Recommandations of the CCIR
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Application of Noise Mapping in an Indian Opencast Mine for Effective Noise Management
12th ICBEN Congress on Noise as a Public Health Problem Application of noise mapping in an Indian opencast mine for effective noise management Veena Manwar1, Bibhuti Bhusan Mandal2, Asim Kumar Pal3 1 National Institute of Miners’ Health, Department of Occupational Hygiene, Nagpur, India (corresponding author) 2 National Institute of Miners’ Health, Department of Occupational Hygiene, Nagpur, India 3 Indian Institute of Technology-Indian School of Mines (IIT-ISM), Department of Environmental Science and Engineering, Dhanbad, India Corresponding author's e-mail address: [email protected] ABSTRACT So far as mining industry is concerned, noise pollution is not new. It is generated from operation of equipment and plants for excavation and transport of minerals which affects mine employees as well as population residing in nearby areas. Although in the Recommendations of Tenth Conference on Safety in Mines, noise mapping has been made mandatory in Indian mines still mining industry are not giving proper importance on producing noise maps of mines. Noise mapping is preferred for visualization and its propagation in the form of noise contours so that preventive measures are planned and implemented. The study was conducted in an opencast mine in Central India. Sound sources were identified and noise measurements were carried out according to national and international standards. Considering source locations along with noise levels and other meteorological, geographical factors as inputs, noise maps were generated by Predictor LimA software. Results were evaluated in the light of Central Pollution Control Board norms as to whether noise exposure in the residential and industrial area were within prescribed limits or not. -
United States Patent (19) 11 Patent Number: 5,526,129 Ko (45) Date of Patent: Jun
US005526129A United States Patent (19) 11 Patent Number: 5,526,129 Ko (45) Date of Patent: Jun. 11, 1996 54). TIME-BASE-CORRECTION IN VIDEO 56) References Cited RECORDING USINGA FREQUENCY-MODULATED CARRIER U.S. PATENT DOCUMENTS 4,672,470 6/1987 Morimoto et al. ...................... 358/323 75) Inventor: Jeone-Wan Ko, Suwon, Rep. of Korea 5,062,005 10/1991 Kitaura et al. ....... ... 358/320 5,142,376 8/1992 Ogura ............... ... 358/310 (73) Assignee: Sam Sung Electronics Co., Ltd., 5,218,449 6/1993 Ko et al. ...... ... 358/320 Suwon, Rep. of Korea 5,231,507 7/1993 Sakata et al. ... 358/320 5,412,481 5/1995 Ko et al. ...................... ... 359/320 21 Appl. No.: 203,029 Primary Examiner-Thai Q. Tran Assistant Examiner-Khoi Truong 22 Filed: Feb. 28, 1994 Attorney, Agent, or Firm-Robert E. Bushnell Related U.S. Application Data (57) ABSTRACT 63 Continuation-in-part of Ser. No. 755,537, Sep. 6, 1991, A circuit for recording and reproducing a TBC reference abandoned. signal for use in video recording/reproducing systems includes a circuit for adding to a video signal to be recorded (30) Foreign Application Priority Data a TBC reference signal in which the TBC reference signal Nov. 19, 1990 (KR) Rep. of Korea ...................... 90/18736 has a period adaptively varying corresponding to a synchro nizing variation of the video signal; and a circuit for extract (51 int. Cl. .................. H04N 9/79 ing and reproducing a TBC reference signal from a video (52) U.S. Cl. .......................... 358/320; 358/323; 358/330; signal read-out from the recording medium in order to 358/337; 360/36.1; 360/33.1; 348/571; correct time-base errors in the video signal. -
Designline PROFILE 42
