies, products and systems. The focus is driven by fundamentals in approaching and applying biotechnologies in terms of engineering methods, special electronics, and special materials and systems. Borrowing simplicity and performance from the real life, biodevices cover a large spectrum of areas, from sensors, chips, and biometry to computing. One of the chief domains is represented by the biomedical biotechnologies, from instrumentation to monitoring, from simple sensors to integrated systems, including image processing and visualization systems. As the state-of-the- art evolves at fast speed, new biotechnologies and biosystems become available.
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Localized Calcium Signaling and the Control of Coupling at Cx36 Gap Junctions
    Research Article: New Research | Novel Tools and Methods Localized calcium signaling and the control of coupling at Cx36 gap junctions https://doi.org/10.1523/ENEURO.0445-19.2020 Cite as: eNeuro 2020; 10.1523/ENEURO.0445-19.2020 Received: 25 October 2019 Revised: 29 January 2020 Accepted: 21 February 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 Moore et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 Localized calcium signaling and the control of coupling at Cx36 gap junctions 2 3 Abbreviated title: Calcium signaling at Cx36 gap junctions 4 5 Keith B. Moore1,†, Cheryl K. Mitchell1, Ya-Ping Lin1, Yuan-Hao Lee1, Eyad Shihabeddin1,2, and 6 John O'Brien1,2,* 7 8 1. Richard S. Ruiz, M.D. Department of Ophthalmology & Visual Science, McGovern Medical 9 School, The University of Texas Health Science Center at Houston, Houston, Texas, USA. 10 2. The MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 11 Houston, Texas, USA. 12 †. Current Address: School of Public Health, The University of Texas Health Science Center at 13 Houston, Houston, Texas, USA.
    [Show full text]
  • Genomic Diversity, Population Structure, and Signature of Selection in Five Chinese Native Sheep Breeds Adapted to Extreme Environments
    G C A T T A C G G C A T genes Article Genomic Diversity, Population Structure, and Signature of Selection in Five Chinese Native Sheep Breeds Adapted to Extreme Environments Adam Abied 1,2 , Alnoor Bagadi 2, Farhad Bordbar 1, Yabin Pu 1, Serafino M.A. Augustino 3, Xianglan Xue 1 , Feng Xing 4, Gebremedhin Gebreselassie 1 , Jian-Lin Han 5,6 , Joram M. Mwacharo 7, Yuehui Ma 1 and Qianjun Zhao 1,* 1 Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; [email protected] (A.A.); [email protected] (F.B.); [email protected] (Y.P.); [email protected] (X.X.); [email protected] (G.G.); [email protected] (Y.M.) 2 Dry Land Research Center (DLRC) and Animal Production, Agricultural Research Corporation (ARC), Wad Madani 511, Sudan; [email protected] 3 College of Animal Science and Technology, China Agricultural University (CAU), Beijing 100193, China; serafi[email protected] 4 College of Animal Science, Talimu University (TU), Xinjiang, Alar 843300, China; [email protected] 5 CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; [email protected] 6 Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi 00100, Kenya 7 International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa 1108-2010, Ethiopia; [email protected] * Correspondence: [email protected] Received: 27 February 2020; Accepted: 20 April 2020; Published: 30 April 2020 Abstract: Through long term natural and artificial selection, domestic sheep (Ovis aries) have become adapted to a diverse range of agro-ecological environments and display multiple phenotypic traits.
    [Show full text]
  • Atrial Fibrillation (ATRIA) Study
    European Journal of Human Genetics (2014) 22, 297–306 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg REVIEW Atrial fibrillation: the role of common and rare genetic variants Morten S Olesen*,1,2,4, Morten W Nielsen1,2,4, Stig Haunsø1,2,3 and Jesper H Svendsen1,2,3 Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting 1–2% of the general population. A number of studies have demonstrated that AF, and in particular lone AF, has a substantial genetic component. Monogenic mutations in lone and familial AF, although rare, have been recognized for many years. Presently, mutations in 25 genes have been associated with AF. However, the complexity of monogenic AF is illustrated by the recent finding that both gain- and loss-of-function mutations in the same gene can cause AF. Genome-wide association studies (GWAS) have indicated that common single-nucleotide polymorphisms (SNPs) have a role in the development of AF. Following the first GWAS discovering the association between PITX2 and AF, several new GWAS reports have identified SNPs associated with susceptibility of AF. To date, nine SNPs have been associated with AF. The exact biological pathways involving these SNPs and the development of AF are now starting to be elucidated. Since the first GWAS, the number of papers concerning the genetic basis of AF has increased drastically and the majority of these papers are for the first time included in a review. In this review, we discuss the genetic basis of AF and the role of both common and rare genetic variants in the susceptibility of developing AF.
    [Show full text]
  • Human Gene Copy Number Spectra Analysis in Congenital Heart Malformations Aoy Tomita-Mitchell Medical College of Wisconsin
    CORE Metadata, citation and similar papers at core.ac.uk Provided by epublications@Marquette Marquette University e-Publications@Marquette Mathematics, Statistics and Computer Science Mathematics, Statistics and Computer Science, Faculty Research and Publications Department of 5-1-2012 Human gene copy number spectra analysis in congenital heart malformations Aoy Tomita-Mitchell Medical College of Wisconsin Donna K. Mahnke Medical College of Wisconsin Craig Struble Marquette University, [email protected] Maureen E. Tuffnell Marquette University Karl D. Stamm Marquette University See next page for additional authors Accepted version. Physiological Genomics, Vol. 44, No. 9 (May 2012): 518-541. DOI. © 2012 The American Physiological Society. Used with permission. Authors Aoy Tomita-Mitchell, Donna K. Mahnke, Craig Struble, Maureen E. Tuffnell, Karl D. Stamm, Mats Hidestrand, Susan Harris, Mary A. Goetsch, Pippa Simpson, David P. Bick, Ulrich Broeckel, Andrew N. Pelech, James S. Tweddell, and Michael Mitchell This article is available at e-Publications@Marquette: https://epublications.marquette.edu/mscs_fac/272 NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page. Human Gene Copy Number Spectra Analysis in Congenital Heart Malformations Aoy Tomita-Mitchell Department of Surgery, Division of Cardiothoracic Surgery; Biotechnology and Bioengineering Center; Human and Molecular Genetics Center; Medical College of Wisconsin; Milwaukee, WI Donna K. Mahnke Department of Surgery, Division of Cardiothoracic Surgery; Biotechnology and Bioengineering Center; Human and Molecular Genetics Center; Medical College of Wisconsin; Milwaukee, WI Craig A. Struble Department of Mathematics, Statistics and Computer Science; Marquette University; Milwaukee, WI Maureen E.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]