On Two-Dimensional Fractional Chaotic Maps with Symmetries
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research on the Digitial Image Based on Hyper-Chaotic And
Research on digital image watermark encryption based on hyperchaos Item Type Thesis or dissertation Authors Wu, Pianhui Publisher University of Derby Download date 27/09/2021 09:45:19 Link to Item http://hdl.handle.net/10545/305004 UNIVERSITY OF DERBY RESEARCH ON DIGITAL IMAGE WATERMARK ENCRYPTION BASED ON HYPERCHAOS Pianhui Wu Doctor of Philosophy 2013 RESEARCH ON DIGITAL IMAGE WATERMARK ENCRYPTION BASED ON HYPERCHAOS A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Pianhui Wu BSc. MSc. Faculty of Business, Computing and Law University of Derby May 2013 To my parents Acknowledgements I would like to thank sincerely Professor Zhengxu Zhao for his guidance, understanding, patience and most importantly, his friendship during my graduate studies at the University of Derby. His mentorship was paramount in providing a well-round experience consistent with my long-term career goals. I am grateful to many people in Faculty of Business, Computing and Law at the University of Derby for their support and help. I would also like to thank my parents, who have given me huge support and encouragement. Their advice is invaluable. An extra special recognition to my sister whose love and aid have made this thesis possible, and my time in Derby a colorful and wonderful experience. I Glossary AC Alternating Current AES Advanced Encryption Standard CCS Combination Coordinate Space CWT Continue Wavelet Transform BMP Bit Map DC Direct Current DCT Discrete Cosine Transform DWT Discrete Wavelet Transform -
Do Chaos-Based Communication Systems Really Transmit Chaotic Signals?
Signal Processing 108 (2015) 412–420 Contents lists available at ScienceDirect Signal Processing journal homepage: www.elsevier.com/locate/sigpro Do chaos-based communication systems really transmit chaotic signals? Renato Candido a, Diogo C. Soriano b, Magno T.M. Silva a,n, Marcio Eisencraft a a University of São Paulo, Brazil b Universidade Federal do ABC, Brazil article info abstract Article history: Many communication systems based on the synchronism of chaotic systems have been Received 2 May 2014 proposed as an alternative spread spectrum modulation that improves the level of privacy Received in revised form in data transmission. However, depending on the map and on the encoding function, the 24 September 2014 transmitted signal may cease to be chaotic. Therefore, the sensitive dependence on initial Accepted 2 October 2014 conditions, which is one of the most interesting properties for employing chaos in Available online 14 October 2014 telecommunications, may disappear. In this paper, we numerically analyze the chaotic Keywords: nature of signals modulated using a system that employs the Ikeda map. Additionally, we Chaos propose changes in the communication system in order to guarantee that the modulated Nonlinear systems signals are in fact chaotic. Chaos-based communication systems & 2014 Elsevier B.V. All rights reserved. Ikeda map Attractors 1. Introduction diverges from the original one. These three properties all together are necessary for a signal to be called chaotic Non-linear systems and chaos have been applied in all and are the basis for the alleged advantages of using chaos areas of engineering [1]. This fact is particularly true when in communications, as an improvement in security [15]. -
Efficient Method for Detection of Periodic Orbits in Chaotic Maps And
Efficient Method for Detection of Periodic Orbits in Chaotic Maps and Flows A Thesis by Jonathan Crofts in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Department of Mathematics University of Leicester March 2007. c Jonathan J Crofts, 2007. arXiv:0706.1940v2 [nlin.CD] 13 Jun 2007 Acknowledgements I would like to thank Ruslan Davidchack, my supervisor, for his many suggestions and constant support and understanding during this research. I am also thankful to Michael Tretyakov for his support and advice. Further, I would like to acknowledge my gratitude to the people from the Department of Mathematics at the University of Leicester for their help and support. Finally, I would like to thank my family and friends for their patience and sup- port throughout the past few years. In particular, I thank my wife Lisa and my daughter Ellen, without whom I would have completed this research far quicker, but somehow, it just would not have been the same. At this point I would also like to reassure Lisa that I will get a real job soon. Leicester, Leicestershire, UK Jonathan J. Crofts 31 March 2007 i Contents Abstract iv List of figures v List of tables vi 1 Introduction 1 1.1 History,theoryandapplications . 