Latent Class Analysis and Finite Mixture Modeling

Total Page:16

File Type:pdf, Size:1020Kb

Latent Class Analysis and Finite Mixture Modeling OXFORD LIBRARY OF PSYCHOLOGY Editor-in-Chief PETER E. NATHAN The Oxford Handbook of Quantitative Methods Edited by Todd D. Little VoLUME 2: STATISTICAL ANALYSIS OXFORD UNIVERSITY PRESS OXFORD UN lVI!RSlTY PRESS l )xfiml University Press is a department of the University of Oxford. It limhcrs the University's objective of excellence in research, scholarship, nml cduc:uion by publishing worldwide. Oxlilrd New York Auckland Cape Town Dares Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Arf\CIIIina Austria Brazil Chile Czech Republic France Greece ( :umcnmln Hungary Italy Japan Poland Portugal Singapore Smuh Knr~'a Swir£crland Thailand Turkey Ukraine Vietnam l lxllml is n registered trademark of Oxford University Press in the UK and certain other l·nttntrics. Published in the United States of America by Oxfiml University Press 198 M<tdison Avenue, New York, NY 10016 © Oxfi.ml University Press 2013 All rights reserved. No parr of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, hy license, nr under terms agreed with the appropriate reproduction rights organization. Inquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above. You must not circulate this work in any other form and you must impose this same condition on any acquirer. Library of Congress Cataloging-in-Publication Data The Oxford handbook of quantitative methods I edited by Todd D. Little. v. em.- (Oxford library of psychology) ISBN 978--0-19-993487-4 ISBN 978-0-19-993489-8 1. Psycholoro<-Statistical methods. 2. Psychology-Mathematical models. I. Litde, Todd D. BF39.0927 2012 150.7211-dc23 2012015005 9 8 7 6 5 4 3 2 Printed in the United States ofAmerica on acid-free paper CHAPTER Latent Class Analysis and Finite 25 Mixture Modeling Katherine E. Masyn Abstract Finite mixture models, which are a type of latent variable model, express the overall distribution of one or more variables as a mixture of a finite number of component distributions. In direct applications, one assumes that the overall population heterogeneity with respect to a set of manifest variables results from the existence of two or more distinct homogeneous subgroups, or latent classes, of individuals. This chapter presents the prevailing "best practices" for direct applications of basic finite mixture modeling, specifically latent class analysis (LCA} and latent profile analysis (LPA), in terms of model assumptions, specification, estimation, evaluation, selection, and interpretation. In addition, a brief introduction to structural equation mixture modeling in the form of latent class regression is provided as well as a partial overview of the many more advanced mixture models currently in use. The chapter closes with a cautionary note about the limitations and common misuses of latent class models and a look toward promising future developments in mixture modeling. KeyWords: Finite mixture, latent class, latent profile, latent variable Introduction models, semi-parametric group-based models, semi­ Like many modern statistical techniques, mix­ non parametric group-mixed models, regression ture modeling has a rich and varied histmy-it mixture models, latent stare models, latent structure is known by different names in different fields; it analysis, and hidden Markov models. has been implemented using different parameteriza­ Despite the equivocal label, all of the differ­ tions and estimation algorithms in different software ent mixture models listed above have rwo com­ packages; and it has been applied and extended mon feamres. First, they are all finite mixture in various ways according to the substantive inter­ models in that they express the overall distribu:.. ests and empirical demands of differenr disciplines tion of one or more variables as a mixture of or as well as the varying curiosities of quantitative composite of a finite number of component dis­ methodologists, statisticians, biosratisticians, psy­ tributions, usually simpler and more tractable in chometricians, and econometricians. As such, the form than the overall distribution. As an example, label mixture model is quite equivocal, subsuming a consider the distribution of adult heights li1 the range of specific models, including, but not limited general population. Knowing that males are taller, to: larent class analysis (LCA), latent profile analy­ on average, than females, one could choose to sis (LPA}, latent class duster analysis, discrete latent express the distribution of heights as a mixture trait analysis, factor mixture models, growth mixture of rwo component distributions for males and 551 females, respectively. Iff(height) is the probability where the number of mixing components, K, in density function of the distribution of heights the number of categories or classes of c (c = in the overall population, it could be expressed 1, ... , K); the mixing proportions are the class pro­ as: portions, Pr(c = 1), ... , Pr(c = K); and the /(height) = Pmale · fmate(height) component distribution density functions are the distribution functions of the response variable, con­ + PJemale ffernate(height), (1) ditional on latent class membership, f(heightic = where Pmale and Pftmale are the proportions of males 1), ... ,f(heightjc = K). and females in the overall population, respectively, Recognizing mixture models as latent variable and fma/e(height) and fiemate(height) are the dis­ models allows use of the discourse language of the tributions of heights within the male and female latent variable modeling world. There are two pri­ mary types of variables: (1) variables (e.g., the subpopulations, respectively. Pm11k and Pftmale are latent referred to as the mixingproportions andfinale (height) latent class variable, c) that are not directly observed and /rernate(height) are the component distribution or measured, and (2) manifest variables (e.g., the density functions. response variables) that are observable and are pre­ The second common feature for all the differ­ sumed to be influenced by or caused by the latent ent kinds of mixture models previously listed is variable. The manifest variables are also referred to that the components themselves are not directly as indicator variables, as their observed values for a observed-that is, mixture component membership given individual are imagined to be imperfect indi­ is unobserved or latent for some or all individ­ cations of the individual's "true" underlying latent uals in the overall population. So, rather than class membership. Framed as a latent variable model, expressing the overall population distribution as a there are two parts to any mixture model: (1) the mixture of known groups, as with the height exam­ measurementmodel, and {2) the structural model. The ple, mixture models express the overall population statistical measurement model specifies the relation­ distribution as a finite mixture of some number, K, ship between the underlying latent variable and the of unknown groups or components. For the dis­ corresponding manifest variables. In the case of mix­ tribution of height, this finite mixture would be ture models, the measurement model encompasses expressed as: the number oflatent classes and the class-specific dis­ tributions of the indicator variables. The structural /(height)= PI ·fi (height)+ P2 ·fi(height) model specifies the distribution of the latent vari­ + · · · + PK · /K(height), (2) able in the population and the relationships between where the number of components, K, the mix­ latent variables and between latent variables and cor­ ing proportions, PI> ... ,pK, and the component­ responding observed predictors and outcomes (i.e., specific height distributions, fi (height), ... ,fK latent variable antecedent and consequent variables). (height), are all unknown but can be estimated, In the case of unconditional mixture models, the under certain identifYing assumptions, using height structural model encompasses just the latent class data measured on a representative sample from the proportions. total population. Finite Mixture Modeling As a Finite Mixture Models As Latent Person-Centered Approach Variable Models Mixture models are obviously distinct from the It is the unknown nature of the mixing more familiar latent variable factor models in which components--in number, proportion, and form­ the underlying latent structure is made up of one that situates finite mixture models in the broader or more continuous latent variables. The designa­ category of latent variable models. The finite mix­ tion for mixture modeling often used in applied ture distribution given in Equation 2 can be re­ literature to highlight this distinction from factor expressed in terms of a latent unordered categorical analytic models does not involve the overt cate­ variable, usually referred to as a latent class variable gorical versus contimtous latent variable scale com­ and denoted by c, as follows: parison but instead references mixture modeling as a person-certtered or person-oriented approach {in /(height)= Pr(c = 1) · f(heightjc = 1) contrast to variable-centered or variable-oriented). + · · · + Pr(c = K) ·f(heightlc = K), Person-centered approaches describe similarities and (3) differences among individuals with respect to how 552 LATENT CLASS ANALYSIS
Recommended publications
  • Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods
    PSYCHOMETRIKA—VOL. 72, NO. 2, 123–140 JUNE 2007 DOI: 10.1007/s11336-006-1453-8 MULTILEVEL AND LATENT VARIABLE MODELING WITH COMPOSITE LINKS AND EXPLODED LIKELIHOODS SOPHIA RABE-HESKETH UNIVERSITY OF CALIFORNIA AT BERKELEY AND UNIVERSITY OF LONDON ANDERS SKRONDAL LONDON SCHOOL OF ECONOMICS AND NORWEGIAN INSTITUTE OF PUBLIC HEALTH Composite links and exploded likelihoods are powerful yet simple tools for specifying a wide range of latent variable models. Applications considered include survival or duration models, models for rankings, small area estimation with census information, models for ordinal responses, item response models with guessing, randomized response models, unfolding models, latent class models with random effects, multilevel latent class models, models with log-normal latent variables, and zero-inflated Poisson models with random effects. Some of the ideas are illustrated by estimating an unfolding model for attitudes to female work participation. Key words: composite link, exploded likelihood, unfolding, multilevel model, generalized linear mixed model, latent variable model, item response model, factor model, frailty, zero-inflated Poisson model, gllamm. Introduction Latent variable models are becoming increasingly general. An important advance is the accommodation of a wide range of response processes using a generalized linear model for- mulation (e.g., Bartholomew & Knott, 1999; Skrondal & Rabe-Hesketh, 2004b). Other recent developments include combining continuous and discrete latent variables (e.g., Muthen,´ 2002; Vermunt, 2003), allowing for interactions and nonlinear effects of latent variables (e.g., Klein & Moosbrugger, 2000; Lee & Song, 2004) and including latent variables varying at different levels (e.g., Goldstein & McDonald, 1988; Muthen,´ 1989; Fox & Glas, 2001; Vermunt, 2003; Rabe-Hesketh, Skrondal, & Pickles, 2004a).
