Comparative Genomics in Diplomonads

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Genomics in Diplomonads Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1261 Comparative Genomics in Diplomonads Lifestyle Variations Revealed at Genetic Level FEIFEI XU ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9262-5 UPPSALA urn:nbn:se:uu:diva-251650 2015 Dissertation presented at Uppsala University to be publicly examined in BMC, B41, Husargatan 3, Uppsala, Friday, 12 June 2015 at 13:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Doctor Matt Berriman (Wellcome Trust Sanger Institute). Abstract Xu, F. 2015. Comparative Genomics in Diplomonads. Lifestyle Variations Revealed at Genetic Level. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1261. 64 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9262-5. As sequencing technologies advance genome studies are becoming a basic tool for studying an organism, and with more genomes available comparative genomics is maturing into a powerful tool for biological research. This thesis demonstrates the strength of a comparative genomics approach on a group of understudied eukaryotes, the diplomonads. Diplomonads are a group of single cell eukaryotic flagellates living in oxygen-poor environments. Most diplomonads are intestinal parasites, like the well-studied human parasite Giardia intestinalis. There are seven different G. intestinalis assemblages (genotypes) affecting different hosts, and it’s under debate whether these are one species. A genome-wide study of three G. intestinalis genomes from different assemblages reveals little inter-assemblage sexual recombination, supporting that the different G. intestinalis assemblages are genetically isolated and thus different species. A genomic comparison between the fish parasite S. salmonicida and G. intestinalis reveals genetic differences reflecting differences in their parasitic lifestyles. There is a tighter transcriptional regulation and a larger metabolic reservoir in S. salmonicida, likely adaptations to the fluctuating environments it encounters during its systemic infection compared to G. intestinalis which is a strict intestinal parasite. The S. salmonicida genome analysis also discovers genes involved in energy metabolism. Some of these are experimentally shown to localize to mitochondrion-related organelles in S. salmonicida, indicating that they possess energy-producing organelles that should be classified as hydrogenosomes, as opposed to the mitosomes in G. intestinalis. A transcriptome analysis of the free-living Trepomonas is compared with genomic data from the two parasitic diplomonads. The majority of the genes associated with a free-living lifestyle, like phagocytosis and a larger metabolic capacity, are of prokaryotic origin. This suggests that the ancestor of the free-living diplomonad was likely host-associated and that the free-living lifestyle is a secondary adaptation acquired through horizontal gene transfers. In conclusion, this thesis uses different comparative genomics approaches to broaden the knowledge on diplomonad diversity and to provide more insight into how the lifestyle differences are reflected on the genetic level. The bioinformatics pipelines and expertise gained in these studies will be useful in other projects in diplomonads and other organismal groups. Keywords: comparative genomics, Giardia intestinalis, Spironucleus salmonicida, Trepomonas, diplomonad, intestinal parasite, free-living, sexual recombination, hydrogenosome, horizontal gene transfer Feifei Xu, Department of Cell and Molecular Biology, Box 596, Uppsala University, SE-75124 Uppsala, Sweden. © Feifei Xu 2015 ISSN 1651-6214 ISBN 978-91-554-9262-5 urn:nbn:se:uu:diva-251650 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-251650) Dedicated to my family List of papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Xu, F., Jerlström-Hultqvist, J. & Andersson, J. O. (2012). Genome-wide analyses of recombination suggest that Giardia intestinalis assemblages represent different species. Molecular Biology and Evolution, 29(10), 2895-2898. II Jerlström-Hultqvist, J., Einarsson, E., Xu, F., Hjort, K., Ek, B., Steinhauf, D., Bergquist, J., Andersson, J. O. & Svärd, S. G. (2013). Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nature Communications, 4, 2493. III Xu, F., Jerlström-Hultqvist, J., Einarsson, E., Astvaldsson, A., Svärd, S. G. & Andersson, J. O. (2014). The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genetics, 10(2), e1004053. IV Xu, F., Jerlström-Hultqvist, J., Kolisko, M., Simpson, A. G. B., Roger, A. J., Svärd, S. G. & Andersson, J. O. Adaptation to a free-living lifestyle via gene acquisitions in the diplomonad Trepomonas sp. PC1 Manuscript. Reprints were made with permission from the publishers. Publications not included in the thesis. 1. Jerlström-Hultqvist, J., Franzén, O., Ankarklev, J., Xu, F., Nohýnková, E., Andersson, J. O., Svärd, S. G. & Andersson B. (2010). Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC Genomics, 11, 543. Contents 1 Introduction . ............................................................................................... 11 2 Diplomonads .............................................................................................. 13 2.1 Giardia ............................................................................................ 15 2.2 Spironucleus ................................................................................... 17 2.3 Trepomonas .................................................................................... 19 3 Research aims ............................................................................................ 20 4 Bioinformatic methods .............................................................................. 22 4.1 Genomics ........................................................................................ 22 4.1.1 Sequencing ....................................................................... 22 4.1.2 Assembly .......................................................................... 24 4.1.3 Annotation ........................................................................ 31 4.1.4 Transcriptomics ............................................................... 33 4.1.5 Analysis ............................................................................ 35 4.2 Comparative genomics .................................................................. 37 5 Results & Discussion ................................................................................ 39 5.1 Genome-wide recombination study in G. intestinalis (paper I) .. 39 5.2 Hydrogenosomes in S. salmonicida (paper II) ............................. 39 5.3 S. salmonicida genome (paper III) ................................................ 41 5.4 Trepomonas transcriptome (paper IV) .......................................... 44 5.5 Discussion ....................................................................................... 47 6 Conclusions and future work .................................................................... 49 7 Svensk sammanfattning ............................................................................ 51 8 中文摘要 .................................................................................................... 53 9 Acknowledgements ................................................................................... 55 References ........................................................................................................ 58 Abbreviations ACT Artemis Comparison Tool ASH Allelic Sequence Heterozygosity BLAST Basic Local Alignment Search Tool bp Basepair CA Celera Assembler CLO Carpediemonas-Like Organism Cpn60 Chaperonin 60 CRMP Cysteine-Rich Membrane Protein CRP Cysteine-Rich Protein CWP Cyst Wall Protein DNA Deoxyribonucleic Acid EST Expressed Sequence Tag EVM EVidenceModeler GalNAc N-acetylgalactosamine Gb Gigabase HCMP High Cysteine Membrane Protein HCP High Cysteine Protein HGT Horizontal Gene Transfer HMM Hidden Markov Model Inr Initiator element JCVI J. Craig Venter Institute JGI Joint Genome Institue KAAS KEGG Automatic Annotation Server kb Kilobase KEGG Kyoto Encyclopedia of Genes and Genomes KO KEGG Orthology LRR Leucine-Rich Repeat Mb Megabase MCL Markov Cluster Algorithm ML Maximum Likelihood MLO Mitochondrion-Like Organelle mRNA Messenger RNA MRO Mitochondrion-Related Organelle NCBI National Center for Biotechnology Information NGS Next-Generation Sequencing ORF Open Reading Frame PacBio Pacific Biosciences 9 PCR Polymerase Chain Reaction PFOR Pyruvate Ferredoxin Oxidoreductase PHAT Phylome Analysis Tool RNA Ribonucleic Acid RNA-Seq RNA Sequencing RNR Ribonucleotide Reductase ROS Reactive Oxygen Species rRNA Ribosomal RNA SGS Second-Generation Sequencing SHMT Serine Hydroxylmethyltransferase SMRT Single-Molecule Real-Time STC Squalene-Tetrahymanol Cyclase Tb Terabase TGS Third-Generation Sequencing tRNA Transfer RNA VSP Variant Surface Protein 10 1. Introduction I still remember how I ended up in the bioinformatics program in university. It was a new program that my home university was starting, and it was adver- tised as a promising interdisciplinary field where biology, computer science, statistics and mathematics meet. Naive as I was, not knowing what exactly I wanted to do, I thought it was at