High Performance Displays FLAT TV SOLUTIONS DesignLine PROFILE 42 Plasma FlatTV 106cm / 42" WWW.CONRAC.DE HIGH PERFORMANCE DISPLAYS FLAT TV SOLUTIONS DesignLine PROFILE 42 (106cm / 42 Zoll Diagonale) Neu: Verarbeitet HD-Signale ! New: HD-Compliant ! Einerseits eine bestechend klare Linienführung. Andererseits Akzente durch die farblich gestalteten Profilleisten in edler Metallic-Lackierung. Das Heimkino-Erlebnis par Excellence. Impressively clear lines teamed with decorative aluminium strips in metallic finish provide coloured highlights. The ultimate home cinema experience. Für höchste Ansprüche: Die FlatTVs der DesignLine kombinieren Hightech mit einzigartiger Optik. Die komplette Elektronik sowie die hochwertigen Breitband-Stereolautsprecher wurden komplett ins Gehäuse integriert. Der im Lieferumfang enthaltene Design-Standfuß aus Glas lässt sich für die Wandmontage einfach und problemlos entfernen, so dass das Display noch platzsparender wie ein Bild an der Wand angebracht werden kann. Die extrem flachen Bildschirme bieten eine unübertroffene Bildbrillanz und -schärfe. Das lüfterlose Konzept basiert auf dem neuesten Stand der Technik: Ohne störende Nebengeräusche hören Sie nur das, was Sie hören möchten. Einfaches Handling per Fernbedienung und mit übersichtlichem On-Screen-Menü. Die Kombination aus Flachdisplay-Technologie, einer High Performance Scaling Engine und einem zukunftsweisenden De-Interlacer* mit speziellen digitalen Algorithmen zur optimalen Darstellung bewegter Bilder bietet Ihnen ein unvergleichliches Fernseherlebnis. Zusätzlich vermittelt die Noise Reduction eine angenehme Bildruhe. For the most decerning tastes: DesignLine flat panel TVs combine advanced technology with outstanding appearance. All the electronics and the high-quality broadband stereo speakers have been fully integrated in the casing. The design glass stand included in the scope of supply can easily be removed for wall assembly, allowing the display to be mounted to the wall like a picture to save even more space. -
Electronic Services Capability Listing
425 BAYVIEW AVENUE, AMITYVILLE, NEW YORK 11701-0455 TEL: 631-842-5600 FSCM 26269 www.usdynamicscorp.com e-mail: [email protected] ELECTRONIC SERVICES CAPABILITY LISTING OEM P/N USD P/N FSC NIIN NSN DESCRIPTION NHA SYSTEM PLATFORM(S) 00110201-1 5998 01-501-9981 5998-01-501-9981 150 VDC POWER SUPPLY CIRCUIT CARD ASSEMBLY AN/MSQ-T43 THREAT RADAR SYSTEM SIMULATOR 00110204-1 5998 01-501-9977 5998-01-501-9977 FILAMENT POWER SUPPLY CIRCUIT CARD ASSEMBLY AN/MSQ-T43 THREAT RADAR SYSTEM SIMULATOR 00110213-1 5998 01-501-5907 5998-01-501-5907 IGBT SWITCH CIRCUIT CARD ASSEMBLY AN/MSQ-T43 THREAT RADAR SYSTEM SIMULATOR 00110215-1 5820 01-501-5296 5820-01-501-5296 RADIO TRANSMITTER MODULATOR AN/MSQ-T43 THREAT RADAR SYSTEM SIMULATOR 004088768 5999 00-408-8768 5999-00-408-8768 HEAT SINK MSP26F/TRANSISTOR HEAT EQUILIZER B-1B 0050-76522 * * *-* DEGASSER ENDCAP * * 01-01375-002 5985 01-294-9788 5985-01-294-9788 ANTENNA 1 ELECTRONICS ASSEMBLY AN/APG-68 F-16 01-01375-002A 5985 01-294-9788 5985-01-294-9788 ANTENNA 1 ELECTRONICS ASSEMBLY AN/APG-68 F-16 015-001-004 5895 00-964-3413 5895-00-964-3413 CAVITY TUNED OSCILLATOR AN/ALR-20A B-52 016024-3 6210 01-023-8333 6210-01-023-8333 LIGHT INDICATOR SWITCH F-15 01D1327-000 573000 5996 01-097-6225 5996-01-097-6225 SOLID STATE RF AMPLIFIER AN/MST-T1 MULTI-THREAT EMITTER SIMULATOR 02032356-1 570722 5865 01-418-1605 5865-01-418-1605 THREAT INDICATOR ASSEMBLY C-130 02-11963 2915 00-798-8292 2915-00-798-8292 COVER, SHIPPING J-79-15/17 ENGINE 025100 5820 01-212-2091 5820-01-212-2091 RECEIVER TRANSMITTER (BASEBAND -
Loudspeaker FM and AM Distortion an 10
Loudspeaker FM and AM Distortion AN 10 Application Note to the KLIPPEL R&D SYSTEM The amplitude modulation of a high frequency tone f1 (voice tone) and a low frequency tone f2 (bass tone) is measured by using the 3D Distortion Measurement module (DIS) of the KLIPPEL R&D SYSTEM. The maximal variation of the envelope of the voice tone f1 is represented by the top and bottom value referred to the averaged envelope. The amplitude modulation distortion (AMD) is the ratio between the rms value of the variation referred to the averaged value and is comparable to the modulation distortion Ld2 and Ld3 of the IEC standard 60268 provided that the loudspeaker generates pure amplitude modulation of second- or third-order. The measurement of amplitude modulation distortion (AMD) allows assessment of the effects of Bl(x) and Le(x) nonlinearity and radiation distortion due to pure amplitude modulation without Doppler effect. CONTENTS: 1 Method of Measurement ............................................................................................................................... 2 2 Checklist for dominant modulation distortion ............................................................................................... 3 3 Using the 3D distortion measurement (DIS) .................................................................................................. 4 4 Setup parameters for DIS Module .................................................................................................................. 4 5 Example ......................................................................................................................................................... -