    [Show full text]
  • Theoretical Model Testing with Latent Variables
    Wright State University CORE Scholar Marketing Faculty Publications Marketing 2019 Theoretical Model Testing with Latent Variables Robert Ping Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/marketing Part of the Advertising and Promotion Management Commons, and the Marketing Commons Repository Citation Ping, R. (2019). Theoretical Model Testing with Latent Variables. https://corescholar.libraries.wright.edu/marketing/41 This Article is brought to you for free and open access by the Marketing at CORE Scholar. It has been accepted for inclusion in Marketing Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. (HOME) Latent Variable Copyright (c) Robert Ping 2001-2019 Research (Displays best with Microsoft IE/Edge, Mozilla Firefox and Chrome (Windows 10) Please note: The entire site is now under construction. Please send me an email at [email protected] if something isn't working. FOREWORD--This website contains research on testing theoretical models (hypothesis testing) with latent variables and real world survey data (with or without interactions or quadratics). It is intended primarily for PhD students and researchers who are just getting started with testing latent variable models using survey data. It contains, for example, suggestions for reusing one's data for a second paper to help reduce "time between papers." It also contains suggestions for finding a consistent, valid and reliable set of items (i.e., a set of items that fit the data), how to specify latent variables with only 1 or 2 indicators, how to improve Average Variance Extracted, a monograph on estimating latent variables, and selected papers.
    [Show full text]
  • Advances in Nonnegative Matrix Decomposition with Application to Cluster Analysis Aalto Un Iversity
    Departm en t of In form ation an d Com pu ter Scien ce Aa lto- He Zhang Zhang He DD 127 Advances in Nonnegative / 2014 Advances in Nonnegative Matrix Decomposition with Application to Cluster Analysis Analysis Cluster to Application with Decomposition Matrix Nonnegative in Advances Matrix Decomposition with Application to Cluster Analysis He Zhang 9HSTFMG*aficid+ 9HSTFMG*aficid+ ISBN 978-952-60-5828-3 BUSINESS + ISBN 978-952-60-5829-0 (pdf) ECONOMY ISSN-L 1799-4934 ISSN 1799-4934 ART + ISSN 1799-4942 (pdf) DESIGN + ARCHITECTURE Aalto Un iversity Aalto University School of Science SCIENCE + Department of Information and Computer Science TECHNOLOGY www.aalto.fi CROSSOVER DOCTORAL DOCTORAL DISSERTATIONS DISSERTATIONS Aalto University publication series DOCTORAL DISSERTATIONS 127/2014 Advances in Nonnegative Matrix Decomposition with Application to Cluster Analysis He Zhang A doctoral dissertation completed for the degree of Doctor of Science (Technology) to be defended, with the permission of the Aalto University School of Science, at a public examination held at the lecture hall T2 of the school on 19 September 2014 at 12. Aalto University School of Science Department of Information and Computer Science Supervising professor Aalto Distinguished Professor Erkki Oja Thesis advisor Dr. Zhirong Yang Preliminary examiners Research Scientist Ph.D. Rafal Zdunek, Wroclaw University of Technology, Poland Associate Professor Ph.D. Morten Mørup, DTU Compute, Denmark Opponent Associate Professor Ali Taylan Cemgil, Bogazici University, Turkey Aalto University publication series DOCTORAL DISSERTATIONS 127/2014 © He Zhang ISBN 978-952-60-5828-3 ISBN 978-952-60-5829-0 (pdf) ISSN-L 1799-4934 ISSN 1799-4934 (printed) ISSN 1799-4942 (pdf) http://urn.fi/URN:ISBN:978-952-60-5829-0 Unigrafia Oy Helsinki 2014 Finland Abstract Aalto University, P.O.
