Antidepressants Increase Human Hippocampal Neurogenesis By
Molecular Psychiatry (2011) 16, 738–750 & 2011 Macmillan Publishers Limited All rights reserved 1359-4184/11 www.nature.com/mp ORIGINAL ARTICLE Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor C Anacker1,2,3, PA Zunszain1, A Cattaneo1,4, LA Carvalho1, MJ Garabedian5, S Thuret3, J Price3 and CM Pariante1,2 1King’s College London, Institute of Psychiatry, Section of Perinatal Psychiatry and Stress, Psychiatry and Immunology (SPI-lab), Department of Psychological Medicine, London, UK; 2National Institute for Health Research ‘Biomedical Research Centre for Mental Health’, Institute of Psychiatry and South London and Maudsley NHS Foundation Trust, London, UK; 3King’s College London, Institute of Psychiatry, Centre for the Cellular Basis of Behaviour (CCBB), London, UK; 4Genetics Unit, IRCCS San Giovanni di Dio, Brescia, Italy and 5Department of Microbiology, NYU School of Medicine, New York, NY, USA Antidepressants increase adult hippocampal neurogenesis in animal models, but the underlying molecular mechanisms are unknown. In this study, we used human hippocampal progenitor cells to investigate the molecular pathways involved in the antidepressant-induced modulation of neurogenesis. Because our previous studies have shown that antidepressants regulate glucocorticoid receptor (GR) function, we specifically tested whether the GR may be involved in the effects of these drugs on neurogenesis. We found that treatment (for 3–10 days) with the antidepressant, sertraline, increased neuronal differentiation via a GR-dependent mechanism. Specifically, sertraline increased both immature, double- cortin (Dcx)-positive neuroblasts ( þ 16%) and mature, microtubulin-associated protein-2 (MAP2)-positive neurons ( þ 26%). This effect was abolished by the GR-antagonist, RU486. Interestingly, progenitor cell proliferation, as investigated by 50-bromodeoxyuridine (BrdU) incorporation, was only increased when cells were co-treated with sertraline and the GR-agonist, dexamethasone, ( þ 14%) an effect which was also abolished by RU486.
[Show full text]