1 1.2 Periodicorbits............................... 3 1.2.1 Periodicorbittheory . 4 1.2.2 Efficient detection of UPOs . 6 1.3 Extendedsystems............................. 9 1.4 Anoteonnumerics............................ 10 1.4.1 Intervalarithmetic . 12 1.5 Overview.................................. 14 1.6 Thesisresults ............................... 16 2 Conventional techniques for detecting periodic orbits 18 2.1 Specialcases................................ 18 2.1.1 One-dimensionalmaps . -
Transformations)
TRANSFORMACJE (TRANSFORMATIONS) Transformacje (Transformations) is an interdisciplinary refereed, reviewed journal, published since 1992. The journal is devoted to i.a.: civilizational and cultural transformations, information (knowledge) societies, global problematique, sustainable development, political philosophy and values, future studies. The journal's quasi-paradigm is TRANSFORMATION - as a present stage and form of development of technology, society, culture, civilization, values, mindsets etc. Impacts and potentialities of change and transition need new methodological tools, new visions and innovation for theoretical and practical capacity-building. The journal aims to promote inter-, multi- and transdisci- plinary approach, future orientation and strategic and global thinking. Transformacje (Transformations) are internationally available – since 2012 we have a licence agrement with the global database: EBSCO Publishing (Ipswich, MA, USA) We are listed by INDEX COPERNICUS since 2013 I TRANSFORMACJE(TRANSFORMATIONS) 3-4 (78-79) 2013 ISSN 1230-0292 Reviewed journal Published twice a year (double issues) in Polish and English (separate papers) Editorial Staff: Prof. Lech W. ZACHER, Center of Impact Assessment Studies and Forecasting, Kozminski University, Warsaw, Poland ([email protected]) – Editor-in-Chief Prof. Dora MARINOVA, Sustainability Policy Institute, Curtin University, Perth, Australia ([email protected]) – Deputy Editor-in-Chief Prof. Tadeusz MICZKA, Institute of Cultural and Interdisciplinary Studies, University of Silesia, Katowice, Poland ([email protected]) – Deputy Editor-in-Chief Dr Małgorzata SKÓRZEWSKA-AMBERG, School of Law, Kozminski University, Warsaw, Poland ([email protected]) – Coordinator Dr Alina BETLEJ, Institute of Sociology, John Paul II Catholic University of Lublin, Poland Dr Mirosław GEISE, Institute of Political Sciences, Kazimierz Wielki University, Bydgoszcz, Poland (also statistical editor) Prof. -
Chaotic Scattering in Solitary Wave Interactions: a Singular Iterated-Map Description Roy H
CHAOS 18, 023113 ͑2008͒ Chaotic scattering in solitary wave interactions: A singular iterated-map description Roy H. Goodman Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA ͑Received 16 October 2007; accepted 7 March 2008; published online 7 May 2008͒ We derive a family of singular iterated maps—closely related to Poincaré maps—that describe chaotic interactions between colliding solitary waves. The chaotic behavior of such solitary-wave collisions depends on the transfer of energy to a secondary mode of oscillation, often an internal mode of the pulse. This map allows us to go beyond previous analyses and to understand the interactions in the case when this mode is excited prior to the first collision. The map is derived using Melnikov integrals and matched asymptotic expansions and generalizes a “multipulse” Melnikov integral. It allows one to find not only multipulse heteroclinic orbits, but exotic periodic orbits. The maps exhibit singular behavior, including regions of infinite winding. These maps are shown to be singular versions of the conservative Ikeda map from laser physics and connections are made with problems from celestial mechanics and fluid mechanics. © 2008 American Institute of Physics. ͓DOI: 10.1063/1.2904823͔ Solitary waves are solutions to time-dependent partial generally lose their distinct identities and merge into a single differential equations (PDEs) which can be described as larger bump. At the opposite extreme are completely inte- profiles of unchanging spatial shape that move at con- grable systems whose solitary waves ͑solitons͒ survive col- stant velocity. A fundamental question is what happens lisions with their identities intact, due to a linear structure when two of them collide. -