    [Show full text]
  • Conducting Confirmatory Latent Class Analysis Using Mplus W
    This article was downloaded by: [University of California, Los Angeles (UCLA)] On: 28 December 2011, At: 15:49 Publisher: Psychology Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Structural Equation Modeling: A Multidisciplinary Journal Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/hsem20 Conducting Confirmatory Latent Class Analysis Using Mplus W. Holmes Finch a & Kendall Cotton Bronk a a Ball State University Available online: 07 Jan 2011 To cite this article: W. Holmes Finch & Kendall Cotton Bronk (2011): Conducting Confirmatory Latent Class Analysis Using Mplus , Structural Equation Modeling: A Multidisciplinary Journal, 18:1, 132-151 To link to this article: http://dx.doi.org/10.1080/10705511.2011.532732 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • Latent Variable Modelling: a Survey*
    doi: 10.1111/j.1467-9469.2007.00573.x © Board of the Foundation of the Scandinavian Journal of Statistics 2007. Published by Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA Vol 34: 712–745, 2007 Latent Variable Modelling: A Survey* ANDERS SKRONDAL Department of Statistics and The Methodology Institute, London School of Econom- ics and Division of Epidemiology, Norwegian Institute of Public Health SOPHIA RABE-HESKETH Graduate School of Education and Graduate Group in Biostatistics, University of California, Berkeley and Institute of Education, University of London ABSTRACT. Latent variable modelling has gradually become an integral part of mainstream statistics and is currently used for a multitude of applications in different subject areas. Examples of ‘traditional’ latent variable models include latent class models, item–response models, common factor models, structural equation models, mixed or random effects models and covariate measurement error models. Although latent variables have widely different interpretations in different settings, the models have a very similar mathematical structure. This has been the impetus for the formulation of general modelling frameworks which accommodate a wide range of models. Recent developments include multilevel structural equation models with both continuous and discrete latent variables, multiprocess models and nonlinear latent variable models. Key words: factor analysis, GLLAMM, item–response theory, latent class, latent trait, latent variable, measurement error, mixed effects model, multilevel model, random effect, structural equation model 1. Introduction Latent variables are random variables whose realized values are hidden. Their properties must thus be inferred indirectly using a statistical model connecting the latent (unobserved) vari- ables to observed variables.
    [Show full text]
  • General Latent Variable Modeling
    Behaviormetrika Vol.29, No.1, 2002, 81-117 BEYOND SEM: GENERAL LATENT VARIABLE MODELING Bengt O. Muth´en This article gives an overview of statistical analysis with latent variables. Us- ing traditional structural equation modeling as a starting point, it shows how the idea of latent variables captures a wide variety of statistical concepts, including random e&ects, missing data, sources of variation in hierarchical data, hnite mix- tures, latent classes, and clusters. These latent variable applications go beyond the traditional latent variable useage in psychometrics with its focus on measure- ment error and hypothetical constructs measured by multiple indicators. The article argues for the value of integrating statistical and psychometric modeling ideas. Di&erent applications are discussed in a unifying framework that brings together in one general model such di&erent analysis types as factor models, growth curve models, multilevel models, latent class models and discrete-time survival models. Several possible combinations and extensions of these models are made clear due to the unifying framework. 1. Introduction This article gives a brief overview of statistical analysis with latent variables. A key feature is that well-known modeling with continuous latent variables is ex- panded by adding new developments also including categorical latent variables. Taking traditional structural equation modeling as a starting point, the article shows the generality of latent variables, being able to capture a wide variety of statistical concepts, including random e&ects, missing data, sources of variation in hierarchical data, hnite mixtures, latent classes, and clusters. These latent variable applications go beyond the traditional latent variable useage in psycho- metrics with its focus on measurement error and hypothetical constructs measured by multiple indicators.