Sensory Unpleasantness of High-Frequency Sounds
Acoust. Sci. & Tech. 34, 1 (2013) #2013 The Acoustical Society of Japan PAPER Sensory unpleasantness of high-frequency sounds Kenji Kurakata1;Ã, Tazu Mizunami1 and Kazuma Matsushita2 1National Institute of Advanced Industrial Science and Technology (AIST), AIST Central 6, 1–1–1 Higashi, Tsukuba, 305–8566 Japan 2National Institute of Technology and Evaluation (NITE), 2–49–10, Nishihara, Shibuya-ku, Tokyo, 151–0066 Japan ( Received 5 March 2012, Accepted for publication 2 August 2012 ) Abstract: The sensory unpleasantness of high-frequency sounds of 1 kHz and higher was investigated in psychoacoustic experiments in which young listeners with normal hearing participated. Sensory unpleasantness was defined as a perceptual impression of sounds and was differentiated from annoyance, which implies a subjective relation to the sound source. Listeners evaluated the degree of unpleasantness of high-frequency pure tones and narrow-band noise (NBN) by the magnitude estimation method. Estimates were analyzed in terms of the relationship with sharpness and loudness. Results of analyses revealed that the sensory unpleasantness of pure tones was a different auditory impression from sharpness; the unpleasantness was more level dependent but less frequency dependent than sharpness. Furthermore, the unpleasantness increased at a higher rate than loudness did as the sound pressure level (SPL) became higher. Equal-unpleasantness-level contours, which define the combinations of SPL and frequency of tone having the same degree of unpleasantness, were drawn to display the frequency dependence of unpleasantness more clearly. Unpleasantness of NBN was weaker than that of pure tones, although those sounds were expected to have the same loudness as pure tones. -
Medion Pure Retro
Medion Pure Retro This symbol signifies a possible danger to your life and health, if specific requests to take action are not complied with or if appropriate precautionary measures are not taken. This symbol warns against wrong behavior that will have the consequence of environmental damage. This symbol provides information about handling of the product or about the relevant part of the operating instructions to which particular attention should be paid. Copyright © 2004 All rights reserved. This manual is protected by Copyright. The Copyright is owned by Medion®. Trademarks: MS-DOS® and Windows® are registered trademarks of Microsoft®. Pentium® is a registered trademark of Intel®. Other trademarks are the property of their respective owners. The information in this document is subject to change without notice. [2950-4042-C217 Rev.00] Inhaltsverzeichnis 1. Richtlinien ........................................................................ 2 2. Sicherheitshinweise ............................................................... 2 2.1 Hinweise für Ihre Sicherheit.................................................... 2 DEUTSCH 2.2 Allgemeine Hinweise.......................................................... 3 3. Übersicht ......................................................................... 5 3.1 Lieferumfang ................................................................. 5 3.2 Anschlüsse .................................................................. 6 3.3 Bedientasten und Funktionen der Fernbedienung................................ -
Llllllllllllllllllllllllllllllllilllllllllllllllllllllllllll