Projective Synchronization of Chaotic Systems Via Backstepping Design
International Journal of Applied Mathematical Research, 1 (4) (2012) 531-540 ©Science Publishing Corporation www.sciencepubco.com/index.php/IJBAS Projective Synchronization of Chaotic Systems Via Backstepping Design 1 Anindita Tarai (Poria), 2 Mohammad Ali Khan 1 Department of Mathematics, Aligunj R.R.B. High School Midnapore (West), West Bengal, India E-mail: [email protected] 2 Department of Mathematics, Garhbeta Ramsundar Vidyabhavan, Garhbeta, Midnapore (West), West Bengal, India E-mail: [email protected] Abstract Chaos synchronization of discrete dynamical systems are investigated. An algorithm is proposed for projective synchronization of chaotic 2D Duffing map and chaotic Tinkerbell map. The control law was derived from the Lyapunov stability theory. The numerical simulation results are presented to verify the effectiveness of the proposed algorithm Keywords: Lyapunov function, Projective synchronization, Backstepping Design, Duffing map and Tinkerbell map. 1 Introduction Adjacent chaotic trajectories governed by the same nonlinear systems may evolve into a state utterly uncorrelated, but in 1990 Pecora and Carrol [1] shown that it could be synchronized through a proper coupling. Since their seminal paper in 1990, chaos synchronization is an interesting research topic of great attention. Hayes et.al. (1993)[2] have studied to some potential applications in secure communication. Blasius et.al. [3] have observed complex dynamics and phase synchronization in spatially extended ecological systems in 1999 and system identification was investigated by Kocarev et.al. in 1996 [4]. Different forms of synchronization phenomena have been observed in a variety of chaotic systems, such as identical synchronization [1]. In 1996 Rosenblum et.al. [5] have studied phase synchronization of chaotic oscillators. -
Intermittent Large Deviation of Chaotic Trajectory in Ikeda Map: Signature of Extreme Events Arnob Ray,1 Sarbendu Rakshit,1 Dibakar Ghosh,1, A) and Syamal K
Intermittent large deviation of chaotic trajectory in Ikeda map: Signature of extreme events Arnob Ray,1 Sarbendu Rakshit,1 Dibakar Ghosh,1, a) and Syamal K. Dana2, 3 1)Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India 2)Department of Mathematics, Jadavpur University, Kolkata 700032, India 3)Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz, Poland We notice signatures of extreme events-like behavior in a laser based Ikeda map. The trajectory of the system occasionally travels a large distance away from the bounded chaotic region, which appears as intermittent spiking events in the temporal dynamics. The large spiking events satisfy the conditions of extreme events as usually observed in dynamical systems. The probability density function of the large spiking events shows a long-tail distribution con- sistent with the characteristics of rare events. The inter-event intervals obey a Poisson-like distribution. We locate the parameter regions of extreme events in phase diagrams. Furthermore, we study two Ikeda maps to explore how and when extreme events terminate via mutual interaction. A pure diffusion of in- formation exchange is unable to terminate extreme events where synchronous occurrence of extreme events is only possible even for large interaction. On the other hand, a threshold-activated coupling can terminate extreme events above a critical value of mutual interaction. PACS numbers: 89.75.Fb, 05.45.a Rare and recurrent large amplitude deviations of normally bounded dynamics are seen in many systems. Such occasional large amplitude spiking events are larger than a nominal value and their statistical distribution of occurrence shows qualitative similarities, in dynamical sense, with data records of natural disas- ters, rogue waves, tsunami, flood and share market crashes. -
Oct 0 3 2007 Barker