Recommended publications
  • Introgression and Hybridization in Animal Parasites
    Genes 2010, 1, 102-123; doi:10.3390/genes1010102 OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Review An Infectious Topic in Reticulate Evolution: Introgression and Hybridization in Animal Parasites Jillian T. Detwiler * and Charles D. Criscione Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-979-845-0925; Fax: +1-979-845-2891. Received: 29 April 2010; in revised form: 7 June 2010 / Accepted: 7 June 2010 / Published: 9 June 2010 Abstract: Little attention has been given to the role that introgression and hybridization have played in the evolution of parasites. Most studies are host-centric and ask if the hybrid of a free-living species is more or less susceptible to parasite infection. Here we focus on what is known about how introgression and hybridization have influenced the evolution of protozoan and helminth parasites of animals. There are reports of genome or gene introgression from distantly related taxa into apicomplexans and filarial nematodes. Most common are genetic based reports of potential hybridization among congeneric taxa, but in several cases, more work is needed to definitively conclude current hybridization. In the medically important Trypanosoma it is clear that some clonal lineages are the product of past hybridization events. Similarly, strong evidence exists for current hybridization in human helminths such as Schistosoma and Ascaris. There remain topics that warrant further examination such as the potential hybrid origin of polyploid platyhelminths.
    [Show full text]
  • Pronunciation Guide to Microorganisms
    Pronunciation Guide to Microorganisms This pronunciation guide is provided to aid each student in acquiring a greater ease in discussing, describing, and using specific microorganisms. Please note that genus and species names are italicized. If they cannot be italicized, then they should be underlined (example: a lab notebook). Prokaryotic Species Correct Pronunciation Acetobacter aceti a-se-toh-BAK-ter a-SET-i Acetobacter pasteurianus a-se-toh-BAK-ter PAS-ter-iann-us Acintobacter calcoacetius a-sin-ee-toe-BAK-ter kal-koh-a-SEE-tee-kus Aerococcus viridans (air-o)-KOK-kus vi-ree-DANS Agrobacterium tumefaciens ag-roh-bak-TEAR-ium too-me-FAY-she-ens Alcaligenes denitrificans al-KAHL-li-jen-eez dee-ni-TREE-fee-cans Alcaligenes faecalis al-KAHL-li-jen-eez fee-KAL-is Anabaena an-na-BEE-na Azotobacter vinelandii a-zoe-toe-BAK-ter vin-lan-DEE-i Bacillus anthracis bah-SIL-lus AN-thray-sis Bacillus lactosporus bah-SIL-lus LAK-toe-spore-us Bacillus megaterium bah-SIL-lus Meg-a-TEER-ee-um Bacillus subtilis bah-SIL-lus SA-til-us Borrelia recurrentis bore-RELL-ee-a re-kur-EN-tis Branhamella catarrhalis bran-hem-EL-ah cat-arr-RAH-lis Citrobacter freundii sit-roe-BACK-ter FROND-ee-i Clostridium perfringens klos-TREH-dee-um per-FRINGE-enz Clostridium sporogenes klos-TREH-dee-um spore-AH-gen-ease Clostridium tetani klos-TREH-dee-um TET-ann-ee Corynebacterium diphtheriae koh-RYNE-nee-back-teer-ee-um dif-THEE-ry-ee Corynebacterium hofmanni koh-RYNE-nee-back-teer-ee-um hoff-MAN-eye Corynebacterium xerosis koh-RYNE-nee-back-teer-ee-um zer-OH-sis Enterobacter
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • A Wide Diversity of Previously Undetected Freeliving