    [Show full text]
  • 25Th , 2017 University of Connecticut
    Modern Modeling Methods Conference May 22nd – 25th, 2017 University of Connecticut 2017 Modern Modeling Methods Conference Welcome and thank you for joining us for the 7th annual Modern Modeling Methods Conference at the University of Connecticut. Special thanks to all of the keynote speakers and concurrent presenters for making this wonderful program possible! I look forward to this week all year long. I love seeing all the wonderful modeling work that researchers are doing, and I love getting the chance to interact with people whose work I am reading and citing throughout the year. It’s a pleasure and an honor to have Dr. Ken Bollen back at the modeling conference. Dr. Bollen was one of our 5 keynote speakers at the first modeling conference in 2011. I am also extremely excited to welcome Dr. Steven Boker to the Modeling conference for the first time. I have been a great fan of his work ever since I saw him speak at UVA over a decade ago. Thank you to the following people for their contributions to the conference: Lisa Rasicot, Casey Davis, Kasey Neves, Cheryl Lowe, Robbin Haboian-Demircan, and conference services for providing administrative and logistical support for the conference. I couldn’t keep this conference going without them! I hope to see you all again at our eighth annual Modern Modeling Methods Conference May 22nd- 23rd, 2018. Confirmed keynote speakers for 2018 include Dr. Peter Molenaar (Penn State) and Tenko Raykov (MSU). Tenko Raykov will be offering a full day Pre-Conference workshop on IRT from a Latent Variable Modeling Perspective on May 21st.
    [Show full text]
  • Download Paper
    Running head: LATENT CLASS ANALYSIS FREQUENTLY ASKED QUESTIONS 1 Ten Frequently Asked Questions about Latent Class Analysis Karen Nylund-Gibson, Ph.D. University of California, Santa Barbara Department of Education Santa Barbara, CA 93106 [email protected] Andrew Young Choi, M.A. University of California, Santa Barbara Department of Counseling, Clinical, and School Psychology Santa Barbara, CA 93106 [email protected] Author Note Karen Nylund-Gibson, Department of Education, University of California, Santa Barbara; Andrew Young Choi, Department of Counseling, Clinical, and School Psychology, University of California, Santa Barbara. Correspondence concerning this article should be addressed to Karen Nylund-Gibson at [email protected] The research reported here was supported in part by the Institute of Education Sciences, U.S. Department of Education, through Grant #R305A160157 to the University of California, Santa Barbara. The opinions expressed are those of the authors and do not represent views of the Institute of Education Sciences or the U.S. Department of Education. Nylund-Gibson, K., & Choi, A. Y. (In press). Ten frequently asked questions about latent class analysis. Translational Issues in Psychological Science. © 2018, American Psychological Association. This paper is not the copy of record and may not exactly replicate the final, authoritative version of the article. Please do not copy or cite without authors' permission. The final article will be available, upon publication, via its DOI: 10.1037/tps0000176 LATENT CLASS ANALYSIS FREQUENTLY ASKED QUESTIONS 2 ABSTRACT Latent class analysis (LCA) is a statistical method used to identify unobserved subgroups in a population with a chosen set of indicators. Given the increasing popularity of LCA, our aim is to equip psychological researchers with the theoretical and statistical fundamentals that we believe will facilitate the application of LCA models in practice.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Santa Barbara the Intersection of Sample
    UNIVERSITY OF CALIFORNIA Santa Barbara The Intersection of Sample Size, Number of Indicators, and Class Enumeration in LCA: A Monte Carlo Study A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Education by Diane Morovati Dissertation Committee: Professor Karen Nylund-Gibson Professor John Yun Professor Nancy Collins June 2014 The dissertation of Diane Morovati is approved. _____________________________________________ John T. Yun _____________________________________________ Nancy L. Collins _____________________________________________ Karen Nylund-Gibson, Committee Chair June 2014 The Intersection of Sample Size, Number of Indicators, and Class Enumeration in LCA: A Monte Carlo Study Copyright © 2014 by Diane Morovati iii To my Mom, Thank you for teaching me to work hard and never give up. This is just the beginning… iv ACKNOWLEDGEMENTS First and foremost, I acknowledge my parents, Lia and Morad Morovati, for unconditionally loving me and providing me with so much to be grateful for. This dissertation is dedicated to my mom because she deserves special praise for always pushing me to strive for the best, even when I wanted to give up. Mom, thank you for always believing in me. Thank you for raising me to be strong and independent. I wouldn’t be where I am today if it wasn’t for you. I love you and I am so proud to be your daughter. To my younger sister and best friend, Dahlia Morovati, and my little brother, Daniel Morovati, words cannot express my love for you both. I am so proud of you and look forward to your many future accomplishments. I want to thank my grandmother, Faezehjoon, for being such a strong and supportive woman in my life.