Discriminating Noise from Chaos in Heart Rate Variability: Application to Prognosis in Heart Failure by Natalia M. Arzeno S.B. Electrical Science and Engineering Massachusetts Institute of Technology, 2006 Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology May 2007 Copyright 2007 Natalia M. ArzenoV. All rights reserved. The author hereby grants to M.I.T. permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole and in part in any medium now known or hereafter created. Author Department of Electrica Engineering and Computer Science May 25, 2007 Certified by Chi-Sang Poon V arch Scientist i Supervisor Accepted by thur C. Smith 1 Engineering Chairman, Department Committee on Graduate Theses MASSACHUSETTS INS E OF TECHNoLOGy OCT 0 3 2007 BARKER L IRA RIdS 2 Discriminating Noise from Chaos in Heart Rate Variability: Application to Prognosis in Heart Failure by Natalia M. Arzeno Submitted to the Department of Electrical Engineering and Computer Science May 25, 2007 In Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical Engineering and Computer Science ABSTRACT This thesis examines two challenging problems in chaos analysis: distinguishing deterministic chaos and stochastic (noise-induced) chaos, and applying chaotic heart rate variability (HRV) analysis to the prognosis of mortality in congestive heart failure (CHF). Distinguishing noise from chaos poses a major challenge in nonlinear dynamics theory since the addition of dynamic noise can make a non-chaotic nonlinear system exhibit stochastic chaos, a concept which is not well-defined and is the center of heated debate in chaos theory. -
Pseudo-Orbit Data Assimilation. Part I: the Perfect Model Scenario
Hailiang Du and Leonard A. Smith Pseudo-orbit data assimilation. Part I: the perfect model scenario Article (Published version) (Refereed) Original citation: Du, Hailiang and Smith, Leonard A. (2014) Pseudo-orbit data assimilation. part I: the perfect model scenario. Journal of the Atmospheric Sciences, 71 (2). pp. 469-482. ISSN 0022-4928 DOI: 10.1175/JAS-D-13-032.1 © 2014 American Meteorological Society This version available at: http://eprints.lse.ac.uk/55849/ Available in LSE Research Online: July 2014 LSE has developed LSE Research Online so that users may access research output of the School. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LSE Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research Online website. VOLUME 71 JOURNAL OF THE ATMOSPHERIC SCIENCES FEBRUARY 2014 Pseudo-Orbit Data Assimilation. Part I: The Perfect Model Scenario HAILIANG DU AND LEONARD A. SMITH Centre for the Analysis of Time Series, London School of Economics and Political Science, London, United Kingdom (Manuscript received 26 January 2013, in final form 21 October 2013) ABSTRACT State estimation lies at the heart of many meteorological tasks. Pseudo-orbit-based data assimilation provides an attractive alternative approach to data assimilation in nonlinear systems such as weather forecasting models. -
Applied .Chaos: Quantifying Complex Systems
APPLIED .C HAOS: QUANTIFYING COMPLEX SYSTEMS LEONARD A. SMITI!(l] Department of Applied Mathematics and Theoretical Physics University of Cambridge Cambridge CB3 9EW, U.K. Abstract This contribution discusses dynamic reconstructions <1Ild their application to the identification of, quantification of and discrimination between complex systems. Phase space reconstructions which reproduce the flow of dynamical systems in time are con structed from (multiple probe) time series data. These dynamic reconstructions are used to quantify the unknown system. In the case of chaotic systems, this is ac complished through the isolation of unstable periodic orbits. The method is applied to data from the Ikeda map, where it is shown that the data requirements of this approach are modest relative to those required for other types of analysis. The ap plication of this approach to systems where the underlying dynamics are stochastic is also discussed . 1. Introduction In recent years there has been a rapid increase in the application of nonlinear dynamical systems ideas to the analysis of complex time series. These ideas have provided a new paradigm which has proven useful in many fields of study. Originally, reconstructions were "static" in that they attempted to reconstruct the geometry from a time seri es [1] . Unfortunately, methods of analysis developed for the study of low dimensional low noise systems h ave sometimes been applied to data sets with whi ch they cannot produce meaningful results. This is particularly true of dimension calcu lations [2] where many results may be disqualified on sim ple geometrin t! constraints [3]. While much work has been done on determining the reliabi lity of such algorithms [4], a rrl<ljOf draw back of these approaches is t.haL they fail in suut.lc ways. -