llllllllllllllllllllllllllllllllIllllllllllllllllllllllllllllllllllllllllll USOO5572249A Unlted States Patent [19] [11] Patent Number: 5,572,249 Ghosh [45] Date of Patent: Nov. 5, 1996 [54] METHOD AND APPARATUS FOR OPTIMAL 5,214,501 5/1993 Cavallerno et a1. .................. .. 348/488 NTSC REJECTION FILTERING AND 5,263,051 11/1993 Eyuboglu .................... .. 375/58 TRANSMITTER AND RECEIVER 5,272,533 12/1993 Akiyama et a1. .. 348/624 COMPRISING SAME 5,282,019 1/1994 Basile et al. .. 348/473 . 5,282,023 l/1994 Scarpa . .. 348/624 [751 1mm Monisha Ghosh, Mohegan Lake’ N-Y- 252118)? 31331 $383‘. Til; ...... " 3121213 [73] Assignee: Philips Electronics North America 5,386,239 1/1995 Wang et al, ...................... .. 348/470 Corporation, New York, N .Y. OTHER PUBLICATIONS Lee-Fang Wei, “Precoding Technique For Partial-Response [211 APPl- NO-I 271,810 Channels with Applications to HDTV Transmission”, IEEE [22] Filed: JuL 7 1994 Journal on Selected Areas in Communications, vol. 11, No. ’ 1, Jan. 1993, pp. 127_135. [51] Int. Cl.6 .............................. .. H04N 7/00; H04N 7/13 “VSB Transmission System”, Zenith Electronics Corpora [52] US. Cl. .......................... .. 348/21; 348/470; 348/613; tion, Dec. 17, 1993, Technical Details. 348/608; 348/725; 375/346 Zenith “Technical Details”, Digital Spectrum Compatible, [58] Field of Search ............................ .. 348/21, 470, 487, 36P- 23, 1991 348/426, 608, 611, 612, 613, 614, 624, . _ . 606, 571, 708, 711, 725427, 728, 909, 121$”; Marion 607, 627, 723; 375/103, 99, 58, 60, 350, ’ ’ ‘ 285, 296, 346; 364/724.01, 724.12; 455/295, [57] ABSTRACT 296’ 307; H04N 7/00’ 7/13 The invention comprises an optimal causal, monic (?rst R f -t d coe?icient of ?lter is 1) NTSC rejection ?lter for use at an [56] e erences Cl 8 ATV receiver which is designed to optimally process the US. -
Spectra and Bandwidth of Emissions (Question ITU-R 222/1)
Rec. ITU-R SM.328-11 1 RECOMMENDATION ITU-R SM.328-11* Spectra and bandwidth of emissions (Question ITU-R 222/1) (1948-1951-1953-1956-1959-1963-1966-1970-1974-1978-1982-1986-1990-1994-1997-1999-2006) Scope This Recommendation gives definitions, analytical models and other considerations of the values of emission components for various emission types as well as the usage of these values from the standpoint of spectrum efficiency. Keywords Spurious emission, dB bandwidth, emitted spectra, adjacent-channel, necessary band The ITU Radiocommunication Assembly, considering a) that in the interest of an efficient use of the radio spectrum, it is essential to establish for each class of emission rules governing the spectrum emitted by a transmitting station; b) that, for the determination of an emitted spectrum of optimum width, the whole transmission circuit as well as all its technical working conditions, including other circuits and radio services sharing the band, the transmitter frequency tolerances of Recommendation ITU-R SM.1045, and particularly propagation phenomena, should be taken into account; c) that the concepts of “necessary bandwidth” and “occupied bandwidth” defined in Nos. 1.152 and 1.153 of the Radio Regulations (RR), are the basis for specifying the spectral properties of a given emission, or class of emission, in the simplest possible manner; d) that, however, these definitions do not suffice when consideration of the complete problem of radio spectrum efficiency is involved; and that an endeavour should be made to establish -
NTE1416 Integrated Circuit Chrominance and Luminance Processor for NTSC Color TV
NTE1416 Integrated Circuit Chrominance and Luminance Processor for NTSC Color TV Description: The NTE1416 is an MSI integrated circuit in a 28–Lead DIP type package designed for NTSC systems to process both color and luminance signals for color televisions. This device provides two functions: The processing of color signals for the band pass amplifier, color synchronizer, and demodulator cir- cuits and also the processing of luminance signal for the luminance amplifier and pedestal clamp cir- cuits. The number of peripheral parts and controls can be minimized and the manhours required for assembly can be considerbly reduced. Features: D Few External Components Required D DC Controlled Circuits make a Remote Controlled System Easy D Protection Diodes in every Input and Output Pin D “Color Killer” Needs No Adjustements D “Contrast” Control Does Not Prevent the Natural Color of the Picture, as the Color Saturation Level Changes Simultaneously D ACC (Automatic Color Controller) Circuit Operates Very Smoothly with the Peak Level Detector D “Brightness Control” Pin can also be used for ABL (Automatic Beam Limitter) Absolute Maximum Ratings: (TA = +25°C unless otherwise specified) Supply Voltage, VCC . 