    Environmental Microbiology (2010) 12(10), 2700–2710 doi:10.1111/j.1462-2920.2010.02239.x A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine/saline habitatsemi_2239 2700..2710 Martin Kolisko,1 Jeffrey D. Silberman,2 Kipferlia n. gen. The remaining isolates include rep- Ivan Cepicka,3 Naoji Yubuki,4† Kiyotaka Takishita,5 resentatives of three other lineages that likely repre- Akinori Yabuki,4 Brian S. Leander,6 Isao Inouye,4 sent additional undescribed genera (at least). Small- Yuji Inagaki,7 Andrew J. Roger8 and subunit ribosomal RNA gene phylogenies show that Alastair G. B. Simpson1* CLOs form a cloud of six major clades basal to the Departments of 1Biology and 8Biochemistry and diplomonad-retortamonad grouping (i.e. each of the Molecular Biology, Dalhousie University, Halifax, Nova six CLO clades is potentially as phylogenetically Scotia, Canada. distinct as diplomonads and retortamonads). CLOs 2Department of Biological Sciences, University of will be valuable for tracing the evolution of Arkansas, Fayetteville, AR, USA. diplomonad cellular features, for example, their 3Department of Zoology, Faculty of Science, Charles extremely reduced mitochondrial organelles. It is University in Prague, Prague, Czech Republic. striking that the majority of CLO diversity was unde- 4Institute of Biological Sciences, Graduate School of Life tected by previous light microscopy surveys and and Environmental Sciences and 7Center for environmental PCR studies, even though they inhabit Computational Sciences and Institute of Biological a commonly sampled environment. There is no Sciences, University of Tsukuba, Tsukuba, Ibaraki, reason to assume this is a unique situation – it is Japan. likely that undersampling at the level of major lin- 5Japan Agency for Marine-Earth Science and eages is still widespread for protists.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • University of Copenhagen
    Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes Heiss, Aaron A.; Kolisko, Martin; Ekelund, Fleming; Brown, Matthew W.; Roger, Andrew J.; Simpson, Alastair G. B. Published in: Royal Society Open Science DOI: 10.1098/rsos.171707 Publication date: 2018 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Heiss, A. A., Kolisko, M., Ekelund, F., Brown, M. W., Roger, A. J., & Simpson, A. G. B. (2018). Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. Royal Society Open Science, 5(4), 1-13. [171707]. https://doi.org/10.1098/rsos.171707 Download date: 09. Apr. 2020 Downloaded from http://rsos.royalsocietypublishing.org/ on September 28, 2018 Combined morphological and phylogenomic rsos.royalsocietypublishing.org re-examination of Research malawimonads, a critical Cite this article: Heiss AA, Kolisko M, Ekelund taxon for inferring the F,BrownMW,RogerAJ,SimpsonAGB.2018 Combined morphological and phylogenomic re-examination of malawimonads, a critical evolutionary history taxon for inferring the evolutionary history of eukaryotes. R. Soc. open sci. 5: 171707. of eukaryotes http://dx.doi.org/10.1098/rsos.171707 Aaron A. Heiss1,2,†, Martin Kolisko3,4,†, Fleming Ekelund5, Matthew W. Brown6,AndrewJ.Roger3 and Received: 23 October 2017 2 Accepted: 6 March 2018 Alastair G. B. Simpson 1Department of Invertebrate Zoology
    [Show full text]
  • Identification of a Giardia Krr1 Homolog Gene and the Secondarily Anucleolate Condition of Giaridia Lamblia
    Identification of a Giardia krr1 Homolog Gene and the Secondarily Anucleolate Condition of Giaridia lamblia De-Dong Xin,* Jian-Fan Wen,* De He,* and Si-Qi Luà *Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Graduate School of the Chinese Academy of Sciences, Beijing, China; and àCapital University of Medical Sciences, Beijing, China Giaridia lamblia was long considered to be one of the most primitive eukaryotes and to lie close to the transition between prokaryotes and eukaryotes, but several supporting features, such as lack of mitochondrion and Golgi, have been challenged recently. It was also reported previously that G. lamblia lacked nucleolus, which is the site of pre-rRNA processing and ribosomal assembling in the other eukaryotic cells. Here, we report the identification of the yeast homolog gene, krr1, in the anucleolate eukaryote, G. lamblia. The krr1 gene, encoding one of the pre-rRNA processing proteins in yeast, is actively transcribed in G. lamblia. The deduced protein sequence of G. lamblia krr1 is highly similar to yeast KRR1p that contains a single-KH domain. Our database searches indicated that krr1 genes actually present in diverse Downloaded from https://academic.oup.com/mbe/article/22/3/391/1075989 by guest on 24 September 2021 eukaryotes and also seem to present in Archaea. However, only the eukaryotic homologs, including that of G. lamblia, have the single-KH domain, which contains the conserved motif KR(K)R. Fibrillarin, another important pre-rRNA processing protein has also been identified previously in G. lamblia. Moreover, our database search shows that nearly half of the other nucleolus-localized protein genes of eukaryotic cells also have their homologs in Giardia.