    [Show full text]
  • An Introduction to Latent Class Growth Analysis and Growth Mixture Modeling Tony Jung and K
    Social and Personality Psychology Compass 2/1 (2008): 302–317, 10.1111/j.1751-9004.2007.00054.x An Introduction to Latent Class Growth Analysis and Growth Mixture Modeling Tony Jung and K. A. S. Wickrama* Iowa State University Abstract In recent years, there has been a growing interest among researchers in the use of latent class and growth mixture modeling techniques for applications in the social and psychological sciences, in part due to advances in and availability of computer software designed for this purpose (e.g., Mplus and SAS Proc Traj). Latent growth modeling approaches, such as latent class growth analysis (LCGA) and growth mixture modeling (GMM), have been increasingly recognized for their usefulness for identifying homogeneous subpopulations within the larger heterogeneous population and for the identification of meaningful groups or classes of individuals. The purpose of this paper is to provide an overview of LCGA and GMM, compare the different techniques of latent growth modeling, discuss current debates and issues, and provide readers with a practical guide for conducting LCGA and GMM using the Mplus software. Researchers in the fields of social and psychological sciences are often interested in modeling the longitudinal developmental trajectories of individuals, whether for the study of personality development or for better understanding how social behaviors unfold over time (whether it be days, months, or years). This usually requires an extensive dataset con- sisting of longitudinal, repeated measures of variables, sometimes including multiple cohorts, and analyzing this data using various longitudinal latent variable modeling techniques such as latent growth curve models (cf. MacCallum & Austin, 2000).
    [Show full text]
  • Latent Variables in Psychology and the Social Sciences
    19 Nov 2001 10:17 AR AR146-22.tex AR146-22.SGM ARv2(2001/05/10) P1: GNH Annu. Rev. Psychol. 2002. 53:605–34 Copyright c 2002 by Annual Reviews. All rights reserved LATENT VARIABLES IN PSYCHOLOGY AND THE SOCIAL SCIENCES Kenneth A. Bollen Odum Institute for Research in Social Science, CB 3210 Hamilton, Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3210; e-mail: [email protected] Key Words unmeasured variables, unobserved variables, residuals, constructs, concepts, true scores ■ Abstract The paper discusses the use of latent variables in psychology and social science research. Local independence, expected value true scores, and nondeterministic functions of observed variables are three types of definitions for latent variables. These definitions are reviewed and an alternative “sample realizations” definition is presented. Another section briefly describes identification, latent variable indeterminancy, and other properties common to models with latent variables. The paper then reviews the role of latent variables in multiple regression, probit and logistic regression, factor analysis, latent curve models, item response theory, latent class analysis, and structural equation models. Though these application areas are diverse, the paper highlights the similarities as well as the differences in the manner in which the latent variables are defined and used. It concludes with an evaluation of the different definitions of latent variables and their properties. CONTENTS INTRODUCTION .....................................................606
    [Show full text]
  • Latent Variable Analysis
    Chapter 19 Latent Variable Analysis Growth Mixture Modeling and Related Techniques for Longitudinal Data Bengt Muth´en 19.1. Introduction first, followed by recent extensions that add categorical latent variables. This covers growth mixture model- This chapter gives an overview of recent advances in ing, latent class growth analysis, and discrete-time latent variable analysis. Emphasis is placed on the survival analysis. Two additional sections demonstrate strength of modeling obtained by using a flexible com- further extensions. Analysis of data with strong floor bination of continuous and categorical latent variables. effects gives rise to modeling with an outcome that To focus the discussion and make it manageable in is part binary and part continuous, and data obtained scope, analysis of longitudinal data using growth by cluster sampling give rise to multilevel modeling. models will be considered. Continuous latent variables All models fit into a general latent variable frame- are common in growth modeling in the form of random work implemented in the Mplus program (Muthen´ & effects that capture individual variation in development Muthen,´ 1998–2003). For overviews of this model- over time. The use of categorical latent variables in ing framework, see Muthen´ (2002) and Muthen´ and growth modeling is, in contrast, perhaps less familiar, Asparouhov (2003a, 2003b). Technical aspects are and new techniques have recently emerged. The aim covered in Asparouhov and Muthen´ (2003a, 2003b). of this chapter is to show the usefulness of growth model extensions using categorical latent variables. 19.2. Continuous Outcomes: The discussion also has implications for latent variable analysis of cross-sectional data. Conventional Growth Modeling The chapter begins with two major parts corre- sponding to continuous outcomes versus categorical In this section, conventional growth modeling will outcomes.
    [Show full text]