14.4V Brightness Controlling Voltage, V3 . 14.4V Resolution Controlling Voltage, V4 . 14.4V Contrast Controlling Voltage, V10 . 14.4V Tint Controlling Voltage, V7 . 14.4V Color Controlling Voltage, V9 . 14.4V Auto Controlling Voltage, V8 . 14.4V Luminance Input Signal Voltage, V5 . +5V Chrominance Signal Input Voltage, V13 . +2.5V Demodulator Input Signal Voltage, V25 . +5V R.G.B. Output Current, I26, I27, I28 . –40mA Gate Pulse Input Voltage, V20 . +5V Gate Pulse Output Current, I20 . -
Primer > PCR Measurements
PCR Measurements PCR Measurements 1,E-01 1,E-02 1,E-03 1,E-04 1,E-05 1,E-06 1,E-07 1,E-08 1,E-09 10-5 10-4 10-3 0,01 0,1 1 10 100 Drift limiting region Jitter limiting region PCR Measurements Primer New measurements in ETR 2901 Synchronizing the Components of a Video Signal Abstract Delivering TV pictures from studio to home entails sending various types of One of the problems for any type of synchronization procedure is the jitter data: brightness, sound, information about the picture geometry, color, etc. on the incoming signal that is the source for the synchronization process. and the synchronization data. Television signals are subject to this general problem, and since the In analog TV systems, there is a complex mixture of horizontal, vertical, analog and digital forms of the TV signal differ, the problems due to jitter interlace and color subcarrier reference synchronization signals. All this manifest themselves in different ways. synchronization information is mixed together with the corresponding With the arrival of MPEG compression and the possibility of having several blanking information, the active picture content, tele-text information, test different TV programs sharing the same Transport Stream (TS), a mechanism signals, etc. to produce the programs seen on a TV set. was developed to synchronize receivers to the selected program. This The digital format used in studios, generally based on the standard ITU-R procedure consists of sending numerical samples of the original clock BT.601 and ITU-R BT.656, does not need a color subcarrier reference frequency. -
(12) United States Patent (10) Patent N0.: US 8,073,418 B2 Lin Et A]
US008073418B2 (12) United States Patent (10) Patent N0.: US 8,073,418 B2 Lin et a]. (45) Date of Patent: Dec. 6, 2011 (54) RECEIVING SYSTEMS AND METHODS FOR (56) References Cited AUDIO PROCESSING U.S. PATENT DOCUMENTS (75) Inventors: Chien-Hung Lin, Kaohsiung (TW); 4 414 571 A * 11/1983 Kureha et al 348/554 Hsing-J“ Wei, Keelung (TW) 5,012,516 A * 4/1991 Walton et a1. .. 381/3 _ _ _ 5,418,815 A * 5/1995 Ishikawa et a1. 375/216 (73) Ass1gnee: Mediatek Inc., Sc1ence-Basedlndustr1al 6,714,259 B2 * 3/2004 Kim ................. .. 348/706 Park, Hsin-Chu (TW) 7,436,914 B2* 10/2008 Lin ....... .. 375/347 2009/0262246 A1* 10/2009 Tsaict a1. ................... .. 348/604 ( * ) Notice: Subject to any disclaimer, the term of this * Cited by examiner patent is extended or adjusted under 35 U'S'C' 154(1)) by 793 days' Primary Examiner * Sonny Trinh (21) App1_ NO; 12/185,778 (74) Attorney, Agent, or Firm * Winston Hsu; Scott Margo (22) Filed: Aug. 4, 2008 (57) ABSTRACT (65) Prior Publication Data A receiving system for audio processing includes a ?rst Us 2010/0029240 A1 Feb 4 2010 demodulation unit and a second demodulation unit. The ?rst ' ’ demodulation unit is utilized for receiving an audio signal and (51) Int_ CL generating a ?rst demodulated audio signal. The second H043 1/10 (200601) demodulation unit is utilized for selectively receiving the H043 5/455 (200601) audio signal or the ?rst demodulated audio signal according (52) us. Cl. ....................... .. 455/312- 455/337- 348/726 to a Setting Ofa television audio System Which the receiving (58) Field Of Classi?cation Search ...............