    [Show full text]
  • Identification of the Meiotic Life Cycle Stage of Trypanosoma Brucei in The
    Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly Lori Peacocka,b, Vanessa Ferrisa,b, Reuben Sharmac,1, Jack Sunterc, Mick Baileyb, Mark Carringtonc, and Wendy Gibsona,2 aSchool of Biological Sciences, University of Bristol, Bristol BS8 1UG, United Kingdom; bDepartment of Clinical Veterinary Science, University of Bristol, Bristol BS40 7DU, United Kingdom; and cDepartment of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved January 27, 2011 (received for review December 23, 2010) Elucidating the mechanism of genetic exchange is fundamental for genetic exchange in T. brucei involves mixing of mitochondrial understanding how genes for such traits as virulence, disease (kinetoplast) and nuclear genomes, because hybrid progeny have phenotype, and drug resistance are transferred between pathogen hybrid kinetoplast DNA (kDNA) networks with mini-circles de- strains. Genetic exchange occurs in the parasitic protists Trypano- rived from both parents (14, 15). Plausible models for the gen- soma brucei, T. cruzi, and Leishmania major, but the precise cellular eration of hybrid kDNA networks are limited by the complex mechanisms are unknown, because the process has not been ob- structure and highly ordered replication of this concatenated served directly. Here we exploit the identification of homologs of mass of small DNA circles (16). Finally, trypanosomes belong to meiotic genes in the T. brucei genome and demonstrate that three the Euglenozoa, a deep branch within the excavate eukaryote su- functionally distinct, meiosis-specific proteins are expressed in the pergroup (17, 18). The production of four haploid gametes and nucleus of a single specific cell type, defining a previously unde- subsequent fusion to reform the diploid occurring in trypanosomes scribed developmental stage occurring within the tsetse flysalivary would strongly suggest the presence of a typical meiosis in the last gland.
    [Show full text]
  • Molecular Identification and Evolution of Protozoa Belonging to the Parabasalia Group and the Genus Blastocystis
    UNIVERSITAR DEGLI STUDI DI SASSARI SCUOLA DI DOTTORATO IN SCIENZE BIOMOLECOLARI E BIOTECNOLOGICHE (Intenational PhD School in Biomolecular and Biotechnological Sciences) Indirizzo: Microbiologia molecolare e clinica Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Direttore della scuola: Prof. Masala Bruno Relatore: Prof. Pier Luigi Fiori Correlatore: Dott. Eric Viscogliosi Tesi di Dottorato : Dionigia Meloni XXIV CICLO Nome e cognome: Dionigia Meloni Titolo della tesi : Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Tesi di dottorato in scienze Biomolecolari e biotecnologiche. Indirizzo: Microbiologia molecolare e clinica Universit degli studi di Sassari UNIVERSITAR DEGLI STUDI DI SASSARI SCUOLA DI DOTTORATO IN SCIENZE BIOMOLECOLARI E BIOTECNOLOGICHE (Intenational PhD School in Biomolecular and Biotechnological Sciences) Indirizzo: Microbiologia molecolare e clinica Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Direttore della scuola: Prof. Masala Bruno Relatore: Prof. Pier Luigi Fiori Correlatore: Dott. Eric Viscogliosi Tesi di Dottorato : Dionigia Meloni XXIV CICLO Nome e cognome: Dionigia Meloni Titolo della tesi : Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Tesi di dottorato in scienze Biomolecolari e biotecnologiche. Indirizzo: Microbiologia molecolare e clinica Universit degli studi di Sassari Abstract My thesis was conducted on the study of two groups of protozoa: the Parabasalia and Blastocystis . The first part of my work was focused on the identification, pathogenicity, and phylogeny of parabasalids. We showed that Pentatrichomonas hominis is a possible zoonotic species with a significant potential of transmission by the waterborne route and could be the aetiological agent of gastrointestinal troubles in children.