65 Numerical Analysis
e Q (e t o 5 M SectionsSet 1Q (Section 65)MR September 2012 65 NUMERICAL ANALYSIS MR2918625 65-06 FRecent advances in scientific computing and matrix analysis. Proceedings of the International Workshop held at the University of Macau, Macau, December 28{30, 2009. Edited by Xiao-Qing Jin, Hai-Wei Sun and Seak-Weng Vong. International Press, Somerville, MA; Higher Education Press, Beijing, 2011. xii+126 pp. ISBN 978-1-57146-202-2 Contents: Zheng-jian Bai and Xiao-qing Jin [Xiao Qing Jin1], A note on the Ulm-like method for inverse eigenvalue problems (1{7) MR2908437; Che-man Cheng [Che-Man Cheng], Kin-sio Fong [Kin-Sio Fong] and Io-kei Lok [Io-Kei Lok], Another proof for commutators with maximal Frobenius norm (9{14) MR2908438; Wai-ki Ching [Wai-Ki Ching] and Dong-mei Zhu [Dong Mei Zhu1], On high-dimensional Markov chain models for categorical data sequences with applications (15{34) MR2908439; Yan-nei Law [Yan Nei Law], Hwee-kuan Lee [Hwee Kuan Lee], Chao-qiang Liu [Chaoqiang Liu] and Andy M. Yip, An additive variational model for image segmentation (35{48) MR2908440; Hai-yong Liao [Haiyong Liao] and Michael K. Ng, Total variation image restoration with automatic selection of regularization parameters (49{59) MR2908441; Franklin T. Luk and San-zheng Qiao [San Zheng Qiao], Matrices and the LLL algorithm (61{69) MR2908442; Mila Nikolova, Michael K. Ng and Chi-pan Tam [Chi-Pan Tam], A fast nonconvex nonsmooth minimization method for image restoration and reconstruction (71{83) MR2908443; Gang Wu [Gang Wu1], Eigenvalues of certain augmented complex stochastic matrices with applications to PageRank (85{92) MR2908444; Yan Xuan and Fu-rong Lin, Clenshaw-Curtis-rational quadrature rule for Wiener-Hopf equations of the second kind (93{110) MR2908445; Man-chung Yeung [Man-Chung Yeung], On the solution of singular systems by Krylov subspace methods (111{116) MR2908446; Qi- fang Yu, San-zheng Qiao [San Zheng Qiao] and Yi-min Wei, A comparative study of the LLL algorithm (117{126) MR2908447. -
Generalized Complexity Measures and Chaotic Maps B
Generalized complexity measures and chaotic maps B. Godó and Á. Nagy Citation: Chaos 22, 023118 (2012); doi: 10.1063/1.4705088 View online: http://dx.doi.org/10.1063/1.4705088 View Table of Contents: http://chaos.aip.org/resource/1/CHAOEH/v22/i2 Published by the American Institute of Physics. Related Articles On finite-size Lyapunov exponents in multiscale systems Chaos 22, 023115 (2012) Exact folded-band chaotic oscillator Chaos 22, 023113 (2012) Components in time-varying graphs Chaos 22, 023101 (2012) Impulsive synchronization of coupled dynamical networks with nonidentical Duffing oscillators and coupling delays Chaos 22, 013140 (2012) Dynamics and transport in mean-field coupled, many degrees-of-freedom, area-preserving nontwist maps Chaos 22, 013137 (2012) Additional information on Chaos Journal Homepage: http://chaos.aip.org/ Journal Information: http://chaos.aip.org/about/about_the_journal Top downloads: http://chaos.aip.org/features/most_downloaded Information for Authors: http://chaos.aip.org/authors CHAOS 22, 023118 (2012) Generalized complexity measures and chaotic maps B. Godo´ and A´ . Nagy Department of Theoretical Physics, University of Debrecen, H–4010 Debrecen, Hungary (Received 24 November 2011; accepted 5 April 2012; published online 24 April 2012) The logistic and Tinkerbell maps are studied with the recently introduced generalized complexity measure. The generalized complexity detects periodic windows. Moreover, it recognizes the intersection of periodic branches of the bifurcation diagram. It also reflects the fractal character of the chaotic dynamics. There are cases where the complexity plot shows changes that cannot be seen in the bifurcation diagram. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705088] ð Complexity is a key concept in modern science.