    [Show full text]
  • Author's Manuscript (764.7Kb)
    1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses.
    [Show full text]
  • Model-Based Integration of Genomics and Metabolomics Reveals SNP Functionality in Mycobacterium Tuberculosis
    Model-based integration of genomics and metabolomics reveals SNP functionality in Mycobacterium tuberculosis Ove Øyåsa,b,1, Sonia Borrellc,d,1, Andrej Traunerc,d,1, Michael Zimmermanne, Julia Feldmannc,d, Thomas Liphardta,b, Sebastien Gagneuxc,d, Jörg Stellinga,b, Uwe Sauere, and Mattia Zampierie,2 aDepartment of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; bSIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; cDepartment of Medical Parasitoloy and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; dUniversity of Basel, 4058 Basel, Switzerland; and eInstitute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved March 2, 2020 (received for review September 12, 2019) Human tuberculosis is caused by members of the Mycobacterium infection of macrophages (29–32). Beyond analyses of individual tuberculosis complex (MTBC) that vary in virulence and transmis- laboratory strains, however, no systematic characterization and sibility. While genome-wide association studies have uncovered comparative analysis of intrinsic metabolic differences across several mutations conferring drug resistance, much less is known human-adapted MTBC clinical strains has been performed. about the factors underlying other bacterial phenotypes. Variation If the metabolic and other phenotypic diversity between in the outcome of tuberculosis infection and diseases has been MTBC strains contributes to and modulates pathogenicity, an attributed primarily to patient and environmental factors, but obvious question is: Which elements of the limited genetic di- recent evidence indicates an additional role for the genetic diver- versity in the MTBC are responsible for phenotypic strain di- sity among MTBC clinical strains.
    [Show full text]
  • The Origin and Evolution of Model Organisms
    REVIEWS THE ORIGIN AND EVOLUTION OF MODEL ORGANISMS S. Blair Hedges The phylogeny and timescale of life are becoming better understood as the analysis of genomic data from model organisms continues to grow. As a result, discoveries are being made about the early history of life and the origin and development of complex multicellular life. This emerging comparative framework and the emphasis on historical patterns is helping to bridge barriers among organism-based research communities. Model organisms represent only a small fraction of the these species are receiving an unusually large amount of biodiversity that exists on Earth, although the research attention from the research community and fall under that has resulted from their study forms the core of bio- the broad definition of “model organism”. logical knowledge. Historically, research communities Knowledge of the relationships and times of origin of — often in isolation from one another — have focused these species can have a profound effect on diverse areas on these model organisms to gain an insight into the of research2. For example, identifying the closest relatives general principles that underlie various disciplines, such of a disease vector will help to decipher unique traits — as genetics, development and evolution. This has such as single-nucleotide polymorphisms — that might changed in recent years with the availability of complete contribute to a disease phenotype. Similarly, knowing genome sequences from many model organisms, which that our closest relative is the chimpanzee is crucial for has greatly facilitated comparisons between the different identifying genetic changes in coding and regulatory species and increased interactions among organism- genomic regions that are unique to humans, and are based research communities.
    [Show full text]